

Java Tick 4
Alan Blackwell – March 2004

This tick comes from chapter 10 of the BlueJ book (the foxes-and-rabbits project).

Make your own copy of the project directory foxes-and-rabbits-v1 and open it in BlueJ. The first group
of exercises involves exploring the functionality and behaviour of the foxes-and-rabbits simulation, and
assessing the effect of changing the simulation parameters in various ways.

Explore the foxes-and-rabbits-v1 simulation as described in exercises 10.1 – 10.19. You do not
need to wait for many long simulation runs, unless you are particularly interested in the behaviour of
simulation programs.

The second group of exercises involves refactoring the simulation code, to produce a better-designed class
structure, and allow a variety of extensions.

Identify the similarities and differences between the Fox and Rabbit classes, and create an Animal
superclass as described in exercises 10.20 – 10.29. If you are unsure, at the end of these exercises,
whether your work has resulted in a correctly defined Animal class, you may compare your result to
the foxes-and-rabbits-v2 project.

Learn more about the relationship between superclasses and subclasses by working through exercises
10.30 – 10.34, then create a new kind of animal by extending Animal (10.35).

Refactor your solution further, introducing an Actor class (10.36 – 10.37). Define a new type of actor
that behaves differently from animals (10.38). You may implement a Hunter class as described in the
BlueJ book, or invent a completely new kind of actor if you like.

Implement the SimulatorView interface, AnimatedView and TextView, following the suggestions
in exercises 10.39 – 10.41.

For your tick assessment, run your enhanced simulation (including the new Animal and Actor types), and
capture the output produced by both kinds of SimulatorView. Capture the window containing the
AnimatedView, and print this using the import command as in the second tick. Capture the text output from
TextView as follows: Start the emacs editor. Use the mouse to select the text in the BlueJ output window, and
copy it. “Yank” (paste) the text in emacs. Save the resulting text to a temporary file. Print the temporary file
using lpr, then delete it.

Java Tick 5

This tick comes from chapter 11 of the BlueJ book (the address-book project).

Copy the six different projects in the address-book family from the PWF BlueJ directory. These are nested
within a single directory called address-book-family. If you use the cp -r command as in previous
exercises, it will copy all nested directories to your local space.

Explore and compare the address-book-v1g and address-book-v1t projects (exercises 11.1-
11.6). Investigate the circumstances in which these projects are subject to null pointer errors (11.7,
11.10, 11.11, 11.12). Contrast the approach taken in the address-book-v2g and address-book-
v2t projects (11.13 – 11.15). Make a new copy of the address-book-v2t project, and modify it to
provide failure information to a client (exercise 11.17).

Review all the methods of the AddressBook class and add checks and throw statements for the
IllegalArgumentException (11.22). Add javadoc documentation to describe exceptions thrown
by its methods (11.23).

Enhance the address-book-v3t project to throw and handle exceptions (11.24, 11.25). Handle
checked and unchecked exceptions in different catch clauses (11.26). Define a new checked exception
DuplicateKeyException, modifying the project to report and catch it wherever necessary (11.27).

For your tick assessment, print out the source code, and the javadoc documentation, for the AddressBook
class, showing your use of the IllegalArgumentException and DuplicateKeyException [PTO].

Investigate the file input and output in the address-book-io project (section 11.8 of the BlueJ
book). Adapt what you have learned (reusing code from the address-book-io project), to enhance
the tech-support project that you created in the third ticked exercise. Modify that project so that it
reads key words and responses from a text file (exercise 11.29). Make a further modification so that it
writes a log-file recording user input. Look for a Java library class that can be used to include the time
of day with each user interaction recorded in this log file. Implement a regression testing facility
(review pages 150-154 in the BlueJ book) that simulates user input by reading it in from a previously
recorded log file, and then compares the system response to the expected response as recorded in the
log file.

For your tick assessment, print out a copy of the log file that you recorded and used for regression testing, and
the source code of the regression testing class.

Java Tick 6

This tick comes from chapters 7 and 9 of the BlueJ book (the zuul project).

Beware – developing this kind of adventure game can be addictive! Spend just enough time at each
development step that you learn the Java point being made, but don’t spend too much time creating elaborate
game scenarios with large amounts of text.

Explore the two zuul projects, and think about an adventure scenario that might be more entertaining
(exercises 7.1 – 7.4). Using either the original, or your own scenario if you prefer, refactor and extend
the functionality of the game (exercises 7.5 – 7.18, then 7.20 – 7.26).

Implement the extensions described in exercises 7.29 – 7.34. Add a transporter room (7.38), but do
this using inheritance as described in chapter 9 (exercises 9.9 – 9.11).

If you have time and interest (and in return for a starred tick), implement more of the extensions
described in exercises 7.35 – 7.41.

Modify your game so that it can be executed from the command line without using BlueJ (exercises
7.45 and 7.46).

For your tick assessment, copy the text of an interaction session (or run the session from emacs shell mode),
save it to a file, and print it out. Print the source code of the class used to implement your transporter room.
Use emacs to create a file containing extracts of code illustrating how the transporter room is used by other
classes, and print this out.

Java Tick 7

This tick is loosely based on chapters 12 and 13 of the BlueJ book (design case study).

Design a timetable system for the Cambridge Computer Science Tripos. The system should read a timetable in
the format of the concise lecture list summary (see $CLTEACH/afb21/bluej/examples/lectlist.txt),
and provide operations to query and modify that timetable in useful ways. Modified versions can be saved by
the user in the format of the original list. Students can use the system to query their commitments at particular
times, or to generate a personalised timetable, in a more readable format (perhaps HTML), listing only their
own lectures.

Complete the above specification, clarifying the system behaviour in a set of use case scenarios.
Analyse and design the classes using the CRC method (you may work with a partner at this stage).

Implement and test the system, first calling methods directly from the BlueJ interface, then with a
command line interface running independently of BlueJ (you may like to adapt the command
processor from the zuul project). For a starred tick, make a graphical user interface and run your
application as an applet.

For your tick assessment, draw a UML class diagram for your design, including the sections in each class that
list fields and method signatures. Print out the source code of the class you consider most interesting. Provide
sample output showing the personalised timetable, and either a sequence of commands, or a screen capture
showing your applet executing.

