BASH(1)

NAME

BASH(1)

bash — GNU Bourne-Again SHell

SYNOPSIS

bash[options] [file]

COPYRIGHT

Bash is Copyright © 1989-2002 by the Free Software Foundation, Inc.

DESCRIPTION
Bashis ansh-compatible command language interpreter that executes commands read from the standard
input or from a file.Bashalso incorporates useful features from ltwen andC shells ksh andcsh).

Bash is intended to be a conformant implementation of the IEEE POSIX Shell and Tools specification
(IEEE Working Group 1003.2).

OPTIONS

In addition to the single-character shell options documented in the descriptionsef ladtin command,
bashinterprets the following options when it is invoked:

—c string If the —c option is present, then commands are read ®tring. If there are arguments after

=i
-
-r
-s

thestring, they are assigned to the positional parameters, startingith

If the —i option is present, the shellirgeractive

Makebashact as if it had been invoked as a login shell (s&®©CATION below).

If the —r option is present, the shell becomestricted (SeeRESTRICTED SHELL below).

If the —s option is present, or if no arguments remain after option processing, then commands
are read from the standard input. This option allows the positional parameters to be set when
invoking an interactive shell.

A list of all double-quoted strings preceded $is printed on the standard ouput. These are

the strings that are subject to language translation when the current local€isri@®SIX.

This implies the-n option; no commands will be executed.

[-+]O [shopt_optioh

shopt_optionis one of the shell options accepted by shept builtin (seeSHELL BUILTIN
COMMANDS below). If shopt_options present;-O sets the value of that optiofD unsets

it. If shopt_optioris not supplied, the names and values of the shell options accepghdgty

are printed on the standard output. If the invocation optieiQisthe output is displayed in a
format that may be reused as input.

A —- signals the end of options and disables further option processing. Any arguments after
the—- are treated as filenames and arguments. An argumeris @quivalent to-—.

Bashalso interprets a number of multi-character options. These options must appear on the command line
before the single-character options to be recognized.

——dump-po-strings

Equivalent to-D, but the output is in the GNygkttextpo (portable object) file format.

——dump-strings

Equivalent to-D.

——help Display a usage message on standard output and exit successfully.
——init-file file
——rcfile file

——login

Execute commands frorfile instead of the standard personal initialization filbashrcif the
shell is interactive (sei®lVOCATION below).

Equivalent to-I.

——noediting

Do not use the GNUkadline library to read command lines when the shell is interactive.

——noprofile

Do not read either the system-wide startup fée/profile or any of the personal initialization files
“I.bash_profile™/.bash_login or*/.profile. By default,bashreads these files when it is invoked as
a login shell (se&@NVOCATION below).

——norc Do not read and execute the personal initialization filashrcif the shell is interactive. This

option is on by default if the shell is invokedsis

GNU Bash-2.05b 2002 July 15 1

BASH(1) BASH(1)

——posix
Change the behavior blshwhere the default operation differs from the POSIX 1003.2 standard
to match the standargdqsix modg

——restricted
The shell becomes restricted (fSTRICTED SHELL below).

—-verbose
Equivalent to-v.

—=version
Show version information for this instancebafshon the standard output and exit successfully.

ARGUMENTS
If arguments remain after option processing, and neithera¢her the-soption has been supplied, the first
argument is assumed to be the name of a file containing shell commabashi# invoked in this fashion,
$0 is set to the name of the file, and the positional parameters are set to the remaining ardgasants.
reads and executes commands from this file, then é&#tshis exit status is the exit status of the last com-
mand executed in the script. If no commands are executed, the exit status is 0. An attempt is first made to
open the file in the current directory, and, if no file is found, then the shell searches the diredeafies in
for the script.

INVOCATION
A login shellis one whose first character of argument zero-isaa one started with the-login option.

An interactiveshell is one started without non-option arguments and withoutdtlbetion whose standard
input and output are both connected to terminals (as determinisathy3)), or one started with thei
option. PS1lis set ands— includesi if bashis interactive, allowing a shell script or a startup file to test this
state.

The following paragraphs describe hbashexecutes its startup files. If any of the files exist but cannot be
read,bashreports an error. Tildes are expanded in file names as described below iloel&xpansion
in theEXPANSION section.

Whenbashis invoked as an interactive login shell, or as a non-interactive shell with-tbgin option, it

first reads and executes commands from the/di@profile if that file exists. After reading that file, it
looks for™/.bash_profile™.bash_loginand™ .profile, in that order, and reads and executes commands from
the first one that exists and is readable. Fhaoprofile option may be used when the shell is started to
inhibit this behavior.

When a login shell exithashreads and executes commands from thé/flbash_logoutif it exists.

When an interactive shell that is not a login shell is statiadh reads and executes commands from
“I.bashrg if that file exists. This may be inhibited by using thenorc option. The--rcfile file option will
forcebashto read and execute commands fridlminstead of/.bashrc

When bash is started non-interactively, to run a shell script, for example, it looks for the variable
BASH_ENV in the environment, expands its value if it appears there, and uses the expanded value as the
name of a file to read and execuBashbehaves as if the following command were executed:

if [-n "$BASH_ENV" |; then . "$BASH_ENV"; fi
but the value of theATH variable is not used to search for the file name.

If bashis invoked with the nameh, it tries to mimic the startup behavior of historical versionstoés

closely as possible, while conforming to the POSIX standard as well. When invoked as an interactive login
shell, or a non-interactive shell with thelogin option, it first attempts to read and execute commands

from /etc/profileand™/.profile, in that order. The-—noprofile option may be used to inhibit this behavior.

When invoked as an interactive shell with the nagbashlooks for the variabl&€NV, expands its value

if it is defined, and uses the expanded value as the name of a file to read and execute. Since a shell invoked
assh does not attempt to read and execute commands from any other startup fitegctites option has

no effect. A non-interactive shell invoked with the nasheloes not attempt to read any other startup files.
When invoked ash, bashentersposixmode after the startup files are read.

Whenbashis started inposixmode, as with the—posixcommand line option, it follows the POSIX stan-
dard for startup files. In this mode, interactive shells expangNhevariable and commands are read and
executed from the file whose name is the expanded value. No other startup files are read.

2 2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

Bash attempts to determine when it is being run by the remote shell daemon, uslidllyf bash deter-
mines it is being run byshd it reads and executes commands ffatmashrg if that file exists and is read-
able. It will not do this if invoked ash. The—-—norc option may be used to inhibit this behavior, and the
——rcfile option may be used to force another file to be readisigtdoes not generally invoke the shell
with those options or allow them to be specified.

If the shell is started with the effective user (group) id not equal to the real user (group) id, apd the
option is not supplied, no startup files are read, shell functions are not inherited from the environment, the
SHELLOPTS variable, if it appears in the environment, is ignored, and the effective user id is set to the real
user id. If the-p option is supplied at invocation, the startup behavior is the same, but the effective user id
is not reset.

DEFINITIONS
The following definitions are used throughout the rest of this document.
blank A space or tab.
word A sequence of characters considered as a single unit by the shell. Also knotoheas a
name A word consisting only of alphanumeric characters and underscores, and beginning with an alpha-
betic character or an underscore. Also referred to &teatifier.
metacharacter
A character that, when unquoted, separates words. One of the following:
| & ; () < > space tab
control operator
A tokenthat performs a control function. It is one of the following symbols:
& && ;55 ()| <newline>

RESERVED WORDS
Reserved wordare words that have a special meaning to the shell. The following words are recognized as
reserved when unquoted and either the first word of a simple commargH@deGRAMMAR below) or
the third word of aaseor for command:

I case do done elif else esac fi for function if in select then until
while { } time [[1]

SHELL GRAMMAR
Simple Commands
A simple comman@ a sequence of optional variable assignments followdddnk-separated words and
redirections, and terminated bycantrol operator The first word specifies the command to be executed,
and is passed as argument zero. The remaining words are passed as arguments to the invoked command.

The return value of simple commani its exit status, or 128+f the command is terminated by sigmal

Pipelines
A pipelineis a sequence of one or more commands separated by the cHarabteformat for a pipeline
is:

[time [-p]][!] command | command2..]

The standard output @bmmands connected via a pipe to the standard inpuoofimand2 This connec-
tion is performed before any redirections specified by the commanBESRRECTION below).

If the reserved wordl precedes a pipeline, the exit status of that pipeline is the logical NOT of the exit sta-
tus of the last command. Otherwise, the status of the pipeline is the exit status of the last command. The
shell waits for all commands in the pipeline to terminate before returning a value.

If the time reserved word precedes a pipeline, the elapsed as well as user and system time consumed by its
execution are reported when the pipeline terminates.—plaption changes the output format to that spec-

ified by POSIX. TheTIMEFORMAT variable may be set to a format string that specifies how the timing
information should be displayed; see the descriptiotnMEFORMAT underShell Variablesbelow.

Each command in a pipeline is executed as a separate process (i.e., in a subshell).

Lists

A listis a sequence of one or more pipelines separated by one of the ope&at@& , or (1] and option-
ally terminated by one of &, or <newline>.

Of these list operatorg& and[11have equal precedence, followed ;bgnd &, which have equal prece-
dence.

GNU Bash-2.05b 2002 July 15 3

BASH(1) BASH(1)

A sequence of one or more newlines may appealistiastead of a semicolon to delimit commands.

If a command is terminated by the control operé&tpthe shell executes the command inlthekgroundn

a subshell. The shell does not wait for the command to finish, and the return status is 0. Commands sepa-
rated by g are executed sequentially; the shell waits for each command to terminate in turn. The return
status is the exit status of the last command executed.

The control operator&& and[Ildenote AND lists and OR lists, respectively. An AND list has the form
command®& command?2

command2s executed if, and only ifommandZXeturns an exit status of zero.

An OR list has the form
commandITicommand?2

commandds executed if and only fommandleturns a non-zero exit status. The return status of AND
and OR lists is the exit status of the last command executed in the list.

Compound Commands
A compound commarnid one of the following:

(list) list is executed in a subshell. Variable assignments and builtin commands that affect the shell’s
environment do not remain in effect after the command completes. The return status is the exit
status ofist.

{ list; } list is simply executed in the current shell environmdist. must be terminated with a newline or
semicolon. This is known asgroup command The return status is the exit statudisf. Note
that unlike the metacharactdrand ,{ and} arereserved wordaind must occur where a reserved
word is permitted to be recognized. Since they do not cause a word break, they must be separated
from list by whitespace.

((expressio))
Theexpressions evaluated according to the rules described below WRIFHMETIC EVALUA-
TION. If the value of the expression is non-zero, the return status is 0; otherwise the return status
is 1. This is exactly equivalent tet " expressioh.

[[expression]
Return a status of 0 or 1 depending on the evaluation of the conditional expegsiession
Expressions are composed of the primaries described below G@iNDITIONAL EXPRES-
SIONS. Word splitting and pathname expansion are not performed on the words betwen the
and]]; tilde expansion, parameter and variable expansion, arithmetic expansion, command substi-
tution, process substitution, and quote removal are performed.

When the== and!= operators are used, the string to the right of the operator is considered a pat-
tern and matched according to the rules described below Batern Matching. The return

value is 0 if the string matches or does not match the pattern, respectively, and 1 otherwise. Any
part of the pattern may be quoted to force it to be matched as a string.

Expressions may be combined using the following operators, listed in decreasing order of prece-
dence:

(expression
Returns the value @xpression This may be used to override the normal precedence of
operators.
I expression
True if expressiornis false.
expression®& expression2
True if bothexpressionlandexpressionare true.
expression1Tlexpression2
True if eitherexpressionbr expression2s true.

The && and[operators do not evaluatxpressionf the value ofexpressionis sufficient to
determine the return value of the entire conditional expression.

4 2002 July 15 GNU Bash-2.05b

BASH(1)

BASH(1)

for name[in word] ; dolist ; done

The list of words followingn is expanded, generating a list of items. The variableis set to

each element of this list in turn, alist is executed each time. If the word is omitted, thefor
command executdsst once for each positional parameter that is set FA&AMETERS below).

The return status is the exit status of the last command that executes. If the expansion of the items
following in results in an empty list, no commands are executed, and the return status is 0.

for ((exprl; expr2; expr3)) ; dolist ; done

First, the arithmetic expressi@axprlis evaluated according to the rules described below under
ARITHMETIC EVALUATION . The arithmetic expressiaexpr2is then evaluated repeatedly until

it evaluates to zero. Each tinegpr2evaluates to a non-zero vallisf is executed and the arith-
metic expressioexpr3is evaluated. If any expression is omitted, it behaves as if it evaluates to 1.
The return value is the exit status of the last commalistithat is executed, or false if any of the
expressions is invalid.

selectname| in word] ; do list ; done

The list of words followingn is expanded, generating a list of items. The set of expanded words

is printed on the standard error, each preceded by a number. iff Werd is omitted, the posi-

tional parameters are printed (S®#RAMETERS below). ThePS3prompt is then displayed and a

line read from the standard input. If the line consists of a number corresponding to one of the dis-
played words, then the value nmeis set to that word. If the line is empty, the words and
prompt are displayed again. If EOF is read, the command completes. Any other value read causes
nameto be set to null. The line read is saved in the vari&i®LY. Thelist is executed after

each selection until break command is executed. The exit statusalectis the exit status of the

last command executedlist, or zero if no commands were executed.

casewordin [[(] pattern[| pattern] ...)list;;] ... esac

A casecommand first expandsord, and tries to match it against eguditernin turn, using the

same matching rules as for pathname expansionRateame Expansionbelow). When a

match is found, the correspondiligt is executed. After the first match, no subsequent matches
are attempted. The exit status is zero if no pattern matches. Otherwise, it is the exit status of the
last command executed list.

if list; then list; [elif list; thenlist;] ... [elselist;] fi

Theif list is executed. If its exit status is zero, then list is executed. Otherwise, eaelif list

is executed in turn, and if its exit status is zero, the correspotitinglist is executed and the
command completes. Otherwise, tiselist is executed, if present. The exit status is the exit sta-
tus of the last command executed, or zero if no condition tested true.

while list; do list; done
until list; do list; done

The while command continuously executes thelist as long as the last commandlist returns
an exit status of zero. Thatil command is identical to thehile command, except that the test
is negated; thdo list is executed as long as the last commariimeturns a non-zero exit status.
The exit status of thevhile and until commands is the exit status of the ldstlist command
executed, or zero if none was executed.

[function] name() { list; }

COMMENTS

This defines a function namedme Thebodyof the function is thdist of commands between {
and }. This list is executed wheneveameis specified as the name of a simple command. The
exit status of a function is the exit status of the last command executed in the bodyUN8ee
TIONS below.)

In a non-interactive shell, or an interactive shell in whichitleractive_commentsoption to theshopt
builtin is enabled (seBHELL BUILTIN COMMANDS below), a word beginning witk causes that word
and all remaining characters on that line to be ignored. An interactive shell withéuotettaetive _com-
ments option enabled does not allow comments. Triteractive_commentsoption is on by default in
interactive shells.

QUOTING

Quotingis used to remwve the special meaning of certain characters or words to the shell. Quoting can be
used to disable special treatment for special characters, to prevent reserved words from being recognized as

GNU Bash-2.05b 2002 July 15 5

BASH(1) BASH(1)

such, and to prevent parameter expansion.

Each of thenetacharacterdisted alwve underDEFINITIONS has special meaning to the shell and must be
quoted if it is to represent itself.

When the command history expansion facilities are being usedjstiogy expansiorcharacter, usually,
must be quoted to prevent history expansion.

There are three quoting mechanisms:abeape charactesingle quotes, and double quotes.

A non-quoted backslash) (s theescape characterlt preserves the literal value of the next character that
follows, with the exception of <newline>. If \&newline> pair appears, and the backslash is not itself
guoted, the<newline> is treated as a line continuation (that is, it is removed from the input stream and
effectively ignored).

Enclosing characters in single quotes preserves the literal value of each character within the quotes. A sin-
gle quote may not occur between single quotes, even when preceded by a backslash.

Enclosing characters in double quotes preserves the literal value of all characters within the quotes, with the
exception of$, ‘, and\. The character$ and’ retain their special meaning within double quotes. The
backslash retains its special meaning only when followed by one of the following chactets:\, or
<newline> A double quote may be quoted within double quotes by preceding it with a backslash.

The special parametetsand @ have special meaning when in double quotesR88AMETERS below).

Words of the forn$'string’ are treated specially. The word expandstting, with backslash-escaped char-
acters replaced as specifed by the ANSI C standard. Backslash escape sequences, if present, are decoded a

follows:
\a alert (bell)
\b backspace
\e an escape character
\f form feed
\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\ single quote

\nnn the eight-bit character whose value is the octal vatugone to three digits)
\XxHH the eight-bit character whose value is the hexadecimal tiu@ne or two hex digits)
\cx a controlx character

The expanded result is single-quoted, as if the dollar sign had not been present.

A double-quoted string preceded by a dollar sl cause the string to be translated according to the
current locale. If the current locale@sor POSIX, the dollar sign is ignored. If the string is translated and
replaced, the replacement is double-quoted.

PARAMETERS
A parameteris an entity that stores values. It can beame a number, or one of the special characters
listed below undeBpecial Parameters For the shell’'s purposes,variable is a parameter denoted by a
name A variable has &alueand zero or morattributes Attributes are assigned using ttheclare builtin
command (sedeclarebelow inSHELL BUILTIN COMMANDS).

A parameter is set if it has been assigned a value. The null string is a valid value. Once a variable is set, it
may be unset only by using thasetbuiltin command (seBHELL BUILTIN COMMANDS below).

A variablemay be assigned to by a statement of the form
name=[valug

If valueis not given, the variable is assigned the null string.vaAllesundergo tilde expansion, parameter
and variable expansion, command substitution, arithmetic expansion, and quote remds&aPANEON
below). If the variable has ifateger attribute set, themalueis subject to arithmetic expansion even if the
$((...)) expansion is not used (s&thmetic Expansion below). Word splitting is not performed, with the
exception of'$@" as explained below und&pecial Parameters Pathname expansion is not performed.
Assignment statements may also appear as argumentsdedhes, typeset export, readonly, andlocal
builtin commands.

6 2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

Positional Parameters
A positional parameters a parameter denoted by one or more digits, other than the single digit 0. Posi-
tional parameters are assigned from the shell's arguments when it is invoked, and may be reassigned using
the setbuiltin command. Positional parameters may not be assigned to with assignment statements. The
positional parameters are temporarily replaced when a shell function is executedNSaeONS below).

When a positional parameter consisting of more than a single digit is expanded, it must be enclosed in
braces (seEXPANSION below).

Special Parameters

The shell treats several parameters specially. These parameters may only be referenced; assignment to

them is not allowed.

* Expands to the positional parameters, starting from one. When the expansion occurs within dou-
ble quotes, it expands to a single word with the value of each parameter separated by the first char-
acter of thdFs special variable. That is$*" is equivalent to $1c$2c...", wherec is the first char-
acter of the value of thiEs variable. IfIFS is unset, the parameters are separated by spaces. If
IFS is null, the parameters are joined without intervening separators.

@ Expands to the positional parameters, starting from one. When the expansion occurs within dou-
ble quotes, each parameter expands to a separate word. TH@'iss equivalent to $1" "$2" ...

When there are no positional paramete$€" and$@ expand to nothing (i.e., they are removed).

Expands to the number of positional parameters in decimal.

? Expands to the status of the most recently executed foreground pipeline.

- Expands to the current option flags as specified upon invocation, lsgttbeiltin command, or
those set by the shell itself (such as-theption).

$ Expands to the process ID of the shell. In a () subshell, it expands to the process ID of the current
shell, not the subshell.

! Expands to the process ID of the most recently executed background (asynchronous) command.

0 Expands to the name of the shell or shell script. This is set at shell initializatidrashfis

invoked with a file of command$0 is set to the name of that file. bashis started with the-c

option, ther$0 is set to the first argument after the string to be executed, if one is present. Other-
wise, it is set to the file name used to invbksh, as given by argument zero.

