
Introduction to Functional Programming

Lent 2004
Suggested Exercises 3

1. Sequences

Define a function that takes a sequence (a lazy list) of integers, and produces a
sequence containing the sums of adjacent pairs. So, the list [x1, x2, x3, x4, . . .]
would be mapped to [x1 + x2, x3 + x4, . . .].

2. Lazier Lists

The following datatype provides an alternative implementation of lazy lists
to the one given in the lectures. It avoids the unnecessary computation of
the first element, when it is not required.

datatype ’a seq = Nil

| Cons of unit -> ’a * ’a seq;

Modify the functions hdq, tlq, from and take to work with this datatype.

Repeat Question 1 for this datatype.

3. Structural Induction

Prove the following identities by induction on lists.

(map f) ◦ reverse = reverse ◦ (map f)

foldr(op ::)l1l2 = l2@l1

Write a function mirror that produces the mirror image of a binary tree,
i.e. the tree obtained by interchanging (recursively) the left and right child
of every node.
Prove, by induction on trees, that reflect(reflectt) = t.

1


