Chapter 23 p. 713

28

The World-Wide Web

28.1
A simple web-client, web-server interaction

28.2
Naming web pages

28.3
Communication using HTTP

28.4
Document representation

28.5
Executing programs at the client and server

24.6 Security

24.7 Concurrency control

28.8
Scalability issues

28.9
Web-based middleware: XML and SOAP

28.10
Summary

The Internet has existed in one form or another for decades, based on research in packet switching in the 1960s. Donald Davies of the National Physical Laboratory, UK, conceived the idea in 1965, coined the term “packet switching” in 1966 and led a team that built a packet-switched network. The Internet, as we know it today, has grown gradually since that time.

The World-Wide Web (henceforth ‘the Web’) came into use in the early 1990s and has grown into the most popular and widely used distributed system. Non-specialists often confuse the Internet and the Web since the Web is their only experience of network-based systems. The approach originated from CERN as a network-based hypertext system for nuclear physicists. The requirement was to share documents of various types across networked computers and the innovation was to combine hypertext and networking, using a simple protocol HTTP (Hypertext Transfer Protocol) above TCP. The development of the Mosaic browser for the Web in 1993 led to the Web’s popular acceptance and extraordinary rate of growth. Mosaic was developed by Mark Andreeson, a student at the University of Illinois at Urbana-Champagne, while working for the NCSA (National Center for Supercomputing Applications). He left NCSA in 1994 and formed a company with Jim Clark which later became known as the Netscape Communications Corporation.

In this Chapter we first outline the system components involved in a simple interaction between a web client and a web server. As for all distributed systems, naming, location and the communications protocol must be defined. We then go on to describe how the Web has evolved to provide more sophisticated facilities.

Web developments are initiated and controlled by the World Wide Web Consortium (W3C), a collaboration between CERN and MIT. Its home page is http://www.w3.org/ . A recent trend in system design has been to use the Web paradigm for the user interface to distributed systems in general. A remarkably general acceptance of this approach is emerging and we mention some of the W3C standards on which this approach is based.

To find more information about any of the topics in this chapter try using a web search engine, such as Google, to find an introductory tutorial or a standard document. There is a wealth of material about the Web on the Web.

28.1 A simple web-client, web-server interaction

The simplest way for a web service to operate is to deliver web pages on demand from clients. Figure 28.1 gives the overall architecture. This section gives an overview of the required naming, location and communication to make this happen together with an introduction to web server organization, document markup and display.

(Figure 28.1 near here)
Figure 28.1 Architecture of a client-server interaction

Web pages are documents which may take a variety of forms. They may be simple ascii text, pdf or postscript but more usually are marked up according to a document standard. Document markup standards were of interest many years before the Web was developed. The SGML (Standard Generalised Markup Language) ISO standard (8879) of the mid 1980s is widely used in electronic publishing. Web browsers have to display documents, that is, their format and style of display must be specified for the browser to implement. HTML (HyperText Markup Language) avoided the complexity of SGML and started off as a simple markup language focussing on format and display as well as document structure. More advanced features have been added over the years.

As well as defining a document’s structure and how it should be displayed HTML supports active links to other documents, so-called hyperlinks. Clicking on such a link initiates another interaction to get another document; in the case of the Web, another web page from a web server. Later, W3C defined XML (Extensible Markup Language) which is a subset of SGML and is concerned not with display but with general document structure. Web documents are discussed further in Section 28.4, in particular we need to consider how users can interact with web pages.
A web server delivers web pages to clients on demand. A web page is a document that is stored as a file. The file system maintained by the web server contains the whole website.

The web server and associated file system are available publically, even though they may be located behind a firewall. As we saw in Chapter 8, this is achieved by using a well-known address and port, port 80 at the server’s IP address, on which the server listens. Packets destined for this address are allowed through the firewall.

Like any shared file service, a web server holds pages that are owned by individuals and pages that belong to groups or projects. Let us first assume that each web page has a single owner or manager who is the only principal with write-access to the page. The page is published by making it available as a file in the Web server’s filing system. All the world may then read the page by requesting it to be fetched from the Web server and displayed in the client’s browser. It is possible to restrict access to web pages and this will be covered in Section 28.6. In order to access a page a client must know, or be able to find out, its name and location. A protocol must be followed for requesting and transmitting a page. The communication protocol for this purpose HTTP (HyperText Transfer Protocol) is described in Section 28.3.