At shell startup, set to the absolute file name of the shell or shell script being executed as passed in
the argument list. Subsequently, expands to the last argument to the previous command, after
expansion. Also set to the full file name of each command executed and placed in the environment
exported to that command. When checking mail, this parameter holds the name of the mail file
currently being checked.

Shell Variables
The following variables are set by the shell:

BASH Expands to the full file name used to invoke this instanbasif

BASH_VERSINFO
A readonly array variable whose members hold version information for this instaibashofThe
values assigned to the array members are as follows:

BASH_VERSINFO[Q] The major version number (theleass.
BASH_VERSINFO[1] The minor version number (tiversior).
BASH_VERSINFO[2] The patch level.
BASH_VERSINFO[3] The build version.
BASH_VERSINFO[4] The release status (e.getal.
BASH_VERSINFOI[5] The value oMACHTYPE .

BASH_VERSION
Expands to a string describing the version of this instanbasbt

COMP_CWORD
An index into${COMP_WORDS} of the word containing the current cursor position. This vari-
able is available only in shell functions invoked by the programmable completion facilities (see
Programmable Completionbelow).

COMP_LINE
The current command line. This variable is available only in shell functions and external com-
mands invoked by the programmable completion facilities @esyrammable Completion

GNU Bash-2.05b 2002 July 15 7

BASH(1) BASH(1)

below).

COMP_POINT
The index of the current cursor position relative to the beginning of the current command. If the
current cursor position is at the end of the current command, the value of this variable is equal to
${#COMP_LINE}. This variable is available only in shell functions and external commands
invoked by the programmable completion facilities (Beegrammable Completionbelow).

COMP_WORDS
An array variable (seArrays below) consisting of the individual words in the current command
line. This variable is available only in shell functions invoked by the programmable completion
facilities (seeProgrammable Completionbelow).

DIRSTACK
An array variable (seérrays below) containing the current contents of the directory stack.
Directories appear in the stack in the order they are displayed dirshbuiltin. Assigning to
members of this array variable may be used to modify directories already in the stack, but the
pushd andpopd builtins must be used to add and pymdirectories. Assignment to this variable
will not change the current directory. BIRSTACK is unset, it loses its special properties, even if
it is subsequently reset.

EUID Expands to the effective user ID of the current user, initialized at shell startup. This variable is
readonly.

FUNCNAME
The name of any currently-executing shell function. This variable exists only when a shell func-
tion is executing. Assignments EUNCNAME have no effect and return an error statussURNC-
NAME is unset, it loses its special properties, even if it is subsequently reset.

GROUPS
An array variable containing the list of groups of which the current user is a member. Assign-
ments toGROUPS have no effect and return an error statusGRIOUPSIis unset, it loses its spe-
cial properties, even if it is subsequently reset.

HISTCMD
The history number, or index in the history list, of the current commandISIfCMD is unset, it
loses its special properties, even if it is subsequently reset.

HOSTNAME
Automatically set to the name of the current host.

HOSTTYPE
Automatically set to a string that uniquely describes the type of machine onhelsicis execut-
ing. The default is system-dependent.

LINENO
Each time this parameter is referenced, the shell substitutes a decimal number representing the
current sequential line number (starting with 1) within a script or function. When not in a script or
function, the value substituted is not guaranteed to be meaningfuNBINO is unset, it loses its
special properties, even if it is subsequently reset.

MACHTYPE
Automatically set to a string that fully describes the system type on Whithis executing, in
the standard GNUpu-company-systefarmat. The default is system-dependent.

OLDPWD
The previous working directory as set by tldecommand.

OPTARG
The value of the last option argument processed bygébepts builtin command (seSHELL
BUILTIN COMMANDS below).

OPTIND
The index of the next argument to be processed byéhepts builtin command (seSHELL
BUILTIN COMMANDS below).

8 2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

OSTYPE
Automatically set to a string that describes the operating system on bdshlis executing. The
default is system-dependent.

PIPESTATUS
An array variable (seArrays below) containing a list of exit status values from the processes in
the most-recently-executed foreground pipeline (which may contain only a single command).

PPID The process ID of the shell's parent. This variable is readonly.
PWD The current working directory as set by tttecommand.

RANDOM
Each time this parameter is referenced, a random integer between 0 and 32767 is generated. The
sequence of random numbers may be initialized by assigning a v&asibioM . If RANDOM is
unset, it loses its special properties, even if it is subsequently reset.

REPLY
Set to the line of input read by thead builtin command when no arguments are supplied.

SECONDS
Each time this parameter is referenced, the number of seconds since shell invocation is returned.
If a value is assigned t®ECONDS the value returned upon subsequent references is the number
of seconds since the assignment plus the value assign8HCAINDSIs unset, it loses its special
properties, even if it is subsequently reset.

SHELLOPTS
A colon-separated list of enabled shell options. Each word in the list is a valid argument for the
—0 option to theset builtin command (seSHELL BUILTIN COMMANDS below). The options
appearing irSHELLOPTS are those reported as by set —a |[f this variable is in the environment
whenbash starts up, each shell option in the list will be enabled before reading any startup files.
This variable is read-only.

SHLVL
Incremented by one each time an instandgashis started.

uiD Expands to the user ID of the current user, initialized at shell startup. This variable is readonly.

The following variables are used by the shell. In some chsa$ assigns a default value to a variable;
these cases are noted below.

BASH_ENV
If this parameter is set whdrashis executing a shell script, its value is interpreted as a filename
containing commands to initialize the shell, a¥ibashrc The value oBASH_ENV is subjected
to parameter expansion, command substitution, and arithmetic expansion before being interpreted
as a file namePATH is not used to search for the resultant file name.

CDPATH
The search path for thed command. This is a colon-separated list of directories in which the
shell looks for destination directories specified by tite command. A sample value is
"."usr!

COLUMNS
Used by theselectbuiltin command to determine the terminal width when printing selection lists.
Automatically set upon receipt of a SIGWINCH.

COMPREPLY
An array variable from whichash reads the possible completions generated by a shell function
invoked by the programmable completion facility (f#egrammable Completionbelow).

FCEDIT
The default editor for th& builtin command.

FIGNORE
A colon-separated list of suffixes to ignore when performing filename completioRES&&INE
below). A filename whose suffix matches one of the entrie§GNORE is excluded from the list
of matched filenames. A sample valué.c™

GLOBIGNORE
A colon-separated list of patterns defining the set of filenames to be ignored by pathname expan-
sion. If a filename matched by a pathname expansion pattern also matches one of the patterns in

GNU Bash-2.05b 2002 July 15 9

BASH(1) BASH(1)

10

GLOBIGNORE, it is removed from the list of matches.

HISTCONTROL
If set to a value ofgnorespacelines which begin with apacecharacter are not entered on the
history list. If set to a value afinoredups lines matching the last history line are not entered. A
value ofignorebothcombines the two options. If unset, or if set to any other value than those
above, all lines read by the parser are saved on the history list, subject to the \1I8& IGf-
NORE. This variable’s function is superseded HISTIGNORE . The second and subsequent
lines of a multi-line compound command are not tested, and are added to the history regardless of
the value oHISTCONTROL .

HISTFILE
The name of the file in which command history is savedH$&EORY below). The default value
is “/.bash_history If unset, the command history is not saved when an interactive shell exits.

HISTFILESIZE
The maximum number of lines contained in the history file. When this variable is assigned a
value, the history file is truncated, if necessary, to contain no more than that number of lines. The
default value is 500. The history file is also truncated to this size after writing it when an interac-
tive shell exits.

HISTIGNORE
A colon-separated list of patterns used to decide which command lines should be saved on the his-
tory list. Each pattern is anchored at the beginning of the line and must match the complete line
(no implicit *** is appended). Each pattern is tested against the line after the checks specified by
HISTCONTROL are applied. In addition to the normal shell pattern matching charad&ers, *
matches the previous history line&™ may be escaped using a backslash; the backslash is
removed before attempting a match. The second and subsequent lines of a multi-line compound
command are not tested, and are added to the history regardless of the MMBIHGNORE .

HISTSIZE
The number of commands to remember in the command historyH(S@®RY below). The
default value is 500.

HOME
The home directory of the current user; the default argument fardtteiltin command. The
value of this variable is also used when performing tilde expansion.

HOSTFILE
Contains the name of a file in the same formateds/hoststhat should be read when the shell
needs to complete a hostname. The list of possible hostname completions may be changed while
the shell is running; the next time hosthame completion is attempted after the value is changed,
bash adds the contents of the new file to the existing lisHOBTFILE is set, but has no value,
bash attempts to readetc/hoststo obtain the list of possible hostname completions. When
HOSTFILE is unset, the hostname list is cleared.

IFS The Internal Field Separatothat is used for word splitting after expansion and to split lines into
words with theread builtin command. The default value is “<space><tab><newline>".

IGNOREEOF
Controls the action of an interactive shell on receipt df@p character as the sole input. If set,
the value is the number of consecutB@®@F characters which must be typed as the first characters
on an input line beforbashexits. If the variable exists but does not have a numeric value, or has
no value, the default value is 10. If it does not est signifies the end of input to the shell.

INPUTRC
The filename for theeadline startup file, overriding the default &f.inputrc (seeREADLINE
below).

LANG Used to determine the locale category for any category not specifically selected with a variable
starting withLC .

LC_ALL
This variable overrides the value IoBANG and any othet.C_ variable specifying a locale cate-
gory.

LC_COLLATE
This variable determines the collation order used when sorting the results of pathname expansion,
and determines the behavior of range expressions, equivalence classes, and collating sequences
within pathname expansion and pattern matching.

2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

LC_CTYPE
This variable determines the interpretation of characters and the behavior of character classes
within pathname expansion and pattern matching.
LC_MESSAGES
This variable determines the locale used to translate double-quoted strings precefled by a
LC_NUMERIC
This variable determines the locale category used for number formatting.
LINES Used by theselectbuiltin command to determine the column length for printing selection lists.
Automatically set upon receipt of a SIGWINCH.
MAIL If this parameter is set to a file name andMLPATH variable is not sehashinforms the user
of the arrival of mail in the specified file.
MAILCHECK
Specifies how often (in secondsshchecks for mail. The default is 60 seconds. When it is time
to check for mail, the shell does so before displaying the primary prompt. If this variable is unset,
or set to a value that is not a number greater than or equal to zero, the shell disables mail checking.
MAILPATH
A colon-separated list of file names to be checked for mail. The message to be printed when mail
arrives in a particular file may be specified by separating the file name from the message with a
‘?’. When used in the text of the messafeexpands to the name of the current mailfile. Exam-
ple:
MAILPATH ='lvar/mail/bfox?"You have mail":;"/shell-mail?"$_ has mail!"
Bash supplies a default value for this variable, but the location of the user mail files that it uses is
system dependent (e.g., /var/nBlilSER).
OPTERR
If set to the value lhashdisplays error messages generated byg#teptsbuiltin command (see
SHELL BUILTIN COMMANDS below). OPTERR is initialized to 1 each time the shell is invoked
or a shell script is executed.
PATH The search path for commands. It is a colon-separated list of directories in which the shell looks
for commands (seeOMMAND EXECUTION below). The default path is system-dependent, and
is set by the administrator who installsbhash A common value is
lusr/gnu/bin:/usr/local/bin:/usr/ucb:/bin:/usr/bin:.
POSIXLY_CORRECT
If this variable is in the environment whbash starts, the shell enteposix moddefore reading
the startup files, as if the-posixinvocation option had been supplied. If it is set while the shell is
running,bashenablegposix modeas if the commandet -0 posix had been executed.
PROMPT_COMMAND
If set, the value is executed as a command prior to issuing each primary prompt.
PS1 The value of this parameter is expanded ER@MPTING below) and used as the primary prompt
string. The default value is\$—\W$".
PS2 The value of this parameter is expanded as R8hand used as the secondary prompt string. The
default is > ".
PS3 The value of this parameter is used as the prompt fosdleetcommand (seSHELL GRAM-
MAR above).
PS4 The value of this parameter is expanded as Rl and the value is printed before each com-
mandbash displays during an execution trace. The first charactérSafis replicated multiple
times, as necessary, to indicate multiple levels of indirection. The defadit’is “
TIMEFORMAT
The value of this parameter is used as a format string specifying how the timing information for
pipelines prefixed with théme reserved word should be displayed. Phecharacter introduces
an escape sequence that is expanded to a time value or other information. The escape sequences
and their meanings are as follows; the braces denote optional portions.

%% A literal %.

%[plllIR The elapsed time in seconds.

%[plll[lU The number of CPU seconds spent in user mode.
%[pllllS The number of CPU seconds spent in system mode.
%P The CPU percentage, computed as (%U + %S) / %R.

The optionalp is a digit specifying therecision the number of fractional digits after a decimal
point. A value of 0 causes no decimal point or fraction to be output. At most three places after the

GNU Bash-2.05b 2002 July 15 11

BASH(1)

12

TMOUT

BASH(1)

decimal point may be specified; valuespafreater than 3 are changed to 3p 6 not specified,
the value 3 is used.

The optional specifies a longer format, including minutes, of the fMMmSSFFs. The value
of p determines whether or not the fraction is included.

If this variable is not set, bash acts as if it had the \value
$'\nreal\t%3IR\nuser\t%3lU\nsys%3IS’. If the value is null, no timing information is displayed.
A trailing newline is added when the format string is displayed.

If set to a value greater than zefdOUT is treated as the default timeout for tead builtin.
Theselectcommand terminates if input does not arrive afIOUT seconds when input is com-

ing from a terminal. In an interactive shell, the value is interpreted as the number of seconds to
wait for input after issuing the primary prommashterminates after waiting for that number of
seconds if input does not arrive.

auto_resume

This variable controls how the shell interacts with the user and job control. If this variable is set,
single word simple commands without redirections are treated as candidates for resumption of an
existing stopped job. There is no ambiguity allowed; if there is more than one job beginning with
the string typed, the job most recently accessed is selectednahineof a stopped job, in this
context, is the command line used to start it. If set to the \edaet the string supplied must
match the name of a stopped job exactly; if setulistring the string supplied needs to match a
substring of the name of a stopped job. Bhéstringvalue provides functionality analogous to

the %? job identifier (seeJOB CONTROL below). If set to any other value, the supplied string
must be a prefix of a stopped job’s name; this provides functionality analogous/tojoheiden-

tifier.

histchars

Arrays

The two or three characters which control history expansion and tokenizatiom&eeRY
EXPANSION below). The first character is théstory expansiortharacter, the character which
signals the start of a history expansion, normdlly The second character is tiqelick substitu-

tion character, which is used as shorthand for re-running the previous command entered, substitut-
ing one string for another in the command. The default.isThe optional third character is the
character which indicates that the remainder of the line is a comment when found as the first char-
acter of a word, normally#. The history comment character causes history substitution to be
skipped for the remaining words on the line. It does not necessarily cause the shell parser to treat
the rest of the line as a comment.

Bash provides one-dimensional array variables. Any variable may be used as an ardeglanebuiltin
will explicitly declare an array. There is no maximum limit on the size of an array, nor any requirement
that members be indexed or assigned contiguously. Arrays are indexed using integers and are zero-based.

An array is created automatically if any variable is assigned to using the syatapsubscripj=value

The subscriptis treated as an arithmetic expression that must evaluate to a number greater than or equal to
zero. To explicitly declare an array, udeclare —aname(seeSHELL BUILTIN COMMANDS below).

declare —anamégsubscrip} is also accepted; treubscriptis ignored. Attributes may be specified for an

array variable using thdeclareandreadonly builtins. Each attribute applies to all members of an array.

Arrays are assigned to using compound assignments of then@mme=(valuel ... value), where each

valueis of the form $ubscripl=string. Only stringis required. If the optional brackets and subscript are
supplied, that index is assigned to; otherwise the index of the element assigned is the last index assigned to
by the statement plus one. Indexing starts at zero. This syntax is also acceptedibgiatresbuiltin.

Individual array elements may be assigned to usingahegsubscripl=valuesyntax introduced above.

Any element of an array may be referenced usinta#{gsubscript}. The braces are required to avoid
conflicts with pathname expansion. sifibscriptis @ or *, the word expands to all members rime

These subscripts differ only when the word appears within double quotes. If the word is double-quoted,
${namg*]} expands to a single word with the value of each array member separated by the first character
of the IFS special variable, and $émé¢@]} expands each element ohmeto a separate word. When
there are no array membersn&fné@]} expands to nothing. This is analogous to the expansion of the
special parametersand @ (seeSpecial Parametersabove). ${#thamgsubscrip}} expands to the length

2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

of ${namdsubscrip}}. If subscriptis* or @, the expansion is the number of elements in the array. Refer-
encing an array variable without a subscript is equivalent to referencing element zero.

Theunsetbuiltin is used to destroy arraysinsetnamgsubscrip} destroys the array element at indsb-
script unsetname wherenameis an array, ounsetnamgsubscrip}, wheresubscriptis * or @, removes
the entire array.

The declare, local, andreadonly builtins each accept aa option to specify an array. Thead builtin
accepts aa option to assign a list of words read from the standard input to an arragefldmddeclare
builtins display array values in a way that allows them to be reused as assignments.

EXPANSION
Expansion is performed on the command line after it has been split into words. There are seven kinds of
expansion performedirace expansiortilde expansionparameter and variable expansia@ommand sub-
stitution, arithmetic expansiarword splitting andpathname expansion

The order of expansions is: brace expansion, tilde expansion, parameter, variable and arithmetic expansion
and command substitution (done in a left-to-right fashion), word splitting, and pathname expansion.

On systems that can support it, there is an additional expansion avaitabkss substitution

Only brace expansion, word splitting, and pathname expansion can change the number of words of the
expansion; other expansions expand a single word to a single word. The only exceptions to this are the
expansions of$@" and '${namé¢@]}" as explained alve (SeePARAMETERS).

Brace Expansion
Brace expansiofis a mechanism by which arbitrary strings may be generated. This mechanism is similar
to pathname expansipbut the filenames generated need not exist. Patterns to be brace expanded take the
form of an optionapreamble followed by a series of comma-separated strings between a pair of braces,
followed by an optionapostscript The preamble is prefixed to each string contained within the braces,
and the postscript is then appended to each resulting string, expanding left to right.

Brace expansions may be nested. The results of each expanded string are not sorted; left to right order is
preserved. For examplddac,3e expands into ‘ade ace abe'.

Brace expansion is performed before any other expansions, and any characters special to other expansions
are preserved in the result. It is strictly textuBashdoes not apply any syntactic interpretation to the con-
text of the expansion or the text between the braces.

A correctly-formed brace expansion must contain unquoted opening and closing braces, and at least one
unquoted comma. Any incorrectly formed brace expansion is left unchanggdr ,Anay be quoted with

a backslash to prevent its being considered part of a brace expression. To avoid conflicts with parameter
expansion, the string{ is not considered eligible for brace expansion.

This construct is typically used as shorthand when the common prefix of the strings to be generated is
longer than in the alve xample:

mkdir /usr/local/src/bash/{old,new,dist,bugs}
or
chown root /usr/{ucb/{ex,edit},lib/{ex?.?*,how_ex}}

Brace expansion introduces a slight incompatibility with historical versiosh. o§h does not treat open-
ing or closing braces specially when they appear as part of a word, and preserves them in thBasltput.
removes braces from words as a consequence of brace expansion. For example, a word shtagsed to
file{1,2} appears identically in the output. The same word is outptitesdsfile2after expansion bpash

If strict compatibility withsh is desired, statbashwith the +B option or disable brace expansion with the
+B option to thesetcommand (se8HELL BUILTIN COMMANDS below).

Tilde Expansion
If a word begins with an unquoted tilde charact&j),(all of the characters preceding the first unquoted
slash (or all characters, if there is no unquoted slash) are consididedpsefix If none of the characters
in the tilde-prefix are quoted, the characters in the tilde-prefix following the tilde are treated as a possible
login name |If this login name is the null string, the tilde is replaced with the value of the shell parameter
HOME. If HOME is unset, the home directory of the user executing the shell is substituted instead. Other-
wise, the tilde-prefix is replaced with the home directory associated with the specified login name.

