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Quantum Computing

Lecture 1

Anuj Dawar

Bits and Qubits
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What is Quantum Computing?

Aim to use quantum mechanical phenomena that have no classical

counterpart for computational purposes.

Central research tasks include:

• Building devices — with a specified behaviour.

• Designing algorithms — to use the behaviour.

Mediating these two are models of computation.
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Bird’s eye view

A computer scientist looks at Quantum Computing:

Algorithmic Languages

Theory/complexity

System Architecture

Specified Behaviour

Physics

Dragons
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Why look at Quantum Computing?

• The world is quantum

– classical models of computation provide a level of

abstraction

– discrete state systems

• Devices are getting smaller

– Moore’s law

– the only descriptions that work on the very small scale are

quantum

• Exploit quantum phenomena

– using quantum phenomena may allow us to perform

computational tasks that are not otherwise possible/efficient

– understand capabilities/resources
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Course Outline

A total of eight lecturers, delivered by two lecturers:

1. Bits and Qubits — AD (this lecture).

2. Linear Algebra — AD

3. Quantum Mechanics — BCT

4. Models of Computation — AD

5. Search Algorithms — BCT

6. Factorisation — BCT

7. Implementation — BCT

8. Complexity — AD
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Useful Information

Some useful books:

• Nielsen, M.A. and Chuang, I.L. (2000). Quantum Computation

and Quantum Information. Cambridge University Press.

• Gruska, J. (1999). Quantum Computing. McGraw Hill.

• Kitaev, A.Y., Shen, A.H. and Vyalyi, M.N. (2002). Classical

and Quantum Computation. AMS.

Course website:

http://www.cl.cam.ac.uk/Teaching/current/QuantComp/

Supervisions/Example Classes.
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Bits

A building block of classical computational devices is a two-state

system.

0 ←→ 1

Indeed, any system with a finite set of discrete, stable states, with

controlled transitions between them will do.
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Qubits

Quantum mechanics tells us that any such system can exist in a

superposition of states.

In general, the state of a quantum bit (or qubit for short) is

described by:

α|0〉+ β|1〉
where, α and β are complex numbers, satisfying

|α|2 + |β|2 = 1
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Qubits

PSfrag replacements

|0〉

|1〉

α

β α|0〉+ β|1〉

A qubit may be visu-

alised as a unit vector

on the plane.

In general, however,

α and β are complex

numbers.
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Measurement

Any attempt to measure the state

α|0〉+ β|1〉

results in |0〉 with probability |α|2, and |1〉 with probability |β|2.

After the measurement, the system is in the measured state!

That is, further measurements will always yield the same value.

We can only extract one bit of information from the state of a

qubit.
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Measurement

α|0〉 + β|1〉 and α|0〉 − β|1〉 have

the same probabilities for their

measurement

However, they are distinct states

which behave differently in terms

of how they evolve.

PSfrag replacements

|0〉

|1〉

α

β α|0〉+ β|1〉

α|0〉 − β|1〉
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Vectors

Formally, the state of a qubit is a unit vector in C2—the

2-dimensional complex vector space.

The vector


 α

β


 can be written as

α|0〉+ β|1〉

where, |0〉 =


 1

0


 and |1〉 =


 0

1


.

|φ〉— a ket, Dirac notation for vectors.



13

Basis

Any pair of vectors |φ〉, |ψ〉 ∈ C2 that are linearly independent

could serve as a basis.

α|0〉+ β|1〉 = α′|φ〉+ β′|ψ〉

The basis is determined by the measurement process or device.

Most of the time, we assume a standard (orthonormal) basis |0〉
and |1〉 is given.

This will be called the computational basis
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Example

The vector

[
1√
2

1
/

√
2

]
measured in the computational basis gives

either outcome with probability 1/2.

Measured in the basis



1√
2

1√
2


 ,




1√
2

−1√
2




it gives the first outcome with probability 1.
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Entanglement

An n-qubit system can exist in any superposition of the 2n basis

states.

α0|000000〉+ α1|000001〉+ · · ·+ α2n−1|111111〉

with
∑2n−1
i=0 |αi|2 = 1

Sometimes such a state can be decomposed into the states of

individual bits

1

2
(|00〉+ |01〉+ |10〉+ |11〉) =

1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉)
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Entanglement

Compare the two (2-qubit) states:

1√
2

(|00〉+ |01〉) and
1√
2

(|00〉+ |11〉)

If we measure the first qubit in the first case, we see |0〉 with

probability 1 and the state remains unchanged.

In the second case (an EPR pair), measuring the first bit gives |0〉
or |1〉 with equal probability. After this, the second qubit is also

determined.