The most common form of a web page name is a URL (Uniform Resource Locator). A URL is a concatenation of the Web server’s DNS address, the pathname of the file containing the required web page in the Web server’s filing system, and the access protocol to be used to request and transfer it. Notice that both naming and location are embodied in a URL, that is, it is a location-dependent name. For example, the University of Cambridge Computer Laboratory maintains a web server and the top level or home page is accessed via the URL http://www.cl.cam.ac.uk . The DNS address is cl.cam.ac.uk. Following the Research path through the filing system we find http://www.cl.cam.ac.uk/Research/SRG/opera. We discuss naming for the Web more fully in Section 28.2.

Directory services are the standard approach for finding out about the existence of objects in distributed systems. Directory services exist for the Web, at dedicated websites, for example, a national directory of universities, but the most common approach is to use a search engine such as Google or Alta Vista. Here again we are seeing the expertise of a different community (Information Retrieval) incorporated into a world-wide distributed system. Web users commonly bookmark the URLs of sites of interest, thus creating their personal name cache.

When a web page arrives at a browser it must detect the document type and display the page. The browser may need to use a program such as acroread or ghostview to display pdf or postscript respectively. The browser usually causes a new window to pop up with such displays. Simple ascii text is displayed directly in the browser’s window. HTML documents are displayed in the browser’s window by following the HTML instructions. Some document components may not be embedded in the marked up document but may be in a separate file, for example, images, audio and video. These have to be fetched in separate interactions with the Web server. Active hypertext links have to be specially indicated.

We now give more detail of items introduced in the above overview. We then go on to show how more sophisticated web interactions, involving the execution of programs at the server and at the client, are supported and discuss the issues raised, such as protection of the clients’ host systems from such programs.

28.2 Naming documents

The Web is a very large scale distributed system comprising many millions of documents stored at a large number of servers. The entities in a distributed system must be named uniquely and, as we saw in Chapter 7, there are well-known methods of designing a namespace and achieving unique names. The Web uses a naming scheme which covers all kinds of documents, including books as well as web pages, called Uniform Resource Identifiers (URIs). One form of URI is a hierarchical, location-dependent name called a Uniform Resource Locator (URL). The other form of URI is a Uniform Resource Name (URN) .
A URL is built around the DNS name of the server which holds the document. An example is:

http://www.cl.cam.ac.uk/Research/SRG/opera/publications

cl.cam.ac.uk is the DNS name of the University of Cambridge Computer Laboratory and effectively indicates the root of the Website. Research/SRG/opera/publications is one path through the Website. The URL starts by selecting the protocol to be used, in this case HTTP.

URLs have the general structure: Scheme :// host name:port / pathname at host. The scheme indicates how to access a document, for example via the HTTP protocol, via ftp or as a local file which may or may not not be stored at a public website. The host name may take the form of a DNS address or an IP address. If the port is omitted a default is used; port 80 is the usual convention. Other uses of URLs are possible such as for setting up telnet (a remote login protocol) or modem connections.

The other form of URI, a URN, is again globally unique but this time is a location independent and persistent name for a document. A URN may be used for documents such as books and standards which are defined independently of website document hierarchies. The structure of a URN is:

URN: name-space-identifier: document identifier within namespace

For example, for a book we might have: URN: ISBN: 0-201-17767-6

As we saw in Chapter 7, directory services are needed to resolve names and bind them to locations. This is easy for a URL in that the already existing DNS directory structure, see Section 7.7.3, is used to locate the Web server and a pathname within the server to locate the document. There is as yet no supporting directory structure for locating documents named only by a URN. Notice that a URN has a flat, rather than a hierarchical, namespace.

We also saw in Chapter 7 that using a hierarchical name makes it difficult to move an object. This is certainly true for web documents. When the owner renames a document, perhaps by reorganising a directory structure, thus changing its pathname, the old pathname may lead to nothing, causing an “error 404” message to be displayed, or the owner may replace it with a page indicating its new location and perhaps including a hyperlink to it. Web services have no responsibility for such dangling references – the problem is left for solution by the user. There may be many bookmarked copies of a URL and many hyperlinks embedding it in web pages and a judgement has to be made on how long to maintain a forward pointer at its old location to its new one.