If the tilde-prefix is a “+’, the value of the shell variabvD replaces the tilde-prefix. If the tilde-prefix is
a -, the value of the shell variabfeLDPWD, if it is set, is substituted. If the characters following the

GNU Bash-2.05b 2002 July 15 13

BASH(1) BASH(1)

14

tilde in the tilde-prefix consist of a numbi optionally prefixed by a ‘+' or a ‘~', the tilde-prefix is
replaced with the corresponding element from the directory stack, as it would be displayeddivy the
builtin invoked with the tilde-prefix as an argument. If the characters following the tilde in the tilde-prefix

consist of a number without a leading ‘+’ or ‘~’, ‘+’ is assumed.
If the login name is invalid, or the tilde expansion fails, the word is unchanged.

Each variable assignment is checked for unquoted tilde-prefixes immediately followorg=a In these
cases, tilde expansion is also performed. Consequently, one may use file names with tildes in assignments
to PATH, MAILPATH , andCDPATH, and the shell assigns the expanded value.

Parameter Expansion

The ‘$ character introduces parameter expansion, command substitution, or arithmetic expansion. The
parameter name or symbol to be expanded may be enclosed in braces, which are optional but serve to pro-
tect the variable to be expanded from characters immediately following it which could be interpreted as part
of the name.

When braces are used, the matching ending brace is thg'finst ‘escaped by a backslash or within a
guoted string, and not within an embedded arithmetic expansion, command substitution, or paramter expan-
sion.

${paramete}
The value ofparameteris substituted. The braces are required wharameteris a positional
parameter with more than one digit, or whgarameteris followed by a character which is not to
be interpreted as part of its name.

If the first character oparameteris an exclamation point, a level of variable indirection is introduced.
Bashuses the value of the variable formed from the repacdmeteras the name of the variable; this vari-
able is then expanded and that value is used in the rest of the substitution, rather than theaedoeeof
ter itself. This is known asndirect expansion The exception to this is the expansion of pfix}
described below.

In each of the cases beloword is subject to tilde expansion, parameter expansion, command substitution,
and arithmetic expansion. When not performing substring exparsish,tests for a parameter that is
unset or null; omitting the colon results in a test only for a parameter that is unset.

${parameter-word}
Use Default Values If parameteris unset or null, the expansion wbrd is substituted. Other-
wise, the value oparameteris substituted.

${parameter=word}
Assign Default Values If parameteris unset or null, the expansion wford is assigned to
parameter The value ofparameteris then substituted. Positional parameters and special param-
eters may not be assigned to in this way.

${parameter?word}
Display Error if Null or Unset. If parameteris null or unset, the expansionwbrd (or a mes-
sage to that effect Wvord is not present) is written to the standard error and the shell, if it is not
interactive, exits. Otherwise, the valuepaframeteris substituted.

${parameter+word}
Use Alternate Value If parameteris null or unset, nothing is substituted, otherwise the expan-
sion ofword is substituted.

${parameteroffse}

${parameteroffsetlength
Substring Expansion. Expands to up ttengthcharacters oparameterstarting at the character
specified byoffset If lengthis omitted, expands to the substringpafameterstarting at the char-
acter specified bgffset lengthandoffsetare arithmetic expressions (S&RITHMETIC EVALU-
ATION below). lengthmust evaluate to a number greater than or equal to zeoffsdtevaluates
to a number less than zero, the value is used as an offset from the end of thepadamefer If
parameteris @, the result idength positional parameters beginningadtset If parameteris an
array name indexed by @ or *, the result is taegth members of the array beginning with
${parametefoffset}. Substring indexing is zero-based unless the positional parameters are used,
in which case the indexing starts at 1.

2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

${!prefix}
Expands to the names of variables whose names begipmitk separated by the first character
of thelFS special variable.

${#paramete}
The length in characters of the valuepaframeteris substituted. Ifparameteris * or @, the
value substituted is the number of positional parameterpatémeteris an array name sub-
scripted by* or @, the value substituted is the number of elements in the array.

${parametettword}

${ parametetttword}
The word is expanded to produce a pattern just as in pathname expansion. If the pattern matches
the beginning of the value pfirameter then the result of the expansion is the expanded value of
parameterwith the shortest matching pattern (th#' ‘tase) or the longest matching pattern (the
“##" case) deleted. Ifparameteris @ or *, the pattern removal operation is applied to each posi-
tional parameter in turn, and the expansion is the resultant liparéfmeteris an array variable
subscripted with@ or *, the pattern removal operation is applied to each member of the array in
turn, and the expansion is the resultant list.

${parametetoword}

${paramete®o% word}
Thewordis expanded to produce a pattern just as in pathname expansion. If the pattern matches a
trailing portion of the expanded value parameter then the result of the expansion is the
expanded value oparameterwith the shortest matching pattern (th&™* case) or the longest
matching pattern (the%% " case) deleted. Ifparameteris @ or *, the pattern removal opera-
tion is applied to each positional parameter in turn, and the expansion is the resultant list. If
parameteris an array variable subscripted wi@or *, the pattern removal operation is applied to
each member of the array in turn, and the expansion is the resultant list.

${parametefpattern’string}

${parametef/patternstring}
The pattern is expanded to produce a pattern just as in pathname exparacameteris
expanded and the longest matchpafternagainst its value is replaced wistring. In the first
form, only the first match is replaced. The second form causes all matcipagterh to be
replaced withstring. If patternbegins with#, it must match at the beginning of the expanded
value ofparameter If patternbegins with%, it must match at the end of the expanded value of
parameter If string is null, matches opatternare deleted and theefollowing patternmay be
omitted. If parameteris @ or *, the substitution operation is applied to each positional parameter
in turn, and the expansion is the resultant listpdfameteris an array variable subscripted with
@ or *, the substitution operation is applied to each member of the array in turn, and the expan-
sion is the resultant list.

Command Substitution
Command substitutioallows the output of a command to replace the command name. There are two
forms:

$(command
or
‘command

Bashperforms the expansion by executogmmandand replacing the command substitution with the stan-
dard output of the command, with any trailing newlines deleted. Embedded newlines are not deleted, but
they may be removed during word splitting. The command substit8{icat file) can be replaced by the
equivalent but faste$(< file).

When the old-style backquote form of substitution is used, backslash retains its literal meaning except
when followed by$, ‘, or\. The first backquote not preceded by a backslash terminates the command sub-
stitution. When using the $6mmand form, all characters between the parentheses make up the com-
mand; none are treated specially.

Command substitutions may be nested. To nest when using the backquoted form, escape the inner back-
guotes with backslashes.

If the substitution appears within double quotes, word splitting and pathname expansion are not performed

GNU Bash-2.05b 2002 July 15 15

BASH(1) BASH(1)

on the results.

Arithmetic Expansion
Arithmetic expansion allows the evaluation of an arithmetic expression and the substitution of the result.
The format for arithmetic expansion is:

$((expressio))

Theexpressioris treated as if it were within double quotes, but a double quote inside the parentheses is not
treated specially. All tokens in the expression undergo parameter expansion, string expansion, command
substitution, and quote removal. Arithmetic substitutions may be nested.

The evaluation is performed according to the rules listed below WRIEHMETIC EVALUATION . If
expressions invalid, bashprints a message indicating failure and no substitution occurs.

Process Substitution
Process substitutiors supported on systems that support named ppI€©§) or the /dev/fd method of
naming open files. It takes the form<{fist) or >(list). The procesfist is run with its input or output con-
nected to &IFO or some file indev/fd. The name of this file is passed as an argument to the current com-
mand as the result of the expansion. If#ést) form is used, writing to the file will provide input fbst.
If the <(list) form is used, the file passed as an argument should be read to obtain the distput of

When available, process substitution is performed simultaneously with parameter and variable expansion,
command substitution, and arithmetic expansion.

Word Splitting
The shell scans the results of parameter expansion, command substitution, and arithmetic expansion that
did not occur within double quotes faord splitting

The shell treats each charactefrs as a delimiter, and splits the results of the other expansions into words
on these characters. IFS is unset, or its value is exactgpace><tab><newline>the default, then any
sequence ofFS characters serves to delimit words. IHS has a value other than the default, then
sequences of the whitespace characpeseandtab are ignored at the beginning and end of the word, as
long as the whitespace character is in the valuESfanIFS whitespace character). Any charactetrg

that is notiFS whitespace, along with any adjacé®$ whitespace characters, delimits a field. A sequence
of IFS whitespace characters is also treated as a delimiter. If the val&s &f null, no word splitting
occurs.

Explicit null arguments (" or ") are retained. Unquoted implicit null arguments, resulting from the
expansion of parameters that have no values, are removed. If a parameter with no value is expanded within
double quotes, a null argument results and is retained.

Note that if no expansion occurs, no splitting is performed.

Pathname Expansion
After word splitting, unless thef option has been sdiash scans each word for the character®, and|.
If one of these characters appears, then the word is regardeshtierg and replaced with an alphabeti-
cally sorted list of file names matching the pattern. If no matching file names are found, and the shell
option nullglob is disabled, the word is left unchanged. If thdlglob option is set, and no matches are
found, the word is removed. If the shell optioacaseglobis enabled, the match is performed without
regard to the case of alphabetic characters. When a pattern is used for pathname expansion, the character
“” at the start of a name or immediately following a slash must be matched explicitly, unless the shell
optiondotglob is set. When matching a pathname, the slash character must always be matched explicitly.
In other cases, the” character is not treated specially. See the descriptishayt below undelSHELL
BUILTIN COMMANDS for a description of theaocaseglobnullglob, anddotglob shell options.

The GLOBIGNORE shell variable may be used to restrict the set of file names matcpatteen If GLO-
BIGNORE is set, each matching file name that also matches one of the patteaBh©®BIGNORE is
removed from the list of matches. The file narhés and“..” are always ignored, even whemOBIG-
NORE is set. However, settinGLOBIGNORE has the effect of enabling thmtglob shell option, so all
other file names beginning with'a will match. To get the old behavior of ignoring file names beginning
with a“.” , make“.*” one of the patterns iIBLOBIGNORE . The dotglob option is disabled wheGLO-

BIGNORE is unset.
Pattern Matching
Any character that appears in a pattern, other than the special pattern characters described below, matches

16 2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

itself. The NUL character may not occur in a pattern. The special pattern characters must be quoted if they
are to be matched literally.

The special pattern characters have the following meanings:

* Matches any string, including the null string.
? Matches any single character.
[...] Matches any one of the enclosed characters. A pair of characters separated by a hyphen denotes a

range expressigrany character that sorts between those two characters, inclusive, using the cur-
rent locale’s collating sequence and character set, is matched. If the first character folloying the
is a! or a” then any character not enclosed is matched. The sorting order of characters in range
expressions is determined by the current locale and the value b€tHe@OLLATE shell vari-

able, if set. A- may be matched by including it as the first or last character in the $ahay be
matched by including it as the first character in the set.

Within [and], character classesan be specified using the synfaxlass], whereclassis one of
the following classes defined in the POSIX.2 standard:

alnum alpha ascii blank cntrl digit graph lower print punct space upper word
xdigit

A character class matches any character belonging to that classioiicheharacter class matches
letters, digits, and the character _.

Within [and], anequivalence classan be specified using the synfaxc=], which matches all
characters with the same collation weight (as defined by the current locale) as the aharacter

Within [and], the syntaX.symbol] matches the collating symbsymbol

If the extglob shell option is enabled using tebopt builtin, several extended pattern matching operators
are recognized. In the following descriptiompattern-listis a list of one or more patterns separated py a
Composite patterns may be formed using one or more of the following sub-patterns:

?(pattern-list)

Matches zero or one occurrence of the given patterns
*(pattern-lis))

Matches zero or more occurrences of the given patterns
+(pattern-lisf)

Matches one or more occurrences of the given patterns
@(pattern-lisy)

Matches exactly one of the given patterns
I(pattern-lisf)

Matches anything except one of the given patterns

Quote Removal
After the preceding expansions, all unquoted occurrences of the chakattensd " that did not result
from one of the afive expansions are removed.

REDIRECTION
Before a command is executed, its input and output magdiectedusing a special notation interpreted
by the shell. Redirection may also be used to open and close files for the current shell execution environ-
ment. The following redirection operators may precede or appear anywhere wiihipla commanar
may follow acommand Redirections are processed in the order they appear, from left to right.

In the following descriptions, if the file descriptor number is omitted, and the first character of the redirec-
tion operator is<, the redirection refers to the standard input (file descriptor 0). If the first character of the
redirection operator is, the redirection refers to the standard output (file descriptor 1).

The word following the redirection operator in the following descriptions, unless otherwise noted, is sub-
jected to brace expansion, tilde expansion, parameter expansion, command substitution, arithmetic expan-
sion, quote removal, pathname expansion, and word splitting. If it expands to more than ortmasgiord,
reports an error.

Note that the order of redirections is significant. For example, the command
Is > dirlist 2>& 1
directs both standard output and standard error to thdirike, while the command

GNU Bash-2.05b 2002 July 15 17

BASH(1) BASH(1)

18

Is 2>& 1 > dirlist

directs only the standard output to filielist, because the standard error was duplicated as standard output

before the standard output was redirectedircst.

Bash handles several filenames specially when they are used in redirections, as described in the following

table:

/dev/fd/fd
If fd is a valid integer, file descriptéd is duplicated.
/dev/stdin
File descriptor 0 is duplicated.
/dev/stdout
File descriptor 1 is duplicated.
/dev/stderr
File descriptor 2 is duplicated.
/dev/tcphostport
If hostis a valid hostname or Internet address, jpord is an integer port number or ser-
vice nhamepashattempts to open a TCP connection to the corresponding socket.
/dev/udphostport
If hostis a valid hostname or Internet address, pord is an integer port number or ser-
vice namepashattempts to open a UDP connection to the corresponding socket.

A failure to open or create a file causes the redirection to fail.

Redirecting Input
Redirection of input causes the file whose name results from the expansiorddd be opened for read-
ing on file descripton, or the standard input (file descriptor Opifs not specified.

The general format for redirecting input is:
[n]<word

Redirecting Output
Redirection of output causes the file whose name results from the expansionml td be opened for writ-
ing on file descripton, or the standard output (file descriptor 1nifs not specified. If the file does not
exist it is created; if it does exist it is truncated to zero size.

The general format for redirecting output is:
[n]>word

If the redirection operator s, and thenoclobber option to thesetbuiltin has been enabled, the redirection
will fail if the file whose name results from the expansiowofd exists and is a regular file. If the redirec-
tion operator is>|, or the redirection operator isand thenoclobber option to thesetbuiltin command is
not enabled, the redirection is attempted even if the file nameaiaexists.

Appending Redirected Output
Redirection of output in this fashion causes the file whose name results from the expansahtofbe
opened for appending on file descriptoor the standard output (file descriptor 1jifs not specified. If
the file does not exist it is created.

The general format for appending output is:
[n]>>word

Redirecting Standard Output and Standard Error

Bashallows both the standard output (file descriptor 1) and the standard error output (file descriptor 2) to

be redirected to the file whose name is the expansiam@f with this construct.
There are two formats for redirecting standard output and standard error:

&>word
and
>& word

Of the two forms, the first is preferred. This is semantically equivalent to
>word 2>& 1

2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

Here Documents
This type of redirection instructs the shell to read input from the current source until a line containing only
word (with no trailing blanks) is seen. All of the lines read up to that point are then used as the standard
input for a command.

The format of here-documents is:

<<[-]word
here-document
delimiter

No parameter expansion, command substitution, arithmetic expansion, or pathname expansion is performed
onword. If any characters invord are quoted, théelimiter is the result of quote removal evord, and

the lines in the here-document are not expandegotfl is unquoted, all lines of the here-document are
subjected to parameter expansion, command substitution, and arithmetic expansion. In the latter case, the
character sequentenewline>is ignored, and must be used to quote the charactgbsand'’.

If the redirection operator is<—, then all leading tab characters are stripped from input lines and the line
containingdelimiter. This allows here-documents within shell scripts to be indented in a natural fashion.

Here Strings
A variant of here documents, the format is:

<<<word
Thewordis expanded and supplied to the command on its standard input.

Duplicating File Descriptors
The redirection operator

[n]<&word

is used to duplicate input file descriptorswifrd expands to one or more digits, the file descriptor denoted
by n is made to be a copy of that file descriptor. If the digitsvard do not specify a file descriptor open
for input, a redirection error occurs. Wford evaluates te-, file descriptom is closed. Ifn is not specified,

the standard input (file descriptor 0) is used.

The operator
[n]>&word

is used similarly to duplicate output file descriptorsn I§ not specified, the standard output (file descrip-
tor 1) is used. If the digits imvord do not specify a file descriptor open for output, a redirection error
occurs. As a special casenifs omitted, andvord does not expand to one or more digits, the standard out-
put and standard error are redirected as described previously.

Moving File Descriptors
The redirection operator

[n]<&digit—

moves the file descriptafigit to file descriptomn, or the standard input (file descriptor Onifs not speci-
fied. digitis closed after being duplicatedro

Similarly, the redirection operator
[n]>&digit—

moves the file descriptaligit to file descripton, or the standard output (file descriptor 1y is not speci-
fied.

Opening File Descriptors for Reading and Writing
The redirection operator

[n]<>word

causes the file whose name is the expansiowonfl to be opened for both reading and writing on file
descriptom, or on file descriptor 0 ifi is not specified. If the file does not exist, it is created.

ALIASES
Aliasesallow a string to be substituted for a word when it is used as the first word of a simple command.
The shell maintains a list of aliases that may be set and unset wilathandunalias builtin commands

GNU Bash-2.05b 2002 July 15 19

BASH(1) BASH(1)

(seeSHELL BUILTIN COMMANDS below). The first word of each command, if unquoted, is checked to

see if it has an alias. If so, that word is replaced by the text of the alias. The alias name and the replace-
ment text may contain any valid shell input, including thetacharacterdisted above, with the exception

that the alias nhame may not contain The first word of the replacement text is tested for aliases, but a
word that is identical to an alias being expanded is not expanded a second time. This means that one may
aliasls to Is —F, for instance, antbash does not try to recursively expand the replacement text. If the last
character of the alias value ibknk, then the next command word following the alias is also checked for
alias expansion.

Aliases are created and listed with #iias command, and removed with thaealias command.

There is no mechanism for using arguments in the replacement text. If arguments are needed, a shell func-
tion should be used (SE&INCTIONS below).

Aliases are not expanded when the shell is not interactive, unlessghed_aliasesshell option is set
usingshopt (see the description shoptunderSHELL BUILTIN COMMANDS below).

The rules concerning the definition and use of aliases are somewhat conBessigalways reads at least

one complete line of input before executing any of the commands on that line. Aliases are expanded when
a command is read, not when it is executed. Therefore, an alias definition appearing on the same line as
another command does not take effect until the next line of input is read. The commands following the
alias definition on that line are not affected by the new alias. This behavior is also an issue when functions
are executed. Aliases are expanded when a function definition is read, not when the function is executed,
because a function definition is itself a compound command. As a consequence, aliases defined in a func-
tion are not available until after that function is executed. To be safe, always put alias definitions on a sepa-
rate line, and do not usdiasin compound commands.

For almost every purpose, aliases are superseded by shell functions.

FUNCTIONS

A shell function, defined as describecbabunderSHELL GRAMMAR , stores a series of commands for

later execution. When the name of a shell function is used as a simple command name, the list of com-
mands associated with that function name is executed. Functions are executed in the context of the current
shell; no new process is created to interpret them (contrast this with the execution of a shell script). When a
function is executed, the arguments to the function become the positional parameters during its execution.
The special parametéris updated to reflect the change. Positional parameter 0 is unchangelNte

NAME variable is set to the name of the function while the function is executing. All other aspects of the
shell execution environment are identical between a function and its caller with the exception that the
DEBUG trap (see the description of thmp builtin underSHELL BUILTIN COMMANDS below) is not
inherited unless the function has been giventthee attribute (see the description of theclare builtin

below).

Variables local to the function may be declared withldizal builtin command. Ordinarily, variables and
their values are shared between the function and its caller.

If the builtin commanadeturn is executed in a function, the function completes and execution resumes with
the next command after the function call. When a function completes, the values of the positional parame-
ters and the special parametare restored to the values they had prior to the function’s execution.

