
Remote Procedure Call (RPC)

component of distributed application

RPC service:
 routines which "marshal" (flatten) data
 naming and name-to-location binding
 request-response protocol

OS comms
interface

ISO levels

Application

Presentation

Session

Transport
Network
Datalink
Physical

examples: Mayflower/CCLU RPC, SUN RPC, ANSA RPC, MSRPC
 Xerox Courier over XNS (SPP, Ethernet)
 ISO-ODP, OSF DCE

C-1

RPC Request-Reply Acknowledge (RRA) protocol

S

C client timer

server times

RPC SERVICE

marshall arguments
generate RPC-ID
set timer for reply
send message

unmarshall arguments
send ACK
return to CALLER

OS
COMMS

C

CALLER

call(..)

RPC SERVICE

unmarshall arguments
note RPC-ID
call procedure

marshall results
set timer for ACK
send REPLY

OS
COMMS

S

CALLED
PROCEDURE

return

NETWORK

client server

C-2

RPC semantics

recall that client, server and network may be congested or may fail independently of each other
 (fundamental property of Distributed Systems)

RPC systems may offer AT MOST ONCE or EXACTLY ONCE semantics

if the client timer expires:

 exception return to the application
 it is likely to repeat the call but this is not detectable
 i.e. it will have a new RPC-ID

EXACTLY ONCE semantics:
retry a few times
RPC-ID means that the server can detect repeats
if no reply, exeption return to client

AT MOST ONCE semantics:

if the server timer expires:

resend results
RPC-ID means that the client can detect repeats

S

C

C-3

RPC SERVICE

marshall arguments
generate RPC-ID
set timer for reply
send message

unmarshall arguments
send ACK
return to CALLER

OS
COMMS

C

CALLER

call(..)

RPC SERVICE

unmarshall arguments
note RPC-ID
call procedure

marshall results
set timer for ACK
send REPLY

OS
COMMS

S

CALLED
PROCEDURE

return

NETWORK

client server

RPC client crash

results are sent to crashed machine, are not acknowledged, and server timer S expires repeatedly on resend

persistent state may have been changed by the procedure call - should this be handled by RPC service?

NO - application-level transaction semantics (commit/abort) should be used.

C-4

RPC SERVICE

marshall arguments
generate RPC-ID
set timer for reply
send message

unmarshall arguments
send ACK
return to CALLER

OS
COMMS

C

CALLER

call(..)

RPC SERVICE

unmarshall arguments
note RPC-ID
call procedure

marshall results
set timer for ACK
send REPLY

OS
COMMS

S

CALLED
PROCEDURE

return

NETWORK

client server

RPC server crash

The server fails at some stage during the call. Results are not sent and the client timer C expires repeatedly

persistent state may or may not have been changed by the procedure call - should this be handled by RPC service?

NO - application-level transaction semantics (commit/abort) should be used.

C-5

?

Integration of Programming Languages and RPC (1)

* some early RPC systems aimed for complete distribution transparency
e.g. Xeroc PARC, Mesa language, Courier RPC
a preprocessor detects which calls are not to local procedures
and replaces them by calls to RPC support

problem of incorrect procedure names that don’t exist anywhere
problem of call semantics for some arguments

* Cambridge Mayflower system, CCLU RPC - made distribution explicit
the compiler was changed
different syntax for definition and call of procedures that can be called remotely
BUT - this was still for a single language, CCLU

C-6

some RPC systems restricted the argument types
 e.g. SUN RPC: C base-types only

CCLU RPC: most types including procedure names defined since developer supplies
 marshalling and unmarshalling routines for constructed types (recursive descent)

* ANSA RPC, was initially developed for C
 but later also supported C++ and Modula3 - a very early heterogeneous system

- defined a Distributed Programming Language (DPL)
- DPL statements are embedded in the programming language, and tagged
- a preprocessor detects these statement, replaces them with calls to RPC service

All RPC systems automatically generate marshalling and unmarshalling routines to flatten
call and return arguments into packet format suitable for transmission, and unpack them on receipt.
These routines are programming-language-specific.

Integration of Programming Languages and RPC (2)
C-7

* the standard approach (ANSA, ISO-ODP, OSF-DCE), O-O platforms

- define an Interface Definition Language (IDL)
- provide mappings for programming language’s type systems onto IDL

Now assume that we wish to support a number of different programming languages,
i.e. components written in different languages can interoperate

- (internally) define the transfer syntax for IDL types

- IDL compilers generate marshalling and unmarshalling routines
 appropriate for the programming languages involved.

 (CORBA calls the invoker’s marshalling routine a STUB
 and the invoked object’s unmarshalling routine a SKELETON)

Integration of Programming Languages and Middleware

* how do platforms that support objects and object invocation differ from the RPC schemes described above?

Externally invocable objects must be registered with the platform,
an object-ID is returned (and may be recorded in a name service)
The object becomes known globally and may be invoked remotely
Object-IDs are first-class values which may be passed as arguments

C-8

(as above for IDL and STUB/SKELETON generation)

RPC systems name and identify interfaces and procedures

e.g. ANSA IDL has base and constructed data types and the InterfaceRef type,
 an instance of which is a reference to a loaded and running instance of a service’s interface

O-O systems name and invoke objects