Function names and definitions may be listed with-theption to thedeclare or typeset builtin com-
mands. The-F option todeclare or typesetwill list the function names only. Functions may be exported
so that subshells automatically have them defined witkftbgtion to theexport builtin.

Functions may be recursive. No limit is imposed on the number of recursive calls.

ARITHMETIC EVALUATION

20

The shell allows arithmetic expressions to be evaluated, under certain circumstances |gtelsuthia
command and\rithmetic Expansion). Evaluation is done in fixed-width integers with no check for over-
flow, though division by 0 is trapped and flagged as an error. The operators and their precedence and asso-
ciativity are the same as in the C language. The following list of operators is grouped into levels of equal-
precedence operators. The levels are listed in order of decreasing precedence.
id++ id——

variable post-increment and post-decrement

2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

++id ——id

variable pre-increment and pre-decrement
-+ unary minus and plus
- logical and bitwise negation

** exponentiation
*/% multiplication, division, remainder
+ - addition, subtraction
<< >> left and right bitwise shifts
<=>=<>
comparison
=== equality and inequality
& bitwise AND
- bitwise exclusive OR
| bitwise OR
&& logical AND
Il logical OR
expr’expr.expr
conditional evaluation
=*= [= 0p= += —= <<= >>= &= "= |:
assignment
exprl, expr2
comma

Shell variables are allowed as operands; parameter expansion is performed before the expression is evalu-
ated. Within an expression, shell variables may also be referenced by name without using the parameter
expansion syntax. The value of a variable is evaluated as an arithmetic expression when it is referenced. A
shell variable need not have its integer attribute turned on to be used in an expression.

Constants with a leading 0 are interpreted as octal numbers. A leading 0x or 0X denotes hexadecimal.
Otherwise, numbers take the forivageffn, wherebaseis a decimal number between 2 and 64 represent-

ing the arithmetic base, amds a number in that base. Hase#is omitted, then base 10 is used. The digits
greater than 9 are represented by the lowercase letters, the uppercase letters, @, and _, in thaaseder. If

is less than or equal to 36, lowercase and uppercase letters may be used interchangably to represent num-
bers between 10 and 35.

Operators are evaluated in order of precedence. Sub-expressions in parentheses are evaluated first and may
override the precedence rules above.

CONDITIONAL EXPRESSIONS
Conditional expressions are used by[fheompound command and ttest and[builtin commands to test
file attributes and perform string and arithmetic comparisons. Expressions are formed from the following
unary or binary primaries. If anfile argument to one of the primaries is of the fddav/fd/n then file
descriptorn is checked. If thdile argument to one of the primaries is one/adv/stdin /dev/stdout or
/dev/stderrfile descriptor 0, 1, or 2, respectively, is checked.

-afile True iffile exists.

—-bfile True iffile exists and is a block special file.

—cfile True iffile exists and is a character special file.

—d file True iffile exists and is a directory.

—efile True iffile exists.

—ffile True iffile exists and is a regular file.

—gfile True iffile exists and is set-group-id.

—hfile True iffile exists and is a symbolic link.

-k file True iffile exists and its “sticky” bit is set.

—pfile True iffile exists and is a named pipe (FIFO).

-r file True iffile exists and is readable.

—sfile True iffile exists and has a size greater than zero.
-tfd True if file descriptorfd is open and refers to a terminal.
-ufile True iffile exists and its set-user-id bit is set.

-w file True iffile exists and is writable.

GNU Bash-2.05b 2002 July 15 21

BASH(1)

—x file
-0 file
-G file
-L file
-Sfile
-N file

BASH(1)

True iffile exists and is executable.

True iffile exists and is owned by the effective user id.

True iffile exists and is owned by the effective group id.

True iffile exists and is a symbolic link.

True iffile exists and is a socket.

True iffile exists and has been modified since it was last read.

filel —nt file2

True iffilelis newer (according to modification date) thideR, or if filel exists andile2 does not.

filel —ot file2

True iffilelis older tharfile2, or if file2 exists andilel does not.

filel —effile2

True iffilel andfile2 refer to the same device and inode numbers.

—0 optname

True if shell optionoptnameis enabled. See the list of options under the description ofdhe
option to thesetbuiltin below.

-z string

True if the length o$tringis zero.

—n string

string

True if the length obtring is non-zero.

stringl == string2

True if the strings are equak may be used in place ef for strict POSIX compliance.

stringl!= string2

True if the strings are not equal.

stringl< string2

True if stringlsorts beforestring2lexicographically in the current locale.

stringl> string2

True if stringlsorts aftestring2lexicographically in the current locale.

argl OP arg2

OP is one of-eq, —ne, —It, —le, —gt, or —ge These arithmetic binary operators return trugrgfl
is equal to, not equal to, less than, less than or equal to, greater than, or greater than or equal to
arg2, respectively. Argl andarg2 may be positive or negative integers.

SIMPLE COMMAND EXPANSION
When a simple command is executed, the shell performs the following expansions, assignments, and redi-
rections, from left to right.

22

1.

The words that the parser has marked as variable assignments (those preceding the command
name) and redirections are saved for later processing.

The words that are not variable assignments or redirections are expanded. If any words remain
after expansion, the first word is taken to be the name of the command and the remaining words
are the arguments.

Redirections are performed as describenvabnderREDIRECTION .

The text after the in each variable assignment undergoes tilde expansion, parameter expansion,
command substitution, arithmetic expansion, and quote removal before being assigned to the vari-
able.

If no command name results, the variable assignments affect the current shell environment. Otherwise, the
variables are added to the environment of the executed command and do not affect the current shell envi-
ronment. If any of the assignments attempts to assign a value to a readonly variable, an error occurs, and
the command exits with a non-zero status.

If no command name results, redirections are performed, but do not affect the current shell environment. A
redirection error causes the command to exit with a non-zero status.

If there is a command name left after expansion, execution proceeds as described below. Otherwise, the
command exits. If one of the expansions contained a command substitution, the exit status of the command
is the exit status of the last command substitution performed. If there were no command substitutions, the
command exits with a status of zero.

2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

COMMAND EXECUTION
After a command has been split into words, if it results in a simple command and an optional list of argu-
ments, the following actions are taken.

If the command name contains no slashes, the shell attempts to locate it. If there exists a shell function by
that name, that function is invoked as describem/abin FUNCTIONS. If the name does not match a func-
tion, the shell searches for it in the list of shell builtins. If a match is found, that builtin is invoked.

If the name is neither a shell function nor a builtin, and contains no slasisésearches each element of
the PATH for a directory containing an executable file by that naBesh uses a hash table to remember
the full pathnames of executable files ($wesh under SHELL BUILTIN COMMANDS below). A full
search of the directories PATH is performed only if the command is not found in the hash table. If the
search is unsuccessful, the shell prints an error message and returns an exit status of 127.

If the search is successful, or if the command name contains one or more slashes, the shell executes the
named program in a separate execution environment. Argument O is set to the name given, and the remain-
ing arguments to the command are set to the arguments given, if any.

If this execution fails because the file is not in executable format, and the file is not a directory, it is
assumed to be shell script a file containing shell commands. A subshell is spawned to execute it. This
subshell reinitializes itself, so that the effect is as if a new shell had been invoked to handle the script, with
the exception that the locations of commands remembered by the paremagkdelow underSHELL

BUILTIN COMMANDS) are retained by the child.

If the program is a file beginning witH, the remainder of the first line specifies an interpreter for the pro-
gram. The shell executes the specified interpreter on operating systems that do not handle this executable
format themselves. The arguments to the interpreter consist of a single optional argument following the
interpreter name on the first line of the program, followed by the name of the program, followed by the
command arguments, if any.

COMMAND EXECUTION ENVIRONMENT
The shell has aexecution environmenivhich consists of the following:

. open files inherited by the shell at invocation, as modified by redirections suppliedexethe
builtin

. the current working directory as setdxy, pushd, or popd, or inherited by the shell at invocation

. the file creation mode mask as seubyask or inherited from the shell’'s parent

. current traps set byap

. shell parameters that are set by variable assignment osetith inherited from the shell’s parent
in the environment

. shell functions defined during execution or inherited from the shell’s parent in the environment

. options enabled at invocation (either by default or with command-line arguments3eatr by

. options enabled bghopt

. shell aliases defined witdias

. various process IDs, including those of background jobs, the vali# afid the value ddPPID

When a simple command other than a builtin or shell function is to be executed, it is invoked in a separate
execution environment that consists of the following. Unless otherwise noted, the values are inherited from

the shell.

. the shell's open files, plus any modifications and additions specified by redirections to the com-
mand

. the current working directory

. the file creation mode mask

. shell variables marked for export, along with variables exported for the command, passed in the

environment

GNU Bash-2.05b 2002 July 15 23

BASH(1) BASH(1)

. traps caught by the shell are reset to the values the inherited from the shell's parent, and traps
ignored by the shell are ignored

A command invoked in this separate environment cannot affect the shell's execution environment.

Command substitution and asynchronous commands are invoked in a subshell environment that is a dupli-
cate of the shell environment, except that traps caught by the shell are reset to the values that the shell
inherited from its parent at invocation. Builtin commands that are invoked as part of a pipeline are also
executed in a subshell environment. Changes made to the subshell environment cannot affect the shell's
execution environment.

If a command is followed by & and job control is not active, the default standard input for the command
is the empty filddev/null Otherwise, the invoked command inherits the file descriptors of the calling shell
as modified by redirections.

ENVIRONMENT

When a program is invoked it is given an array of strings calledetiironment This is a list of
name-valuepairs, of the fornrmame=value

The shell provides several ways to manipulate the environment. On invocation, the shell scans its own
environment and creates a parameter for each name found, automatically markieggbftto child pro-

cesses. Executed commands inherit the environmentexiwet anddeclare —xcommands allow param-

eters and functions to be added to and deleted from the environment. If the value of a parameter in the
environment is modified, the new value becomes part of the environment, replacing the old. The environ-

ment inherited by any executed command consists of the shell’s initial environment, whose values may be
modified in the shell, less any pairs removed byuhgetcommand, plus any additions via teeport and

declare -xcommands.

The environment for angimple commandar function may be augmented temporarily by prefixing it with
parameter assignments, as described@ln PARAMETERS. These assignment statements affect only the
environment seen by that command.

If the —k option is set (see theet builtin command below), theall parameter assignments are placed in
the environment for a command, not just those that precede the command name.

Whenbashinvokes an external command, the variablis set to the full file name of the command and
passed to that command in its environment.

EXIT STATUS

For the shell's purposes, a command which exits with a zero exit status has succeeded. An exit status of
zero indicates success. A non-zero exit status indicates failure. When a command terminates on a fatal sig-
nal N, bashuses the value of 128kas the exit status.

If a command is not found, the child process created to execute it returns a status of 127. If a command is
found but is not executable, the return status is 126.

If a command fails because of an error during expansion or redirection, the exit status is greater than zero.

Shell builtin commands return a status ofr0€) if successful, and non-zertalsg if an error occurs while
they execute. All builtins return an exit status of 2 to indicate incorrect usage.

Bashitself returns the exit status of the last command executed, unless a syntax error occurs, in which case
it exits with a non-zero value. See also éxé builtin command below.

SIGNALS

24

Whenbashis interactive, in the absence of any traps, it ign®I&TERM (so thatkill 0 does not Kill an
interactive shell), an8IGINT is caught and handled (so that thait builtin is interruptible). In all cases,
bashignoresSIGQUIT. If job control is in effectbashignoresSIGTTIN, SIGTTOU, andSIGTSTP.

Synchronous jobs started bgshhave signal handlers set to the values inherited by the shell from its par-
ent. When job control is not in effect, asynchronous commands i@1GIRT and SIGQUIT as well.
Commands run as a result of command substitution ignore the keyboard-generated job control signals
SIGTTIN, SIGTTOU, andSIGTSTP.

The shell exits by default upon receipt ofSEGHUP. Before exiting, an interactive shell resends the
SIGHUP to all jobs, running or stopped. Stopped jobs are SERCONT to ensure that they receive the
SIGHUP. To prevent the shell from sending the signal to a particular job, it should be removed from the
jobs table with thedisown builtin (seeSHELL BUILTIN COMMANDS below) or marked to not receive

2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

SIGHUP usingdisown —-h

If the huponexit shell option has been set wihopt, bash sends &IGHUP to all jobs when an interactive
login shell exits.

Whenbash receives a signal for which a trap has been set while waiting for a command to complete, the
trap will not be executed until the command completes. Wiash is waiting for an asynchronous com-
mand via thavait builtin, the reception of a signal for which a trap has been set will causaithleuiltin

to return immediately with an exit status greater than 128, immediately after which the trap is executed.

JOB CONTROL
Job control refers to the ability to selectively stopu§penyl the execution of processes and continue
(resumg their execution at a later point. A user typically employs this facility via an interactive interface
supplied jointly by the system’s terminal driver arash

The shell associates jab with each pipeline. It keeps a table of currently executing jobs, which may be
listed with thejobs command. Whelbashstarts a job asynchronously (in thackground, it prints a line
that looks like:

[1] 25647

indicating that this job is job number 1 and that the process ID of the last process in the pipeline associated
with this job is 25647. All of the processes in a single pipeline are members of the sarBagblises
the job abstraction as the basis for job control.

To facilitate the implementation of the user interface to job control, the operating system maintains the
notion of acurrent terminal process group IDMembers of this process group (processes whose process
group ID is equal to the current terminal process group ID) receive keyboard-generated signalSi€ich as
INT. These processes are said to be inftiieground Backgroundprocesses are those whose process
group ID differs from the terminal’s; such processes are immune to keyboard-generated signals. Only fore-
ground processes are allowed to read from or write to the terminal. Background processes which attempt to
read from (write to) the terminal are senSIBTTIN (SIGTTOU) signal by the terminal driver, which,

unless caught, suspends the process.

If the operating system on whidiash is running supports job contrddash contains facilities to use it.

Typing thesuspenccharacter (typicallyZ, Control-Z) while a process is running causes that process to be
stopped and returns control mash Typing the delayed suspendharacter (typically’Y, Control-Y)

causes the process to be stopped when it attempts to read input from the terminal, and control to be returned
to bash The user may then manipulate the state of this job, usinggtitemmand to continue it in the
background, thég command to continue it in the foreground, or kile command to kill it. A“Z takes

effect immediately, and has the additional side effect of causing pending output and typeahead to be dis-
carded.

There are a number of ways to refer to a job in the shell. The cha¥adtdroduces a job name. Job
numbern may be referred to #n. A job may also be referred to using a prefix of the name used to start
it, or using a substring that appears in its command line. For exd¥hpderefers to a stoppeckjob. If a

prefix matches more than one jddashreports an error. Usingp?ce, on the other hand, refers to any job
containing the stringein its command line. If the substring matches more than ondgst reports an
error. The symbol%% and%-+ refer to the shell’'s notion of theurrent joh which is the last job stopped
while it was in the foreground or started in the background. fifegious jobmay be referenced using
%-—. In output pertaining to jobs (e.g., the output of jtess command), the current job is always flagged
with a+, and the previous job with-a

Simply naming a job can be used to bring it into the foregroridis a synonym foffg %1” , bringing
job 1 from the background into the foreground. Similaf¥gl &" resumes job 1 in the background,
equivalent td'bg %1” .

The shell learns immediately whenever a job changes state. Norb@ahyvaits until it is about to print a
prompt before reporting changes in a job’s status so as to not interrupt any other outputb ibptien to
the set builtin command is enabledhash reports such changes immediately. Any trapS\@CHLD is
executed for each child that exits.

If an attempt to exibashis made while jobs are stopped, the shell prints a warning messag¢ob$he
command may then be used to inspect their status. If a second attempt to exit is made without an interven-
ing command, the shell does not print another warning, and the stopped jobs are terminated.

GNU Bash-2.05b 2002 July 15 25

BASH(1) BASH(1)

PROMPTING

When executing interactivelfpash displays the primary prom@S1iwhen it is ready to read a command,

and the secondary promps2when it needs more input to complete a commaRBdsh allows these

prompt strings to be customized by inserting a number of backslash-escaped special characters that are
decoded as follows:

\a an ASCII bell character (07)
\d the date in "Weekday Month Date" format (e.g., "Tue May 26")
\D{format

the format is passed tatrftimg3) and the result is inserted into the prompt string; an
emptyformatresults in a locale-specific time representation. The braces are required

\e an ASCII escape character (033)

\h the hostname up to the first ‘.’

\H the hostname

\j the number of jobs currently managed by the shell

\l the basename of the shell's terminal device name

\n newline

\r carriage return

\s the name of the shell, the basenam&@fthe portion following the final slash)

\t the current time in 24-hour HH:MM:SS format

\T the current time in 12-hour HH:MM:SS format

\@ the current time in 12-hour am/pm format

\A the current time in 24-hour HH:MM format

\u the username of the current user

\v the version obash(e.g., 2.00)

\V the release dbash, version + patchelvel (e.g., 2.00.0)

\w the current working directory

\W the basename of the current working directory

\! the history number of this command

\# the command number of this command

\$ if the effective UID is 0, &, otherwise &

\nnn the character corresponding to the octal number

\\ a backslash

\[begin a sequence of non-printing characters, which could be used to embed a terminal
control sequence into the prompt

\] end a sequence of non-printing characters

The command number and the history number are usually different: the history number of a command is its
position in the history list, which may include commands restored from the history filéll&GB@RY

below), while the command number is the position in the sequence of commands executed during the cur-
rent shell session. After the string is decoded, it is expanded via parameter expansion, command substitu-
tion, arithmetic expansion, and quote removal, subject to the value pfottngtvars shell option (see the
description of theshoptcommand undeSHELL BUILTIN COMMANDS below).

READLINE

26

This is the library that handles reading input when using an interactive shell, unlessdlediting option

is given at shell invocation. By default, the line editing commands are similar to those of emacs. A vi-style
line editing interface is also available. To turn off line editing after the shell is running, use &macs

or +0 vi options to thesetbuiltin (seeSHELL BUILTIN COMMANDS below).

Readline Notation

In this section, the emacs-style notation is used to denote keystrokes. Control keys are denokeg by C-
e.g., C—n means Control-N. Similariyjetakeys are denoted by Mey, so M—-x means Meta—-X. (On
keyboards without anetakey, M-x means ESG; i.e., press the Escape key then xhleey. This makes
ESC themeta prefix The combination M-Cxmeans ESC-Controk-or press the Escape key then hold
the Control key while pressing thxekey.)

Readline commands may be given numargumentswhich normally act as a repeat count. Sometimes,
however, it is the sign of the argument that is significant. Passing a negative argument to a command that
acts in the forward direction (e.dill-line) causes that command to act in a backward direction. Com-
mands whose behavior with arguments deviates from this are noted below.

When a command is described laling text, the text deleted is saved for possible future retrieval

2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

(yanking. The killed text is saved in &ill ring. Consecutive kills cause the text to be accumulated into
one unit, which can be yanked all at once. Commands which do not Kill text separate the chunks of text on
the kill ring.

Readline Initialization
Readline is customized by putting commands in an initialization filer{tharc file). The name of this file
is taken from the value of thRPUTRC variable. If that variable is unset, the default/imputrc. When a
program which uses the readline library starts up, the initialization file is read, and the key bindings and
variables are set. There are only a few basic constructs allowed in the readline initialization file. Blank
lines are ignored. Lines beginning with#are comments. Lines beginning witibandicate conditional
constructs. Other lines denote key bindings and variable settings.

The default key-bindings may be changed withirgutre file. Other programs that use this library may
add their own commands and bindings.

For example, placing

M-Control-u: universal-argument
or
C—Meta-u: universal-argument
into theinputrc would make M—-C-u execute the readline commanidersal-argument

The following symbolic character names are recogniRdBOUT, DEL, ESC LFD, NEWLINE, RET,
RETURN SPC SPACE andTAB.

In addition to command names, readline allows keys to be bound to a string that is inserted when the key is
pressed (aacrg.

Readline Key Bindings
The syntax for controlling key bindings in thmputrc file is simple. All that is required is the name of the
command or the text of a macro and a key sequence to which it should be bound. The name may be speci-
fied in one of two ways: as a symbolic key name, possibly Mita— or Control- prefixes, or as a key
sequence.

When using the fornkeyname function—nameor macrg keynameis the name of a key spelled out in
English. For example:

Control-u: universal-argument
Meta-Rubout: backward-kill-word
Control-o: "> output"”

In the alove example,C—-u is bound to the functioaoniversal-argument, M—DEL is bound to the func-
tion backward-kill-word , andC-o is bound to run the macro expressed on the right hand side (that is, to
insert the text output into the line).

In the second forntkeyseq": function—nameor macrqg keyseqdiffers fromkeynameabove inthat strings

denoting an entire key sequence may be specified by placing the sequence within double quotes. Some
GNU Emacs style key escapes can be used, as in the following example, but the symbolic character names
are not recognized.

"\C-u": universal-argument
"\C-x\C-r": re—read-init-file
"\e[11™: "Function Key 1"

In this exampleC-u is again bound to the functiamiversal-argument C-x C-r is bound to the func-
tion re-read-init-file, andESC [1 1 "is bound to insert the tefunction Key 1

The full set of GNU Emacs style escape sequences is

\C- control prefix

\M- meta prefix

\e an escape character
\\ backslash

\" literal "

\ literal ’

In addition to the GNU Emacs style escape sequences, a second set of backslash escapes is available:

GNU Bash-2.05b 2002 July 15 27

BASH(1) BASH(1)

\a alert (bell)

\b backspace

\d delete

\f form feed

\n newline

\r carriage return
\t horizontal tab
\v vertical tab

\nnn the eight-bit character whose value is the octal vatugone to three digits)
\XxHH the eight-bit character whose value is the hexadecimal tiu@ne or two hex digits)

When entering the text of a macro, single or double quotes must be used to indicate a macro definition.
Unquoted text is assumed to be a function name. In the macro body, the backslash escapes described above
are expanded. Backslash will quote any other character in the macro text, including " and '.

Bashallows the current readline key bindings to be displayed or modified withirttlebuiltin command.
The editing mode may be switched during interactive use by usingthgtion to thesetbuiltin command
(seeSHELL BUILTIN COMMANDS below).

Readline Variables
Readline has variables that can be used to further customize its behavior. A variable may be isgtin the
trc file with a statement of the form

setvariable—name value

Except where noted, readline variables can take the v@lnes Off. The variables and their default val-
ues are:

bell-style (audible)
Controls what happens when readline wants to ring the terminal bell. Ifreetdoreadline never
rings the bell. If set twisible, readline uses a visible bell if one is available. If sedudible,
readline attempts to ring the terminal’s bell.
comment-begin (“#")
The string that is inserted when the readlimgert—-commentcommand is executed. This com-
mand is bound tM—# in emacs mode and tin vi command mode.
completion—ignore—case (Off)
If set toOn, readline performs filename matching and completion in a case-insensitive fashion.
completion—query—items (100)
This determines when the user is queried about viewing the number of possible completions gen-
erated by theossible—completionscommand. It may be set to any integer value greater than or
equal to zero. If the number of possible completions is greater than or equal to the value of this
variable, the user is asked whether or not he wishes to view them; otherwise they are simply listed
on the terminal.
convert—-meta (On)
If set toOn, readline will convert characters with the eighth bit set to an ASCII key sequence by
stripping the eighth bit and prefixing an escape character (in effect, using escapmerthee-
fix).
disable—completion (Off)
If set toOn, readline will inhibit word completion. Completion characters will be inserted into the
line as if they had been mappedstf-insert.
editing—-mode (emacs)
Controls whether readline begins with a set of key bindings simikemsxsor vi. editing—-mode
can be set to eithemacsor vi.
enable-keypad (Off)
When set tdOn, readline will try to enable the application keypad when it is called. Some sys-
tems need this to enable the arrow keys.
expand-tilde (Off)
If set toon, tilde expansion is performed when readline attempts word completion.
history-preserve-point
If set toon, the history code attempts to place point at the same location on each history line
retrived withprevious-history or next-history.

28 2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

horizontal-scroll-mode (Off)
When set t@On, makes readline use a single line for display, scrolling the input horizontally on a
single screen line when it becomes longer than the screen width rather than wrapping to a new
line.

input—-meta (Off)
If set toOn, readline will enable eight-bit input (that is, it will not strip the high bit from the char-
acters it reads), regardless of what the terminal claims it can support. Thenedadlagis a
synonym for this variable.

isearch—terminators (“C—[C-J")
The string of characters that should terminate an incremental search without subsequently execut-
ing the character as a command. If this variable has not been given a value, the cHag4tters
andC-J will terminate an incremental search.

keymap (emacs)
Set the current readline keymap. The set of valid keymap nanmasass, emacs—standard,
emacs—meta, emacs—ctlx, vi, vi-commaaddvi-insert. viis equivalent to/i—-commang emacs
is equivalent toemacs-standard The default value i#macs the value ofediting—mode also
affects the default keymap.

mark—directories (On)
If set toOn, completed directory names have a slash appended.

mark—-modified-lines (Off)
If set toOn, history lines that have been modified are displayed with a preceding asterisk (

mark—symlinked—-directories (Off)
If set toOn, completed names which are symbolic links to directories have a slash appended (sub-
ject to the value afark—directories).

match-hidden-files (On)
This variable, when set On, causes readline to match files whose names begin with a ‘.’ (hidden
files) when performing filename completion, unless the leading ‘.’ is supplied by the user in the
filename to be completed.

output—-meta (Off)
If set toOn, readline will display characters with the eighth bit set directly rather than as a meta-
prefixed escape sequence.

page—completions (On)
If set toOn, readline uses an internalorelike pager to display a screenful of possible comple-
tions at a time.

print—completions—horizontally (Off)
If set toOn, readline will display completions with matches sorted horizontally in alphabetical
order, rather than down the screen.

show-all-if-ambiguous (Off)
This alters the default behavior of the completion functions. If sett@vords which have more
than one possible completion cause the matches to be listed immediately instead of ringing the
bell.

visible-stats (Off)
If set toOn, a character denoting a file's type as reportedtay?) is appended to the filename
when listing possible completions.

Readline Conditional Constructs
Readline implements a facility similar in spirit to the conditional compilation features of the C preprocessor
which allows key bindings and variable settings to be performed as the result of tests. There are four parser
directives used.

$if The $if construct allows bindings to be made based on the editing mode, the terminal being used,
or the application using readline. The text of the test extends to the end of the line; no characters
are required to isolate it.

mode The mode=form of the$if directive is used to test whether readline is in emacs or vi
mode. This may be used in conjunction with sie¢ keymapcommand, for instance, to
set bindings in themacs-standard@nd emacs—ctixkeymaps only if readline is starting
out in emacs mode.

term Theterm= form may be used to include terminal-specific key bindings, perhaps to bind
the key sequences output by the terminal’s function keys. The word on the right side of

GNU Bash-2.05b 2002 July 15 29

BASH(1) BASH(1)

30

the = is tested against the both full name of the terminal and the portion of the terminal
name before the first This allowssunto match bottsunandsun—-cmd for instance.

application
The application construct is used to include application-specific settings. Each program
using the readline library sets thpplication namgeand an initialization file can test for a
particular value. This could be used to bind key sequences to functions useful for a spe-
cific program. For instance, the following command adds a key sequence that quotes the
current or previous word in Bash:

$if Bash

Quote the current or previous word
"\C-xq": "\eb\"\ef\""

$endif

$endif This command, as seen in the previous example, terminagéscmmand.
$else Commands in this branch of tBé directive are executed if the test fails.

$include
This directive takes a single filename as an argument and reads commands and bindings from that
file. For example, the following directive would reattc/inputrc

$include /etc/inputrc

Searching

Readline provides commands for searching through the command historI§seRY below) for lines
containing a specified string. There are two search maugementalandnon-incremental

Incremental searches begin before the user has finished typing the search string. As each character of the
search string is typed, readline displays the next entry from the history matching the string typed so far. An
incremental search requires only as many characters as needed to find the desired history entry. The char-
acters present in the value of ieearch-terminators variable are used to terminate an incremental search.

If that variable has not been assigned a value the Escape and Control-J characters will terminate an incre-
mental search. Control-G will abort an incremental search and restore the original line. When the search is
terminated, the history entry containing the search string becomes the current line.

To find other matching entries in the history list, type Control-S or Control-R as appropriate. This will
search backward or forward in the history for the next entry matching the search string typed so far. Any
other key sequence bound to a readline command will terminate the search and execute that command. For
instance, anewlinewill terminate the search and accept the line, thereby executing the command from the
history list.

Readline remembers the last incremental search string. If two Control-Rs are typed without any interven-
ing characters defining a new search string, any remembered search string is used.

Non-incremental searches read the entire search string before starting to search for matching history lines.
The search string may be typed by the user or be part of the contents of the current line.

Readline Command Names

The following is a list of the names of the commands and the default key sequences to which they are
bound. Command names without an accompanying key sequence are unbound by default. In the following
descriptionspoint refers to the current cursor position, andrk refers to a cursor position saved by the
set-mark command. The text between the point and mark is referred to egtbe

Commands for Moving

beginning-of-line (C-a)

Move tothe start of the current line.
end-of-line (C-e)

Move tothe end of the line.
forward—char (C-f)

Move forward a character.
backward-char (C-b)

Move back a character.

2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

forward-word (M—f)
Move forward to the end of the next word. Words are composed of alphanumeric characters (let-
ters and digits).

backward-word (M—b)
Move back to the start of the current or previous word. Words are composed of alphanumeric
characters (letters and digits).

clear—screen (C-I)
Clear the screen leaving the current line at the top of the screen. With an argument, refresh the
current line without clearing the screen.

redraw—current-line
Refresh the current line.

Commands for Manipulating the History

accept-line (Newline, Return)
Accept the line regardless of where the cursor is. If this line is non-empty, add it to the history list
according to the state of th8STCONTROL variable. If the line is a modified history line, then
restore the history line to its original state.

previous—history (C—p)
Fetch the previous command from the history list, moving back in the list.

next-history (C—n)
Fetch the next command from the history list, moving forward in the list.

beginning—-of-history (M-<)
Move tothe first line in the history.

end-of-history (M—>)
Move tothe end of the input history, i.e., the line currently being entered.

reverse—search-history (C-r)
Search backward starting at the current line and moving ‘up’ through the history as necessary.
This is an incremental search.

forward—search—history (C-s)
Search forward starting at the current line and moving ‘down’ through the history as necessary.
This is an incremental search.

non-incremental-reverse-search-history (M—p)
Search backward through the history starting at the current line using a non-incremental search for
a string supplied by the user.

non-incremental—-forward-search—-history (M—n)
Search forward through the history using a non-incremental search for a string supplied by the
user.

history—search—forward
Search forward through the history for the string of characters between the start of the current line
and the point. This is a non-incremental search.

history—search—backward
Search backward through the history for the string of characters between the start of the current
line and the point. This is a non-incremental search.

yank—-nth-arg (M—C-y)
Insert the first argument to the previous command (usually the second word on the previous line)
at point. With an argumemt, insert thenth word from the previous command (the words in the
previous command begin with word 0). A negative argument insertgttheord from the end of
the previous command.

yank-last-arg (M—-., M—_)
Insert the last argument to the previous command (the last word of the previous history entry).
With an argument, behave exactly likenk—nth—arg. Successive calls tgank—last—arg move
back through the history list, inserting the last argument of each line in turn.

shell-expand-line (M-C-e)
Expand the line as the shell does. This performs alias and history expansion as well as all of the
shell word expansions. SEESTORY EXPANSION below for a description of history expansion.

history—expand-line (M-")
Perform history expansion on the current line. B&TORY EXPANSION below for a descrip-
tion of history expansion.

GNU Bash-2.05b 2002 July 15 31

BASH(1) BASH(1)

magic—space
Perform history expansion on the current line and insert a spaceHISERRY EXPANSION
below for a description of history expansion.

alias—expand-line
Perform alias expansion on the current line. 8dASES abovefor a description of alias expan-
sion.

history—and-alias—expand-line
Perform history and alias expansion on the current line.

insert-last-argument (M-., M—_)
A synonym foryank-last-arg.

operate—and-get-next (C-0)
Accept the current line for execution and fetch the next line relative to the current line from the
history for editing. Any argument is ignored.

edit—-and-execute—command (C—xC-e)
Invoke an editor on the current command line, and execute the result as shell comBesafds.
attempts to invok@FCEDIT, $EDITOR, andemacsas the editor, in that order.

Commands for Changing Text

delete—char (C-d)
Delete the character at point. If point is at the beginning of the line, there are no characters in the
line, and the last character typed was not bounttlete—char, then returreOF.

backward-delete—char (Rubout)
Delete the character behind the cursor. When given a numeric argument, save the deleted text on
the kill ring.

forward—backward—-delete—char
Delete the character under the cursor, unless the cursor is at the end of the line, in which case the
character behind the cursor is deleted.

guoted-insert (C—-q, C-v)
Add the next character typed to the line verbatim. This is how to insert characte@s-tjkéor
example.

tab—insert (C-v TAB)
Insert a tab character.

self-insert (a, b, A, 1, !, ...)
Insert the character typed.

transpose—chars (C-t)
Drag the character before point forward over the character at point, moving point forward as well.
If point is at the end of the line, then this transposes the two characters before point. Negative
arguments have no effect.

transpose-words (M-t)
Drag the word before point past the word after point, moving point over that word as well. If point
is at the end of the line, this transposes the last two words on the line.

upcase-word (M—u)
Uppercase the current (or following) word. With a negative argument, uppercase the previous
word, but do not rove point.

downcase-word (M-I)
Lowercase the current (or following) word. With a negative argument, lowercase the previous
word, but do not rove point.

capitalize-word (M—c)
Capitalize the current (or following) word. With a negative argument, capitalize the previous
word, but do not rove point.

overwrite—mode
Toggle overwrite mode. With an explicit positive numeric argument, switches to overwrite mode.
With an explicit non-positive numeric argument, switches to insert mode. This command affects
only emacsmode;vi mode does overwrite differently. Each call readline() starts in insert
mode. In overwrite mode, characters boundséti-insert replace the text at point rather than
pushing the text to the right. Characters bountiackward—-delete—charreplace the character
before point with a space. By default, this command is unbound.

32 2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

Killing and Yanking

kill-line (C-k)
Kill the text from point to the end of the line.

backward-kill-line (C—x Rubout)
Kill backward to the beginning of the line.

unix-line—discard (C-u)
Kill backward from point to the beginning of the line. The killed text is saved on the kill-ring.

kill-whole-line
Kill all characters on the current line, no matter where point is.

kill-word (M—d)
Kill from point to the end of the current word, or if between words, to the end of the next word.
Word boundaries are the same as those uséahlgrd—word .

backward-kill-word (M—Rubout)
Kill the word behind point. Word boundaries are the same as those ubadkwyard-word.

unix-word-rubout (C-w)
Kill the word behind point, using white space as a word boundary. The killed text is saved on the
kill-ring.

delete—-horizontal-space (M-\)
Delete all spaces and tabs around point.

kill-region
Kill the text in the current region.

copy-region—as—Kill
Copy the text in the region to the kill buffer.

copy—-backward-word
Copy the word before point to the kill buffer. The word boundaries are the sarfpaclks
ward-word.

copy—forward-word
Copy the word following point to the kill buffer. The word boundaries are the sanf@-as
ward-word.

yank (C-y)
Yank the top of the kill ring into the buffer at point.

yank-pop (M-y)
Rotate the Kkill ring, and yank the new top. Only works followyagk or yank—pop.

Numeric Arguments

digit-argument (M-0, M-1, ..., M—-)
Add this digit to the argument already accumulating, or start a new argument. M-- starts a neg-
ative argument.

universal-argument
This is another way to specify an argument. If this command is followed by one or more digits,
optionally with a leading minus sign, those digits define the argument. If the command is fol-
lowed by digits, executingniversal-argument again ends the numeric argument, but is other-
wise ignored. As a special case, if this command is immediately followed by a character that is
neither a digit or minus sign, the argument count for the next command is multiplied by four. The
argument count is initially one, so executing this function the first time makes the argument count
four, a second time makes the argument count sixteen, and so on.

Completing

complete (TAB)
Attempt to perform completion on the text before poiBash attempts completion treating the
text as a variable (if the text begins wih) username (if the text begins with hostname (if the
text begins with@), or command (including aliases and functions) in turn. If none of these pro-
duces a match, flename completion is attempted.

possible-completions (M-?)
List the possible completions of the text before point.

insert—completions (M-*)
Insert all completions of the text before point that would have been generapeddiyle—com-
pletions.

GNU Bash-2.05b 2002 July 15 33

BASH(1) BASH(1)

menu-complete
Similar tocomplete but replaces the word to be completed with a single match from the list of
possible completions. Repeated executiomehu—completesteps through the list of possible
completions, inserting each match in turn. At the end of the list of completions, the bell is rung
(subject to the setting difell-style) and the original text is restored. An argumentahovesn
positions forward in the list of matches; a negative argument may be useavédbatkward
through the list. This command is intended to be boufd\B®, but is unbound by default.
delete—char-or-list
Deletes the character under the cursor if not at the beginning or end of the linkel@iiee-cha).
If at the end of the line, behaves identicallyptissible—completions This command is unbound
by default.
complete-filename (M-/)
Attempt filename completion on the text before point.
possible-filename-completions (C-x /)
List the possible completions of the text before point, treating it as a filename.
complete—-username (M-")
Attempt completion on the text before point, treating it as a username.
possible-username-completions (C-x ")
List the possible completions of the text before point, treating it as a username.
complete-variable (M-$)
Attempt completion on the text before point, treating it as a shell variable.
possible-variable—completions (C—x $)
List the possible completions of the text before point, treating it as a shell variable.
complete-hostname (M-@)
Attempt completion on the text before point, treating it as a hostname.
possible-hostname—completions (C—-x @)
List the possible completions of the text before point, treating it as a hostname.
complete—-command (M-!)
Attempt completion on the text before point, treating it as a command name. Command comple-
tion attempts to match the text against aliases, reserved words, shell functions, shell builtins, and
finally executable filenames, in that order.
possible-command-completions (C—x !)
List the possible completions of the text before point, treating it as a command name.
dynamic—complete-history (M-TAB)
Attempt completion on the text before point, comparing the text against lines from the history list
for possible completion matches.
complete-into—braces (M—{)
Perform filename completion and insert the list of possible completions enclosed within braces so
the list is available to the shell (sBeace Expansionabove).

Keyboard Macros
start—kbd-macro (C—x ()
Begin saving the characters typed into the current keyboard macro.
end-kbd-macro (C—x))
Stop saving the characters typed into the current keyboard macro and store the definition.
call-last-kbd-macro (C-x e)
Re-execute the last keyboard macro defined, by making the characters in the macro appear as if
typed at the keyboard.

Miscellaneous

re—read-init-file (C—x C-r)
Read in the contents of theputrc file, and incorporate any bindings or variable assignments
found there.

abort (C—9)
Abort the current editing command and ring the terminal’s bell (subject to the setting of
bell-style).

do-uppercase-version (M-a, M-b, Mx, ...)
If the metafied charactetis lowercase, run the command that is bound to the corresponding
uppercase character.

34 2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

prefix-meta (ESC)
Metafy the next character type&SCf is equivalent tVieta—f.
undo (C-_, C-x C-u)
Incremental undo, separately remembered for each line.
revert-line (M-r)
Undo all changes made to this line. This is like executingutidd command enough times to
return the line to its initial state.
tilde—expand (M-&)
Perform tilde expansion on the current word.
set-mark (C-@, M—-<space>)
Set the mark to the point. If a numeric argument is supplied, the mark is set to that position.
exchange—point—and-mark (C-x C-x)
Swap the point with the mark. The current cursor position is set to the saved position, and the old
cursor position is saved as the mark.
character—search (C-])
A character is read and point is moved to the next occurrence of that character. A negative count
searches for previous occurrences.
character—search—backward (M—-C-])
A character is read and point is moved to the previous occurrence of that character. A negative
count searches for subsequent occurrences.
insert—-comment (M—#)
Without a numeric argument, the value of the readiomament-beginvariable is inserted at the
beginning of the current line. If a numeric argument is supplied, this command acts as a toggle: if
the characters at the beginning of the line do not match the vatwenofient-begin the value is
inserted, otherwise the characterccaomment-beginare deleted from the beginning of the line.
In either case, the line is accepted as if a newline had been typed. The default vaoe of
ment-begin causes this command to make the current line a shell comment. If a numeric argu-
ment causes the comment character to be removed, the line will be executed by the shell.
glob—complete-word (M—g)
The word before point is treated as a pattern for pathname expansion, with an asterisk implicitly
appended. This pattern is used to generate a list of matching file names for possible completions.
glob-expand-word (C—x *)
The word before point is treated as a pattern for pathname expansion, and the list of matching file
names is inserted, replacing the word. If a numeric argument is supplied, an asterisk is appended
before pathname expansion.
glob-list-expansions (C-x @)
The list of expansions that would have been generategloby-expand-wordis displayed, and
the line is redrawn. If a numeric argument is supplied, an asterisk is appended before pathname
expansion.
dump-functions
Print all of the functions and their key bindings to the readline output stream. If a numeric argu-
ment is supplied, the output is formatted in such a way that it can be made panpuoftexfile.
dump-variables
Print all of the settable readline variables and their values to the readline output stream. If a
numeric argument is supplied, the output is formatted in such a way that it can be made part of an
inputrcfile.
dump-macros
Print all of the readline key sequences bound to macros and the strings they ouput. If a numeric
argument is supplied, the output is formatted in such a way that it can be made panpotran
file.
display-shell-version (C—x C-v)
Display version information about the current instandeash
Programmable Completion
When word completion is attempted for an argument to a command for which a completion specification (a

compspecrhas been defined using themplete builtin (seeSHELL BUILTIN COMMANDS below), the
programmable completion facilities are invoked.

First, the command name is identified. If a compspec has been defined for that command, the compspec is
used to generate the list of possible completions for the word. If the command word is a full pathname, a

GNU Bash-2.05b 2002 July 15 35

BASH(1) BASH(1)

compspec for the full pathname is searched for first. If no compspec is found for the full pathname, an
attempt is made to find a compspec for the portion following the final slash.

Once a compspec has been found, it is used to generate the list of matching words. If a compspec is not
found, the defaulbashcompletion as described @le underCompleting is performed.

First, the actions specified by the compspec are used. Only matches which are prefixed by the word being
completed are returned. When theor —d option is used for filename or directory name completion, the
shell variableFIGNORE is used to filter the matches.

Any completions specified by a filename expansion pattern teGhaption are generated next. The words
generated by the pattern need not match the word being completedsLOBE&NORE shell variable is
not used to filter the matches, but HENORE variable is used.

Next, the string specified as the argument to-¥eoption is considered. The string is first split using the
characters in th&FS special variable as delimiters. Shell quoting is honored. Each word is then expanded
using brace expansion, tilde expansion, parameter and variable expansion, command substitution, arith-
metic expansion, and pathname expansion, as described wider EXPANSION. The results are split

using the rules described @t underWord Splitting. The results of the expansion are prefix-matched
against the word being completed, and the matching words become the possible completions.

After these matches have been generated, any shell function or command specified whtlarnke-C

options is invoked. When the command or function is invokedCtP_LINE andCOMP_POINT vari-

ables are assigned values as describestealnderShell Variables If a shell function is being invoked,

the COMP_WORDS and COMP_CWORD variables are also set. When the function or command is
invoked, the first argument is the name of the command whose arguments are being completed, the second
argument is the word being completed, and the third argument is the word preceding the word being com-
pleted on the current command line. No filtering of the generated completions against the word being com-
pleted is performed; the function or command has complete freedom in generating the matches.

Any function specified with-F is invoked first. The function may use any of the shell facilities, including
the compgenbuiltin described below, to generate the matches. It must put the possible completions in the
COMPREPLY array variable.

Next, any command specified with th€ option is invoked in an environment equivalent to command sub-
stitution. It should print a list of completions, one per line, to the standard output. Backslash may be used
to escape a newline, if necessary.

After all of the possible completions are generated, any filter specified wittXtbetion is applied to the

list. The filter is a pattern as used for pathname expansi&ninathe pattern is replaced with the text of
the word being completed. A liter8l may be escaped with a backslash; the backslash is removed before
attempting a match. Any completion that matches the pattern will be removed from the list. A leading
negates the pattern; in this case any completion not matching the pattern will be removed.

Finally, any prefix and suffix specified with th€ and-S options are added to each member of the com-
pletion list, and the result is returned to the readline completion code as the list of possible completions.

If the previously-applied actions do not generate any matches, and timamesoption was supplied to
completewhen the compspec was defined, directory name completion is attempted.

By default, if a compspec is found, whatever it generates is returned to the completion code as the full set
of possible completions. The defablish completions are not attempted, and the readline default of file-
name completion is disabled. If the default option was supplied toomplete when the compspec was
defined, readline’s default completion will be performed if the compspec generates no matches.

When a compspec indicates that directory name completion is desired, the programmable completion func-
tions force readline to append a slash to completed names which are symbolic links to directories, subject
to the value of thamark-directories readline variable, regardless of the setting of mhark-sym-
linked—directories readline variable.

HISTORY

36

When the-o history option to thesetbuiltin is enabled, the shell provides access tactilmmand history
the list of commands previously typed. The value oHIETSIZE variable is used as the number of com-
mands to save in a history list. The text of the RISITSIZE commands (default 500) is saved. The shell
stores each command in the history list prior to parameter and variable expansiExP&e8ION above)
but after history expansion is performed, subject to the values of the shell varH&Ii®SNORE and

2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

HISTCONTROL .

On startup, the history is initialized from the file named by the varigiBfeFILE (default™.bash_history.

The file named by the value BISTFILE is truncated, if necessary, to contain no more than the number of
lines specified by the value BiISTFILESIZE . When an interactive shell exits, the I&stISTSIZE lines

are copied from the history list 8HISTFILE . If the histappend shell option is enabled (see the descrip-
tion of shoptunderSHELL BUILTIN COMMANDS below), the lines are appended to the history file, other-
wise the history file is overwritten. HISTFILE is unset, or if the history file is unwritable, the history is
not saved. After saving the history, the history file is truncated to contain no moreI8THLESIZE

lines. IfHISTFILESIZE is not set, no truncation is performed.

The builtin commandc (seeSHELL BUILTIN COMMANDS below) may be used to list or edit and re-
execute a portion of the history list. Thistory builtin may be used to display or modify the history list

and manipulate the history file. When using command-line editing, search commands are available in each
editing mode that provide access to the history list.

The shell allows control over which commands are saved on the history listHISMEONTROL and
HISTIGNORE variables may be set to cause the shell to save only a subset of the commands entered. The
cmdhist shell option, if enabled, causes the shell to attempt to save each line of a multi-line command in
the same history entry, adding semicolons where necessary to preserve syntactic correctribsst The

shell option causes the shell to save the command with embedded newlines instead of semicolons. See the
description of theshopt builtin below undelSHELL BUILTIN COMMANDS for information on setting and
unsetting shell options.

HISTORY EXPANSION
The shell supports a history expansion feature that is similar to the history expartsbn Tinis section
describes what syntax features are available. This feature is enabled by default for interactive shells, and
can be disabled using theH option to theset builtin command (se&SHELL BUILTIN COMMANDS
below). Non-interactive shells do not perform history expansion by default.

History expansions introduce words from the history list into the input stream, making it easy to repeat
commands, insert the arguments to a previous command into the current input line, or fix errors in previous
commands quickly.

History expansion is performed immediately after a complete line is read, before the shell breaks it into
words. It takes place in two parts. The first is to determine which line from the history list to use during
substitution. The second is to select portions of that line for inclusion into the current one. The line
selected from the history is tle@ent and the portions of that line that are acted uporwares Various
modifiersare available to manipulate the selected words. The line is broken into words in the same fashion
as when reading input, so that sevenatacharactesseparated words surrounded by quotes are considered
one word. History expansions are introduced by the appearance of the history expansion character, which
is | by default. Only backslash)(and single quotes can quote the history expansion character.

Several shell options settable with gteoptbuiltin may be used to tailor the behavior of history expansion.

If the histverify shell option is enabled (see the description ofsthept builtin), andreadline is being

used, history substitutions are not immediately passed to the shell parser. Instead, the expanded line is
reloaded into thaeadline editing buffer for further modification. Ifeadline is being used, and the
histreedit shell option is enabled, a failed history substitution will be reloaded inteetttdine editing

buffer for correction. The-p option to thehistory builtin command may be used to see what a history
expansion will do before using it. The option to thehistory builtin may be used to add commands to the

end of the history list without actually executing them, so that they are available for subsequent recall.

The shell allows control of the various characters used by the history expansion mechanism (see the
description ohistchars aboveunderShell Variables).

Event Designators
An event designator is a reference to a command line entry in the history list.

! Start a history substitution, except when followed tjaak, newline, = or (.
In Refer to command line.

I-n Refer to the current command line mimus

Il Refer to the previous command. This is a synonym for ‘1-1".

Istring Refer to the most recent command starting wfthng.

GNU Bash-2.05b 2002 July 15 37

BASH(1) BASH(1)

I?string[?]
Refer to the most recent command contairstrqng. The trailing? may be omitted ifstring is
followed immediately by a newline.

~stringl~string2~
Quick substitution. Repeat the last command, replasitnopgl with string2 Equivalent to
“Il:s/ string1/string2” (see Modifiers below).

I# The entire command line typed so far.

Word Designators
Word designators are used to select desired words from the evensepfrates the event specification
from the word designator. It may be omitted if the word designator begins With & —, or %. Words
are numbered from the beginning of the line, with the first word being denoted by 0 (zero). Words are
inserted into the current line separated by single spaces.

0 (zero)
The zeroth word. For the shell, this is the command word.

n Thenth word.

- The first argument. That is, word 1.

$ The last argument.

% The word matched by the most recerstfihg?’ search.

X=y A range of words; 'y’ abbreviates ‘0y'.

* All of the words but the zeroth. This is a synonym fbr$'. It is not an error to usé& if there is
just one word in the event; the empty string is returned in that case.

X* Abbreviates<—$.

X— Abbreviatesx—$ like x*, but omits the last word.

If a word designator is supplied without an event specification, the previous command is used as the event.

Modifiers
After the optional word designator, there may appear a sequence of one or more of the following modifiers,
each preceded by a ;.

h Remove arailing file name component, leaving only the head.

t Removeall leading file name components, leaving the tail.

r Remove arailing suffix of the formxxx leaving the basename.

e Removeall but the trailing suffix.

p Print the new command but do not execute it.

q Quote the substituted words, escaping further substitutions.

X Quote the substituted words as without break into words #@lanks and newlines.

sfold/new
Substitutenewfor the first occurrence afld in the event line. Any delimiter can be used in place
of /. The final delimiter is optional if it is the last character of the event line. The delimiter may
be quoted irold and newwith a single backslash. If & appearsriaw, it is replaced byold. A
single backslash will quote the &. did is null, it is set to the lastld substituted, or, if no previ-
ous history substitutions took place, the Esingin a!?string[?] search.

& Repeat the previous substitution.

g Cause changes to be applied over the entire event line. This is used in conjunctiosi (&tf.,
“:gsloldinew’) or “:&’. If used with “s’, any delimiter can be used in place of /, and the final
delimiter is optional if it is the last character of the event line.

SHELL BUILTIN COMMANDS

38

Unless otherwise noted, each builtin command documented in this section as accepting options preceded by
— accepts-— to signify the end of the options.

. [argument}
No effect; the command does nothing beyond exparaliggmentsand performing any specified
redirections. A zero exit code is returned.

. filenamegargumentg

sourcefilenameargumenty
Read and execute commands frdibenamein the current shell environment and return the exit
status of the last command executed fridlename If filenamedoes not contain a slash, file
names iNPATH are used to find the directory containfilgname The file searched for iRATH

2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

need not be executable. Whieashis not inposix modgthe current directory is searched if no

file is found INPATH. If the sourcepathoption to theshopt builtin command is turned off, the

PATH is not searched. If amlgrgumentsare supplied, they become the positional parameters when
filenameis executed. Otherwise the positional parameters are unchanged. The return status is the
status of the last command exited within the script (0 if no commands are executed), and false if
filenames not found or cannot be read.

alias[-p] [nam¢g=valuq ...]
Alias with no arguments or with thep option prints the list of aliases in the foralias
name-valueon standard output. When arguments are supplied, an alias is defined foaeexch
whosevalueis given. A trailing space irvaluecauses the next word to be checked for alias sub-
stitution when the alias is expanded. For ezamein the argument list for which naalueis sup-
plied, the name and value of the alias is printAtlas returns true unless mameis given for
which no alias has been defined.

bg [jobspet
Resume the suspended jobspecin the background, as if it had been started &ithlf jobspec
is not present, the shell’s notion of tharrent jobis used.bg jobspecreturns 0 unless run when
job control is disabled or, when run with job control enableghki§pecwas not found or started
without job control.

bind [-m keymap[-lpsvPSV|
bind [-m keymapp[—q functior [-u function] [-r keyse}
bind [-m keymap —f filename
bind [-m keymap —x keysecshell-command
bind [-m keymap keysecfunction—name
bind readline—command
Display currenteadline key and function bindings, bind a key sequencereadline function or
macro, or set geadline variable. Each non-option argument is a command as it would appear in
.inputrc, but each binding or command must be passed as a separate argument; e.g., "\C-x\C-r":
re-read—init—file’. Options, if supplied, have the following meanings:
—-m keymap
Use keymapas the keymap to be affected by the subsequent bindings. Acceptable
keymap names areemacs, emacs—standard, emacs—-meta, emacs—ctlx, vi, vi-move,
vi-commang and vi-insert. vi is equivalent tovi-commang emacsis equivalent to
emacs-—standard
- List the names of afieadline functions.

-p Displayreadline function names and bindings in such a way that they can be re-read.
-P List currentreadline function names and bindings.
-V Displayreadline variable names and values in such a way that they can be re-read.
-V List currentreadline variable names and values.
-s Display readline key sequences bound to macros and the strings they output in such a
way that they can be re-read.
-S Displayreadline key sequences bound to macros and the strings they output.
—f filename
Read key bindings frorfilename
—q function
Query about which keys invoke the nanfiexiction
—u function
Unbind all keys bound to the namfethction
-r keyseq

Remove angurrent binding fokeyseq
—x keysegshell-command
Causeshell-commando be executed whenevesyseds entered.

The return value is 0 unless an unrecognized option is given or an error occurred.

break [n]
Exit from within afor, while, until, or selectloop. Ifnis specified, break levels. n must be> 1.
If nis greater than the number of enclosing loops, all enclosing loops are exited. The return value
is 0 unless the shell is not executing a loop wireak is executed.

GNU Bash-2.05b 2002 July 15 39

BASH(1) BASH(1)

builtin shell-builtin [argument}
Execute the specified shell builtin, passingrgumentsand return its exit status. This is useful
when defining a function whose name is the same as a shell builtin, retaining the functionality of
the builtin within the function. Thed builtin is commonly redefined this way. The return status
is false ifshell-builtin is not a shell builtin command.

cd [-L|-P] [dir]
Change the current directoryd@r. The variableHOME is the defauldir. The variableCDPATH
defines the search path for the directory contaiding Alternative directory names @DPATH
are separated by a colon (:). A null directory namemPATH is the same as the current direc-
tory, i.e., “.”. If dir begins with a slash (/), th&@DPATH is not used. TheP option says to use
the physical directory structure instead of following symbolic links (see alseRtlogtion to the
setbuiltin command); the-L option forces symbolic links to be followed. An argument-agé
equivalent tafOLDPWD. The return value is true if the directory was successfully changed; false
otherwise.

command[-pVv] commandarg ...]
Run commandwith args suppressing the normal shell function lookup. Only builtin commands or
commands found in theATH are executed. If thep option is given, the search foommandis
performed using a default value f8ATH that is guaranteed to find all of the standard utilities. If
either the-V or —v option is supplied, a description cddmmands printed. The-v option causes
a single word indicating the command or file name used to invokenandio be displayed; the
-V option produces a more verbose description. I¥ieor —v option is supplied, the exit status
is 0 if commandwas found, and 1 if not. If neither option is supplied and an error occurred or
commandcannot be found, the exit status is 127. Otherwise, the exit status obriimaand
builtin is the exit status afommand

compgen[option] [word]
Generate possible completion matchesaford according to theptiors, which may be any option
accepted by theompletebuiltin with the exception ofp and-r, and write the matches to the
standard output. When using th& or —C options, the various shell variables set by the pro-
grammable completion facilities, while available, will not have useful values.

The matches will be generated in the same way as if the programmable completion code had gen-
erated them directly from a completion specification with the same flagmrdfs specified, only
those completions matchinwgprd will be displayed.

The return value is true unless an invalid option is supplied, or no matches were generated.

complete[—-abcdefgjksuV [—o comp-optioh[-A action] [-G globpal [-W wordlist] [P prefiy [-S suf-

fix]
[-X filterpaf] [-F functior] [-C commanyiname[name .].

complete —pr[name...]
Specify how arguments to eanmeshould be completed. If thep option is supplied, or if no
options are supplied, existing completion specifications are printed in a way that allows them to be
reused as input. Ther option removes a completion specification for eaame or, if nonames
are supplied, all completion specifications.

The process of applying these completion specifications when word completion is attempted is
described ative underProgrammable Completion

Other options, if specified, have the following meanings. The arguments t&thaV, and—X
options (and, if necessary, th® and-S options) should be quoted to protect them from expan-
sion before theompletebuiltin is invoked.
—0 comp-option
The comp-optioncontrols several aspects of the compspec’s behavior beyond the simple
generation of completioncomp-optiormay be one of:
default Use readline’s default filename completion if the compspec generates no
matches.

40 2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

dirnames
Perform directory name completion if the compspec generates no matches.

filenames
Tell readline that the compspec generates filenames, so it can perform any file-
name-specific processing (like adding a slash to directory names or suppress-
ing trailing spaces). Intended to be used with shell functions.

nospace Tell readline not to append a space (the default) to words completed at the end
of the line.

—A action

Theactionmay be one of the following to generate a list of possible completions:

alias Alias names. May also be specified-as

arrayvar
Array variable names.

binding Readlinekey binding names.

builtin -~ Names of shell builtin commands. May also be specifiethas

command

Command names. May also be specified@s
directory

Directory names. May also be specified-ds
disabled

Names of disabled shell builtins.
enabled Names of enabled shell builtins.
export Names of exported shell variables. May also be specified.as
file File names. May also be specified-ds
function
Names of shell functions.
group Group names. May also be specified-gs
helptopic
Help topics as accepted by thelp builtin.
hostname
Hostnames, as taken from the file specified byHth8TFILE shell variable.
job Job names, if job control is active. May also be specifieg.as
keyword
Shell reserved words. May also be specifiedlas
running Names of running jobs, if job control is active.
service Service names. May also be specifiedas
setopt Valid arguments for theo option to thesetbuiltin.
shopt Shell option names as accepted bysthept builtin.
signal Signal names.
stopped Names of stopped jobs, if job control is active.
user User names. May also be specified-as
variable Names of all shell variables. May also be specifieévas
-G globpat
The filename expansion pattegiobpatis expanded to generate the possible comple-
tions.
-W wordlist
The wordlist is split using the characters in ti&S special variable as delimiters, and
each resultant word is expanded. The possible completions are the members of the
resultant list which match the word being completed.
—-C command
commands executed in a subshell environment, and its output is used as the possible
completions.
-F function
The shell functiorfunctionis executed in the current shell environment. When it fin-
ishes, the possible completions are retrieved from the value afGR®REPLY array
variable.
=X filterpat
filterpatis a pattern as used for filename expansion. It is applied to the list of possible
completions generated by the preceding options and arguments, and each completion

GNU Bash-2.05b 2002 July 15 41

BASH(1)

BASH(1)

matchingfilterpat is removed from the list. A leadingin filterpat negates the pattern;
in this case, any completion not matchfiligrpatis removed.
—P prefix
prefixis added at the beginning of each possible completion after all other options have
been applied.
—Ssuffix suffiis appended to each possible completion after all other options have been applied.

The return value is true unless an invalid option is supplied, an option otherglwarr is sup-
plied without anameargument, an attempt is made to o acompletion specification for a
namefor which no specification exists, or an error occurs adding a completion specification.

continue[n]

Resume the next iteration of the enclosfog, while, until, or selectloop. If n is specified,
resume at theth enclosing loop.n must be> 1. If nis greater than the number of enclosing
loops, the last enclosing loop (the “top-level” loop) is resumed. The return value is 0 unless the
shell is not executing a loop wheantinue is executed.

declare[—-afFirtx] [-p] [namdg=valud]
typeset[—afFirtx] [-p] [namég=valud]

Declare variables and/or give them attributes. Ifnamne are given then display the values of

variables. The-p option will display the attributes and values of eaeme When—p is used,

additional options are ignored. Th€& option inhibits the display of function definitions; only the

function name and attributes are printed. FReoption implies—f. The following options can be

used to restrict output to variables with the specified attribute or to give variables attributes:

-a Eachnameis an array variable (sé@rays above).

—f Use function names only.

=i The variable is treated as an integer; arithmetic evaluatiom@&eIMETIC EVALUA-
TION) is performed when the variable is assigned a value.

-r Make names readonly. These names cannot then be assigned values by subsequent
assignment statements or unset.

-t Give eachnamethe trace attribute. Traced functions inherit tieEBUG trap from the
calling shell. The trace attribute has no special meaning for variables.

—X Mark names for export to subsequent commands via the environment.

Using ‘+' instead of ‘~’ turns off the attribute instead, with the exceptiontthahay not be used

to destroy an array variable. When used in a function, makesneachlocal, as with thdocal
command. The return value is 0 unless an invalid option is encountered, an attempt is made to
define a function usingf foo=bar , an attempt is made to assign a value to a readonly variable,

an attempt is made to assign a value to an array variable without using the compound assignment
syntax (seérrays above), one of theamesds not a valid shell variable name, an attempt is made

to turn off readonly status for a readonly variable, an attempt is made to turn off array status for an
array variable, or an attempt is made to display a non-existent functionfwith

dirs [-clpv] [+ n] [-n]

42

Without options, displays the list of currently remembered directories. The default display is on a
single line with directory names separated by spaces. Directories are added to the list with the
pushd command; thgpopd command removes entries from the list.

+n Displays thenth entry counting from the left of the list shown Biys when invoked
without options, starting with zero.

-n Displays thenth entry counting from the right of the list shown diys when invoked
without options, starting with zero.

—-C Clears the directory stack by deleting all of the entries.

- Produces a longer listing; the default listing format uses a tilde to denote the home direc-
tory.

-p Print the directory stack with one entry per line.

-V Print the directory stack with one entry per line, prefixing each entry with its index in the
stack.

The return value is 0 unless an invalid option is supplietindexes beyond the end of the direc-
tory stack.

2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

disown[-ar] [-h] [jobspec...]
Without options, eacliobspecis removed from the table of active jobs. If thle option is given,
eachjobspecis not removed from the table, but is marked so $h@HUP is not sent to the job if
the shell receives 8IGHUP. If no jobspecis present, and neither th@ nor the—r option is sup-
plied, thecurrent jobis used. If nojobspecis supplied, the-a option means to reove ormark
all jobs; the-r option without ajobspecargument restricts operation to running jobs. The return
value is 0 unless pbspecdoes not specify a valid job.

echo[-neE] [arg ...]
Output theargs, separated by spaces, followed by a newline. The return status is alway$ 0. If
is specified, the trailing newline is suppressed. If-th@ption is given, interpretation of the fol-
lowing backslash-escaped characters is enabled ~Eloption disables the interpretation of these
escape characters, even on systems where they are interpreted by defaupg Téehoshell
option may be used to dynamically determine whether oectoiexpands these escape characters
by default. echodoes not interpret— to mean the end of optiongchointerprets the following
escape sequences:

\a alert (bell)

\b backspace

\c suppress trailing newline
\e an escape character

\f form feed

\n new line

\r carriage return

\t horizontal tab

\v vertical tab

\\ backslash

\Onnn the eight-bit character whose value is the octal vatugzero to three octal digits)
\nnn the eight-bit character whose value is the octal vatugone to three octal digits)
\XxHH the eight-bit character whose value is the hexadecimal tiu@ne or two hex digits)

enable[—adnpq [-f filenamé& [name...]
Enable and disable builtin shell commands. Disabling a builtin allows a disk command which has
the same name as a shell builtin to be executed without specifying a full pathname, even though
the shell normally searches for builtins before disk commandsn 1§ used, eachameis dis-
abled; otherwisenamesare enabled. For example, to use tbst binary found via thePATH
instead of the shell builtin version, renable -n test . The—f option means to load the new
builtin commandnamefrom shared objecfilename on systems that support dynamic loading.
The —d option will delete a builtin previously loaded witl. If no namearguments are given, or
if the —p option is supplied, a list of shell builtins is printed. With no other option arguments, the
list consists of all enabled shell builtins. i is supplied, only disabled builtins are printed —#
is supplied, the list printed includes all builtins, with an indication of whether or not each is
enabled. If-sis supplied, the output is restricted to the POS§pEcialbuiltins. The return value
is 0 unless aameis not a shell builtin or there is an error loading a new builtin from a shared
object.

eval[arg ...]
The args are read and concatenated together into a single command. This command is then read
and executed by the shell, and its exit status is returned as the veltsd df there are nargs,
or only null argumentsvalreturns 0.

exec[—cl] [-anamg [commandargument§
If commands specified, it replaces the shell. No new process is createdarglmmentbecome
the arguments toommand If the —I option is supplied, the shell places a dash at the beginning of
the zeroth arg passed¢ommand This is whatogin(1) does. The-c option causesommando
be executed with an empty environment.—#is supplied, the shell passeameas the zeroth
argument to the executed commandcdinmandcannot be executed for some reason, a non-inter-
active shell exits, unless the shell optmxecfailis enabled, in which case it returns failure. An
interactive shell returns failure if the file cannot be executedortfimandis not specified, any
redirections take effect in the current shell, and the return status is 0. If there is a redirection error,
the return status is 1.

GNU Bash-2.05b 2002 July 15 43

BASH(1) BASH(1)

44

exit [n] Cause the shell to exit with a statusoflf nis omitted, the exit status is that of the last command
executed. A trap oBXIT is executed before the shell terminates.

export [-fn] [namg=word]] ...

export —p
The suppliechamesare marked for automatic export to the environment of subsequently executed
commands. If thef option is given, th@amegefer to functions. If nmamesare given, or if the
—p option is supplied, a list of all names that are exported in this shell is printed-nTdw@ion
causes the export property to be removed from the named varialjgart returns an exit status
of 0 unless an invalid option is encountered, one oh#émess not a valid shell variable name, or
—f is supplied with amamethat is not a function.

fc [-eenamé[—nir] [first] [last]

fc —s[pat=rep] [cmd
Fix Command. In the first form, a range of commands ffost to last is selected from the his-
tory list. First andlast may be specified as a string (to locate the last command beginning with
that string) or as a number (an index into the history list, where a negative humber is used as an
offset from the current command number)lalt is not specified it is set to the current command
for listing (so thafc -1 -10 prints the last 10 commands) andfist otherwise. Iffirst is not
specified it is set to the previous command for editing and —-16 for listing.

The—n option suppresses the command numbers when listing—-fToption reverses the order of

the commands. If thel option is given, the commands are listed on standard output. Otherwise,
the editor given bynameis invoked on a file containing those commandseribmeis not given,

the value of th&eCEDIT variable is used, and the valueEDITOR if FCEDIT is not set. If nei-

ther variable is setyi is used. When editing is complete, the edited commands are echoed and
executed.

In the second forngommands re-executed after each instanceaffis replaced byep. A useful
alias to use with this is='fc —s’ , So that typing cc runs the last command beginning with
cc and typingr re-executes the last command.

If the first form is used, the return value is 0 unless an invalid option is encountdiest arlast
specify history lines out of range. If the option is supplied, the return value is the value of the
last command executed or failure if an error occurs with the temporary file of commands. If the
second form is used, the return status is that of the command re-executedcmlee®s not
specify a valid history line, in which cafereturns failure.

fg [jobspe¢
Resumejobspecin the foreground, and make it the current job.jdbspecis not present, the
shell’s notion of thecurrent jobis used. The return value is that of the command placed into the
foreground, or failure if run when job control is disabled or, when run with job control enabled, if
jobspecdoes not specify a valid job gobspecspecifies a job that was started without job control.

getoptsoptstring namégargs
getoptsis used by shell procedures to parse positional parametptstring contains the option
characters to be recognized; if a character is followed by a colon, the option is expected to have an
argument, which should be separated from it by white space. The colon and question mark char-
acters may not be used as option characters. Each time it is ingmtegis places the next
option in the shell variableame initializing nameif it does not exist, and the index of the next
argument to be processed into the vari@®@IND. OPTIND is initialized to 1 each time the shell
or a shell script is invoked. When an option requires an argugetapts places that argument
into the variableOPTARG. The shell does not resePTIND automatically; it must be manually
reset between multiple calls getoptswithin the same shell invocation if a new set of parameters
is to be used.

When the end of options is encountergdiopts exits with a return value greater than zero.
OPTIND is set to the index of the first non-option argument, rrardeis set to ?.

getopts normally parses the positional parameters, but if more arguments are gieegsin
getoptsparses those instead.

2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

getopts can report errors in two ways. If the first characteopfstringis a colon,silent error
reporting is used. In normal operation diagnostic messages are printed when invalid options or
missing option arguments are encountered. If the var@PRERR is set to 0, no error messages

will be displayed, even if the first characterogitstringis not a colon.

If an invalid option is seemgetoptsplaces ? intaameand, if not silent, prints an error message
and unset©PTARG. If getoptsis silent, the option character found is place@RTARG and no
diagnostic message is printed.

If a required argument is not found, agetoptsis not silent, a question marR) is placed in
name OPTARG is unset, and a diagnostic message is printedettiptsis silent, then a colorn)
is placed imameandOPTARG is set to the option character found.

getoptsreturns true if an option, specified or unspecified, is found. It returns false if the end of
options is encountered or an error occurs.

hash[-Ir] [-p filenamé [-dt] [namé
For eachname the full file name of the command is determined by searching the directories in
$PATH and remembered. If thep option is supplied, no path search is performed, filadame
is used as the full file name of the command. Fheption causes the shell to forget all remem-
bered locations. Thed option causes the shell to forget the remembered location oheaaah
If the —t option is supplied, the full pathname to which eaamecorresponds is printed. If multi-
ple namearguments are supplied witht, the nameis printed before the hashed full pathname.
The - option causes output to be displayed in a format that may be reused as input. If no argu-
ments are given, or if onlyl is supplied, information about remembered commands is printed.
The return status is true unlessameis not found or an invalid option is supplied.

help [-9] [patterr]
Display helpful information about builtin commands. pétternis specifiedhelp gives detailed
help on all commands matchipattern otherwise help for all the builtins and shell control struc-
tures is printed. Thes option restricts the information displayed to a short usage synopsis. The
return status is 0 unless no command matph#srn

history [n]

history —c

history —d offset

history —anrw [filenamé

history —p arg [arg ..]

history —sarg[arg ..]
With no options, display the command history list with line numbers. Lines listed withage
been modified. An argument aoflists only the lash lines. If filenameis supplied, it is used as
the name of the history file; if not, the valueHdETFILE is used. Options, if supplied, have the
following meanings:

—-C Clear the history list by deleting all the entries.

—d offset
Delete the history entry at positioffset

-a Append the “new” history lines (history lines entered since the beginning of the current
bashsession) to the history file.

-n Read the history lines not already read from the history file into the current history list.
These are lines appended to the history file since the beginning of the basgkses-
sion.

-r Read the contents of the history file and use them as the current history.

-w Write the current history to the history file, overwriting the history file’s contents.

-p Perform history substitution on the followirggs and display the result on the standard

output. Does not store the results in the history list. Eaghmust be quoted to disable
normal history expansion.

-s Store theargsin the history list as a single entry. The last command in the history list is
removed before thargsare added.

The return value is 0 unless an invalid option is encountered, an error occurs while reading or writ-
ing the history file, an invalidffsetis supplied as an argument td, or the history expansion

GNU Bash-2.05b 2002 July 15 45

BASH(1) BASH(1)

46

supplied as an argument-tp fails.

jobs [-Inprs] [jobspec...]

jobs -xcommand args... |
The first form lists the active jobs. The options have the following meanings:
- List process IDs in addition to the normal information.

-p List only the process ID of the job’s process group leader.

-n Display information only about jobs that have changed status since the user was last noti-
fied of their status.

-r Restrict output to running jobs.

-s Restrict output to stopped jobs.

If jobspecis given, output is restricted to information about that job. The return status is 0 unless
an invalid option is encountered or an invglitbspeds supplied.

If the —x option is suppliedjobs replaces anyobspecfound incommandor args with the corre-
sponding process group ID, and execatmmamandoassing itargs, returning its exit status.

kill [-ssigsped —n signum| —sigspet[pid | jobspet ...

kill -1 [sigsped exit_statup
Send the signal named bigspeaoor signumto the processes named pigl or jobspec sigspeds
either a signal name such&ISKILL or a signal numbesignumis a signal number. Higspeds
a signal name, the name may be given with or withoutsteprefix. If sigspecis not present,
thenSIGTERM is assumed. An argument ©f lists the signal names. If any arguments are sup-
plied when-l is given, the names of the signals corresponding to the arguments are listed, and the
return status is 0. Thexit_statusargument to-l is a number specifying either a signal number or
the exit status of a process terminated by a sidkitlreturns true if at least one signal was suc-
cessfully sent, or false if an error occurs or an invalid option is encountered.

letarg[arg...]
Eacharg is an arithmetic expression to be evaluated fFRFHMETIC EVALUATION). If the
lastarg evaluates to et returns 1; 0 is returned otherwise.

local [option] [namég=valuq ...]
For each argument, a local variable namatheis created, and assignedlue Theoptioncan be
any of the options accepted dgclare Whenlocal is used within a function, it causes the vari-
able nameto have a visible scope restricted to that function and its children. With no operands,
local writes a list of local variables to the standard output. It is an error ttocakewhen not
within a function. The return status is 0 unles=l is used outside a function, an invatidmeis
supplied, omameis a readonly variable.

logout Exit a login shell.

popd [-n] [+n] [-n]
Removes entries from the directory stack. With no arguments, removes the top directory from the
stack, and performs ed to the new top directory. Arguments, if supplied, have the following

meanings:
+n Removes thath entry counting from the left of the list shown dtiys, starting with zero.
For examplepopd +0 removes the first directorgopd +1 the second.
-n Removes thath entry counting from the right of the list shown diys, starting with
zero. For examplgoopd -0 removes the last directonygppd -1 the next to last.
-n Suppresses the normal change of directory when removing directories from the stack, so

that only the stack is manipulated.

If the popd command is successful,dirs is performed as well, and the return status ip@pd
returns false if an invalid option is encountered, the directory stack is empty, a non-existent direc-
tory stack entry is specified, or the directory change fails.

printf format[argument}
Write the formattecirgumentdo the standard output under the control offtrenat Theformat
is a character string which contains three types of objects: plain characters, which are simply
copied to standard output, character escape sequences, which are converted and copied to the stan-
dard output, and format specifications, each of which causes printing of the next suergssive
ment In addition to the standamtintf(1) formats,%b causegprintf to expand backslash escape
sequences in the correspondiaggument and %q causesprintf to output the corresponding

2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

argumentin a format that can be reused as shell input.

The formatis reused as necessary to consume all ohtgements If the format requires more
argumentghan are supplied, the extra format specifications behave as if a zero value or null string,
as appropriate, had been supplied. The return value is zero on success, non-zero on failure.

pushd[-n] [dir]

pushd[-n] [+n] [-n]
Adds a directory to the top of the directory stack, or rotates the stack, making the new top of the
stack the current working directory. With no arguments, exchanges the top two directories and
returns 0, unless the directory stack is empty. Arguments, if supplied, have the following mean-

ings:

+n Rotates the stack so that théa directory (counting from the left of the list shown by
dirs, starting with zero) is at the top.

-n Rotates the stack so that thila directory (counting from the right of the list shown by
dirs, starting with zero) is at the top.

-n Suppresses the normal change of directory when adding directories to the stack, so that
only the stack is manipulated.

dir Addsdir to the directory stack at the top, making it the new current working directory.

If the pushd command is successful,dirs is performed as well. If the first form is usgaishd

returns O unless the cd thr fails. With the second forngushd returns 0 unless the directory
stack is empty, a non-existent directory stack element is specified, or the directory change to the
specified new current directory fails.

pwd [-LP]
Print the absolute pathname of the current working directory. The pathname printed contains no
symbolic links if the-P option is supplied or theo physicaloption to thesetbuiltin command is
enabled. If the-L option is used, the pathname printed may contain symbolic links. The return
status is 0 unless an error occurs while reading the name of the current directory or an invalid
option is supplied.

read [—erg] [-u fd] [t timeou} [-aanamé[—p promp] [-n ncharg [-d delim] [name...]
One line is read from the standard input, or from the file descfippgupplied as an argument to
the—u option, and the first word is assigned to the fieshe the second word to the secamaime
and so on, with leftover words and their intervening separators assigned to ttarastf there
are fewer words read from the input stream than names, the remaining names are assigned empty
values. The characters|iFS are used to split the line into words. The backslash char&cteay
be used to reove anyspecial meaning for the next character read and for line continuation.
Options, if supplied, have the following meanings:
—aaname
The words are assigned to sequential indices of the array vaaiadree starting at O.
anameis unset before any new values are assigned. @#reearguments are ignored.

—d delim
The first character afelimis used to terminate the input line, rather than newline.
-e If the standard input is coming from a termirraekdline (seeREADLINE above) is used
to obtain the line.
—-n nchars
read returns after readingcharscharacters rather than waiting for a complete line of
input.
—p prompt

Display prompton standard error, without a trailing newline, before attempting to read
any input. The prompt is displayed only if input is coming from a terminal.

-r Backslash does not act as an escape character. The backslash is considered to be part of
the line. In particular, a backslash-newline pair may not be used as a line continuation.

-s Silent mode. If input is coming from a terminal, characters are not echoed.

-t timeout

Causeread to time out and return failure if a complete line of input is not read within
timeoutseconds. This option has no effectafd is not reading input from the terminal
or a pipe.

GNU Bash-2.05b 2002 July 15 47

BASH(1)

BASH(1)

-ufd Read input from file descriptor fd.

If no names are supplied, the line read is assigned to the variable REPLY. The return code
is zero, unless end-of-file is encountered, read times out, or an invalid file descriptor is
supplied as the argument to —u.

readonly [—apf] [name ...]

The given names are marked readonly; the values of these names may not be changed by
subsequent assignment. If the —f option is supplied, the functions corresponding to the
names are so marked. The —a option restricts the variables to arrays. If no name argu-
ments are given, or if the —p option is supplied, a list of all readonly names is printed.
The —p option causes output to be displayed in a format that may be reused as input.
The return status is 0 unless an invalid option is encountered, one of the names is not a
valid shell variable name, or —f is supplied with a name that is not a function.

return [n]

Causes a function to exit with the return value specified by n. If n is omitted, the return
status is that of the last command executed in the function body. If used outside a func-
tion, but during execution of a script by the . (source) command, it causes the shell to
stop executing that script and return either n or the exit status of the last command exe-
cuted within the script as the exit status of the script. If used outside a function and not
during execution of a script by ., the return status is false.

set [-—abefhkmnptuvxBCHP] [-0 option] [arg ...]

48

Without options, the name and value of each shell variable are displayed in a format that
can be reused as input. The output is sorted according to the current locale. When
options are specified, they set or unset shell attributes. Any arguments remaining after
the options are processed are treated as values for the positional parameters and are
assigned, in order, to $1, $2, ... $n. Options, if specified, have the following meanings:

-a Automatically mark variables and functions which are modified or created for
export to the environment of subsequent commands.

-b Report the status of terminated background jobs immediately, rather than before
the next primary prompt. This is effective only when job control is enabled.

—-e Exit immediately if a simple command (see SHELL GRAMMAR above) exits with a

non-zero status. The shell does not exit if the command that fails is part of an
until or while loop, part of an if statement, part of a && or [Tlist, or if the com-
mand’s return value is being inverted via !. A trap on ERR, if set, is executed
before the shell exits.

-f Disable pathname expansion.

-h Remember the location of commands as they are looked up for execution. This
is enabled by default.

-k All arguments in the form of assignment statements are placed in the environ-
ment for a command, not just those that precede the command name.

-m Monitor mode. Job control is enabled. This option is on by default for interac-

tive shells on systems that support it (see JOB CONTROL above). Background
processes run in a separate process group and a line containing their exit status
is printed upon their completion.
-n Read commands but do not execute them. This may be used to check a shell
script for syntax errors. This is ignored by interactive shells.
—0 option—name
The option—name can be one of the following:
allexport
Same as —a.
braceexpand
Same as —B.
emacs Use an emacs-style command line editing interface. This is enabled by
default when the shell is interactive, unless the shell is started with the
——noediting option.
errexit Same as —e.
hashall Same as —h.

2002 July 15 GNU Bash-2.05b

BASH(1)

GNU Bash-2.05b

BASH(1)

histexpand
Same as —H.
history Enable command history, as described above under HISTORY. This
option is on by default in interactive shells.
ignoreeof
The effect is as if the shell command IGNOREEOF=10had been exe-
cuted (see Shell Variables above).
keyword
Same as —k.
monitor
Same as —m.
noclobber
Same as —C.
noexec Same as —n.
noglob Same as —f. nolog Currently ignored.
notify Same as —b.
nounset
Same as —u.
onecmd
Same as —t.
physical
Same as —P.
posix Change the behavior of bash where the default operation differs from
the POSIX 1003.2 standard to match the standard (posix mode).
privileged
Same as —p.
verbose
Same as —v.
vi Use a vi-style command line editing interface.
xtrace Same as —X.

If —o is supplied with no option—name, the values of the current options are
printed. If +o is supplied with no option—name, a series of set commands to
recreate the current option settings is displayed on the standard output.

Turn on privileged mode. In this mode, the $ENV and $BASH_ENV files are not
processed, shell functions are not inherited from the environment, and the
SHELLOPTS variable, if it appears in the environment, is ignored. If the shell is
started with the effective user (group) id not equal to the real user (group) id,
and the —p option is not supplied, these actions are taken and the effective user
id is set to the real user id. If the —p option is supplied at startup, the effective
user id is not reset. Turning this option off causes the effective user and group
ids to be set to the real user and group ids.

Exit after reading and executing one command.

Treat unset variables as an error when performing parameter expansion. If
expansion is attempted on an unset variable, the shell prints an error message,
and, if not interactive, exits with a non-zero status.

Print shell input lines as they are read.

After expanding each simple command, display the expanded value of PS4, fol-
lowed by the command and its expanded arguments.

The shell performs brace expansion (see Brace Expansion above). This is on by
default.

If set, bash does not overwrite an existing file with the >, >&, and <> redirection
operators. This may be overridden when creating output files by using the redi-
rection operator >| instead of >.

Enable ! style history substitution. This option is on by default when the shell is
interactive.

If set, the shell does not follow symbolic links when executing commands such
as cd that change the current working directory. It uses the physical directory
structure instead. By default, bash follows the logical chain of directories when

2002 July 15

49

BASH(1) BASH(1)

performing commands which change the current directory.

—— If no arguments follow this option, then the positional parameters are unset.
Otherwise, the positional parameters are set to the args, even if some of them
begin with a -

- Signal the end of options, cause all remaining args to be assigned to the posi-
tional parameters. The —x and —v options are turned off. If there are no args, the
positional parameters remain unchanged.

The options are off by default unless otherwise noted. Using + rather than — causes these
options to be turned off. The options can also be specified as arguments to an invocation
of the shell. The current set of options may be found in $—. The return status is always
true unless an invalid option is encountered.

shift [n]
The positional parameters from n+1 ... are renamed to $1 Parameters represented by
the numbers $# down to $#—n+1 are unset. n must be a non-negative number less than or
equal to $#. If n is 0, no parameters are changed. If n is not given, it is assumed to be 1.
If n is greater than $#, the positional parameters are not changed. The return status is
greater than zero if n is greater than $# or less than zero; otherwise 0.

shopt [-pgsu] [-0] [optname ...]
Toggle the values of variables controlling optional shell behavior. With no options, or
with the —p option, a list of all settable options is displayed, with an indication of
whether or not each is set. The —p option causes output to be displayed in a form that
may be reused as input. Other options have the following meanings:

-s Enable (set) each optname.
-u Disable (unset) each optname.
—-q Suppresses normal output (quiet mode); the return status indicates whether the

optname is set or unset. If multiple optname arguments are given with —q, the
return status is zero if all optnames are enabled; non-zero otherwise.

-0 Restricts the values of optname to be those defined for the —o option to the set
builtin.

If either —s or —u is used with no optname arguments, the display is limited to those
options which are set or unset, respectively. Unless otherwise noted, the shopt options
are disabled (unset) by default.

The return status when listing options is zero if all optnames are enabled, non-zero other-
wise. When setting or unsetting options, the return status is zero unless an optname is not
a valid shell option.

The list of shopt options is:

cdable_vars
If set, an argument to the cd builtin command that is not a directory is assumed
to be the name of a variable whose value is the directory to change to.

cdspell If set, minor errors in the spelling of a directory component in a cd command
will be corrected. The errors checked for are transposed characters, a missing
character, and one character too many. If a correction is found, the corrected file
name is printed, and the command proceeds. This option is only used by inter-
active shells.

checkhash
If set, bash checks that a command found in the hash table exists before trying
to execute it. If a hashed command no longer exists, a normal path search is per-
formed.

checkwinsize
If set, bash checks the window size after each command and, if necessary,
updates the values of LINES and COLUMNS.

cmdhist
If set, bash attempts to save all lines of a multiple-line command in the same
history entry. This allows easy re-editing of multi-line commands.

50 2002 July 15 GNU Bash-2.05b

BASH(1)

BASH(1)

dotglob
If set, bash includes filenames beginning with a “." in the results of pathname
expansion.

execfail If set, a non-interactive shell will not exit if it cannot execute the file specified as
an argument to the exec builtin command. An interactive shell does not exit if
exec fails.

expand_aliases
If set, aliases are expanded as described above under ALIASES. This option is
enabled by default for interactive shells.

extglob If set, the extended pattern matching features described above under Pathname
Expansion are enabled.

histappend
If set, the history list is appended to the file named by the value of the HIST-
FILE variable when the shell exits, rather than overwriting the file.

histreedit
If set, and readline is being used, a user is given the opportunity to re-edit a
failed history substitution.

histverify
If set, and readline is being used, the results of history substitution are not
immediately passed to the shell parser. Instead, the resulting line is loaded into
the readline editing buffer, allowing further modification.

hostcomplete
If set, and readline is being used, bash will attempt to perform hostname com-
pletion when a word containing a @ is being completed (see Completing under
READLINE above). This is enabled by default.

huponexit
If set, bash will send SIGHUP to all jobs when an interactive login shell exits.

interactive_comments
If set, allow a word beginning with # to cause that word and all remaining char-
acters on that line to be ignored in an interactive shell (see COMMENTS above).
This option is enabled by default.

lithist If set, and the cmdhist option is enabled, multi-line commands are saved to the
history with embedded newlines rather than using semicolon separators where
possible.

login_shell
The shell sets this option if it is started as a login shell (see INVOCATION
above). The value may not be changed.

mailwarn
If set, and a file that bash is checking for mail has been accessed since the last
time it was checked, the message “The mail in mailfile has been read” is dis-
played.

no_empty_cmd_completion
If set, and readline is being used, bash will not attempt to search the PATH for
possible completions when completion is attempted on an empty line.

nocaseglob
If set, bash matches filenames in a case—insensitive fashion when performing
pathname expansion (see Pathname Expansion above).

nullglob
If set, bash allows patterns which match no files (see Pathname Expansion
above) to expand to a null string, rather than themselves.

progcomp
If set, the programmable completion facilities (see Programmable Completion
above) are enabled. This option is enabled by default.

promptvars
If set, prompt strings undergo variable and parameter expansion after being
expanded as described in PROMPTING above. This option is enabled by
default.

GNU Bash-2.05b 2002 July 15

51

BASH(1) BASH(1)

restricted_shell
The shell sets this option if it is started in restricted mode (see RESTRICTED
SHELL below). The value may not be changed. This is not reset when the
startup files are executed, allowing the startup files to discover whether or not a
shell is restricted.
shift_verbose
If set, the shift builtin prints an error message when the shift count exceeds the
number of positional parameters.
sourcepath
If set, the source (.) builtin uses the value of PATH to find the directory contain-
ing the file supplied as an argument. This option is enabled by default.
Xpg_echo
If set, the echo builtin expands backslash-escape sequences by default.
suspend [—f]
Suspend the execution of this shell until it receives a SIGCONT signal. The —f option says
not to complain if this is a login shell; just suspend anyway. The return status is 0 unless
the shell is a login shell and —f is not supplied, or if job control is not enabled.
test expr
[expr] Return a status of 0 or 1 depending on the evaluation of the conditional expression expr.
Each operator and operand must be a separate argument. Expressions are composed of
the primaries described above under CONDITIONAL EXPRESSIONS.

Expressions may be combined using the following operators, listed in decreasing order of
precedence.
lexpr True if expr is false.
(expr) Returns the value of expr. This may be used to override the normal precedence
of operators.
exprl —a expr2
True if both exprl and expr2 are true.
exprl —o expr2
True if either exprl or expr2 is true.

test and [evaluate conditional expressions using a set of rules based on the number of
arguments.

0 arguments
The expression is false.

1 argument
The expression is true if and only if the argument is not null.

2 arguments
If the first argument is !, the expression is true if and only if the second argument
is null. If the first argument is one of the unary conditional operators listed
above under CONDITIONAL EXPRESSIONS, the expression is true if the unary
test is true. If the first argument is not a valid unary conditional operator, the
expression is false.

3 arguments
If the second argument is one of the binary conditional operators listed above
under CONDITIONAL EXPRESSIONS, the result of the expression is the result of
the binary test using the first and third arguments as operands. If the first argu-
ment is !, the value is the negation of the two-argument test using the second and
third arguments. If the first argument is exactly (and the third argument is
exactly), the result is the one-argument test of the second argument. Otherwise,
the expression is false. The —a and —o operators are considered binary operators
in this case.

4 arguments
If the first argument is !, the result is the negation of the three-argument expres-
sion composed of the remaining arguments. Otherwise, the expression is parsed
and evaluated according to precedence using the rules listed above.

52 2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

5 or more arguments
The expression is parsed and evaluated according to precedence using the rules
listed above.

times Print the accumulated user and system times for the shell and for processes run from the
shell. The return status is 0.

trap [-1p] [arg] [sigspec ...]

The command arg is to be read and executed when the shell receives signal(s) sigspec. If
arg is absent or —, all specified signals are reset to their original values (the values they
had upon entrance to the shell). If arg is the null string the signal specified by each
sigspec is ignored by the shell and by the commands it invokes. If arg is not present and
—p has been supplied, then the trap commands associated with each sigspec are dis-
played. If no arguments are supplied or if only —p is given, trap prints the list of com-
mands associated with each signal number. Each sigspec is either a signal name defined
in <signal.h>, or a signal number. If a sigspec is EXIT (0) the command arg is executed on
exit from the shell. If a sigspec is DEBUG, the command arg is executed after every simple
command (see SHELL GRAMMAR above). If a sigspec is ERR, the command arg is executed
whenever a simple command has a non—zero exit status. The ERR trap is not executed if
the failed command is part of an until or while loop, part of an if statement, part of a &&
or [(Mlist, or if the command’s return value is being inverted via !. The —I option causes
the shell to print a list of signal names and their corresponding numbers. Signals ignored
upon entry to the shell cannot be trapped or reset. Trapped signals are reset to their orig-
inal values in a child process when it is created. The return status is false if any sigspec is
invalid; otherwise trap returns true.

type [—aftpP] name [name ...]

With no options, indicate how each name would be interpreted if used as a command
name. If the —t option is used, type prints a string which is one of alias, keyword, function,
builtin, or file if name is an alias, shell reserved word, function, builtin, or disk file, respec-
tively. If the name is not found, then nothing is printed, and an exit status of false is
returned. If the —p option is used, type either returns the name of the disk file that would
be executed if name were specified as a command name, or nothing if type -t name
would not return file. The —P option forces a PATH search for each name, even if type -t
name would not return file. If a command is hashed, —p and —P print the hashed value,
not necessarily the file that appears first in PATH. If the —a option is used, type prints all
of the places that contain an executable named name. This includes aliases and functions,
if and only if the —p option is not also used. The table of hashed commands is not con-
sulted when using —a. The —f option suppresses shell function lookup, as with the com-
mand builtin. type returns true if any of the arguments are found, false if none are
found.

ulimit [-SHacdflmnpstuv [limit]]

Provides control over the resources available to the shell and to processes started by it, on
systems that allow such control. The —H and —S options specify that the hard or soft
limit is set for the given resource. A hard limit cannot be increased once it is set; a soft
limit may be increased up to the value of the hard limit. If neither —H nor S is specified,
both the soft and hard limits are set. The value of limit can be a number in the unit speci-
fied for the resource or one of the special values hard, soft, or unlimited, which stand for
the current hard limit, the current soft limit, and no limit, respectively. If limit is omitted,
the current value of the soft limit of the resource is printed, unless the —H option is given.
When more than one resource is specified, the limit name and unit are printed before the
value. Other options are interpreted as follows:

-a All current limits are reported

—C The maximum size of core files created

-d The maximum size of a process’s data segment
-f The maximum size of files created by the shell

-1 The maximum size that may be locked into memory

-m The maximum resident set size

-n The maximum number of open file descriptors (most systems do not allow this
value to be set)

GNU Bash-2.05b 2002 July 15

BASH(1) BASH(1)

-p The pipe size in 512-byte blocks (this may not be set)

-s The maximum stack size

-t The maximum amount of cpu time in seconds

-u The maximum number of processes available to a single user
Y The maximum amount of virtual memory available to the shell

If limit is given, it is the new value of the specified resource (the —a option is display
only). If no option is given, then —f is assumed. Values are in 1024-byte increments,
except for —t, which is in seconds, —p, which is in units of 512-byte blocks, and —n and
—u, which are unscaled values. The return status is 0 unless an invalid option or argu-
ment is supplied, or an error occurs while setting a new limit.

umask [—p] [-S] [mode]

The user file-creation mask is set to mode. If mode begins with a digit, it is interpreted as
an octal number; otherwise it is interpreted as a symbolic mode mask similar to that
accepted by chmod(1). If mode is omitted, the current value of the mask is printed. The
—S option causes the mask to be printed in symbolic form; the default output is an octal
number. If the —p option is supplied, and mode is omitted, the output is in a form that
may be reused as input. The return status is 0 if the mode was successfully changed or if
no mode argument was supplied, and false otherwise.

unalias [-a] [name ...]
Remove each name from the list of defined aliases. If —a is supplied, all alias definitions
are removed. The return value is true unless a supplied name is not a defined alias.

unset [-fv] [name ...]

For each name, remove the corresponding variable or function. If no options are sup-
plied, or the —v option is given, each name refers to a shell variable. Read-only variables
may not be unset. If —f is specifed, each name refers to a shell function, and the function
definition is removed. Each unset variable or function is removed from the environment
passed to subsequent commands. If any of RANDOM, SECONDS, LINENO, HISTCMD,
FUNCNAME, GROUPS, or DIRSTACK are unset, they lose their special properties, even if
they are subsequently reset. The exit status is true unless a name does not exist or is read-
only.

wait [n]
Wait for the specified process and return its termination status. n may be a process ID or
a job specification; if a job spec is given, all processes in that job’s pipeline are waited for.
If nis not given, all currently active child processes are waited for, and the return status is
zero. If n specifies a non-existent process or job, the return status is 127. Otherwise, the
return status is the exit status of the last process or job waited for.

RESTRICTED SHELL
If bash is started with the name rbash, or the —r option is supplied at invocation, the shell
becomes restricted. A restricted shell is used to set up an environment more controlled than the
standard shell. It behaves identically to bash with the exception that the following are disal-
lowed or not performed:

- changing directories with cd

- setting or unsetting the values of SHELL, PATH, ENV, or BASH_ENV

- specifying command names containing /

- specifying a file name containing a/ as an argument to the . builtin command

- Specifying a filename containing a slash as an argument to the —p option to the hash
builtin command

- importing function definitions from the shell environment at startup

- parsing the value of SHELLOPTS from the shell environment at startup

- redirecting output using the >, >], <>, >&, &>, and >> redirection operators

- using the exec builtin command to replace the shell with another command

54 2002 July 15 GNU Bash-2.05b

BASH(1) BASH(1)

- adding or deleting builtin commands with the —f and —d options to the enable builtin
command

- Using the enable builtin command to enable disabled shell builtins

- specifying the —p option to the command builtin command

- turning off restricted mode with set +r or set +o restricted.

These restrictions are enforced after any startup files are read.

When a command that is found to be a shell script is executed (see COMMAND EXECUTION
above), rbash turns off any restrictions in the shell spawned to execute the script.

SEE ALSO

FILES

Bash Reference Manual, Brian Fox and Chet Ramey

The Gnu Readline Library, Brian Fox and Chet Ramey

The Gnu History Library, Brian Fox and Chet Ramey

Portable Operating System Interface (POSIX) Part 2: Shell and Utilities, IEEE
sh(1), ksh(1), csh(1)

emacs(1), vi(1)

readline(3)

/bin/bash

The bash executable
Jetc/profile

The systemwide initialization file, executed for login shells
"/.bash_profile

The personal initialization file, executed for login shells
"/.bashrc

The individual per-interactive-shell startup file
"/.bash_logout

The individual login shell cleanup file, executed when a login shell exits
“l.inputrc

Individual readline initialization file

AUTHORS

Brian Fox, Free Software Foundation
bfox@gnu.org

Chet Ramey, Case Western Reserve University
chet@ins.CWRU.Edu

BUG REPORTS

If you find a bug in bash, you should report it. But first, you should make sure that it really is a
bug, and that it appears in the latest version of bash that you have.

Once you have determined that a bug actually exists, use the bashbug command to submit a bug
report. If you have a fix, you are encouraged to mail that as well! Suggestions and ‘philosophi-
cal’ bug reports may be mailed to bug-bash@gnu.org or posted to the Usenet newsgroup
gnu.bash.bug.

ALL bug reports should include:

The version number of bash

The hardware and operating system

The compiler used to compile

A description of the bug behaviour

A short script or ‘recipe’ which exercises the bug

bashbug inserts the first three items automatically into the template it provides for filing a bug
report.

Comments and bug reports concerning this manual page should be directed to
chet@ins.CWRU.Edu.

GNU Bash-2.05b 2002 July 15

55

BASH(1) BASH(1)

BUGS
It’s too big and too slow.

There are some subtle differences between bash and traditional versions of sh, mostly because of
the POSIX specification.

Aliases are confusing in some uses.
Shell builtin commands and functions are not stoppable/restartable.

Compound commands and command sequences of the form ‘a ; b ; ¢’ are not handled gracefully
when process suspension is attempted. When a process is stopped, the shell immediately exe-
cutes the next command in the sequence. It suffices to place the sequence of commands between
parentheses to force it into a subshell, which may be stopped as a unit.

Commands inside of $(...) command substitution are not parsed until substitution is attempted.
This will delay error reporting until some time after the command is entered.

Array variables may not (yet) be exported.

56 2002 July 15 GNU Bash-2.05b