28.3 Communication using HTTP

Communication between web browsers and web servers is via HTTP (Hypertext Transfer Protocol). The first version of HTTP, defined in 1990 at CERN, was a simple client-server protocol, a synchronous invocation, to the server, in which a client sends a request message to the server and awaits a response message. This version was for the transfer of raw data, the next version HTTP 1.0 allowed MIME (Multipurpose Internet Mail Extensions) types to be specified and transferred, see Section 28.4. The most recent version is HTTP 1.1, decribed in the WC3’s request for comment document RFC2616.

HTTP is an application-level protocol built above TCP which is connection-oriented and reliable, see Section 3.9 and Figures 3.22 and 3.28. Figure 28.1 shows the overall architecture of a web client-server interaction. The early versions of HTTP were extremely inefficient, setting up a new TCP connection for every client request, server response interaction. A document typically contains embedded documents held as separate files at the server. For example, a web page containing text and several images would require an HTTP connection to fetch the HTML page and a further connection when the browser, on processing the page for display, found each image specification. This approach made transfers very slow. More recent versions allow a TCP connection to persist between a web-client and server – the way TCP is supposed to be used. Also, instead of waiting for the response to a message before issuing another request message a client may now issue a number of successive request messages. It is therefore now much faster to display a document implemented as several files. HTTP is however stateless at the application level and does not expect a server to maintain information on clients with open TCP connections.

The most commonly used HTTP request messages are:

HEAD

Request to return the header of a document

GET

Request to return a document to the client

PUT

Request to store a document under some filename

POST

Request to add a document to a collection such as a newsgroup

DELETE
Request to delete a document

All communication takes the form of request messages from client to server and response messages from server to client. The detailed format of these messages can be found in tutorials, standards and web development.

28.4 Document representation

An HTML document is a tree of elements, including a head and body which includes headings, paragraphs, lists, etc. Embedded in the document specification is formatting detail such as text justification, the use of bold and italic text, background colour etc. The coarse structure is:

<HEAD> … the header of the document including its title:

<TITLE> Example of HTML </TITLE>

</HEAD>

<BODY> …. the document including formatting instructions ……… </BODY>

The body of the document may include, for example,

Paragraphs:
<P> …paragraph text …. </P>

Headings:
<H1> first-level heading </H1>

<H2 second level heading </H2>

Images:

Hyperlinks:
 W3C

where the text between <A ..> and , in this case W3C, is usually

displayed underlined and in blue. If the hyperlink were to be displayed

explicitly we would have:

 http://www.w3.org

Lists may be bulleted, numbered or itemized, with nested lists as required.

HTML documents may also include scripts which are executed by the client browser during the process of preparing the page for display. This takes us further than the scenario represented in Figure 28.1 since it requires the client browser to interpret and execute the embedded script. We are seeing not only a document with instructions on how to display it but also the transmission of a program as part of the Web page. When javascript is the scripting language we have:

<SCRIPT type = “text/javascript”> ……the script…………..</SCRIPT>

Web pages may also include forms of various kinds, allowing users to interact with the Web service. In a form, a user may be asked to type a response corresponding to a question; a single line might be:

Surname: <input name = surname >

A user might be presented with a list of alternatives and asked to select only one by clicking on that item. Alternatively, each element in a list may have an associated boolean response so that the user may select all items that apply by checking the associated boxes. A form may be presented to the user before a requested page is transferred, requesting authentication in the form of user name and password, thus controlling access to a web page. When a form is complete the user clicks on submit, the form is parsed and checked locally and, if correct, is transmitted to the Web server in the form of an HTTP request to get a new page. The server must process the form data and carry out the required action such as sending a new page to the user and perhaps sending an email message confirming a completed transaction. The new page may be processed by the server to include the data in the form submitted by the user. We expand on the system architecture implied by these interactions in Figure 28.2.

Forms are used widely in e-commerce, for example for selecting and purchasing airline tickets, insurance policies, goods and services in general. The information in forms may be confidential and sometimes includes financial data such as credit card details. In Section 8.6.5 we introduced the Secure Socket Layer (SSL) protocol which is widely used for protecting such transfers.

As we have seen, HTML mixes the marked up document with how it should be displayed. W3C went on to define XML (Extensible Markup Language) which is concerned only with expressing the document structure and not with how it is to be displayed. XML is compatible with, but less complex than, SGML. XML allows the document author to define arbitrarily named structures.

Document types

Web services may store and present to users many types of document, for example pdf, postscript, images, audio or video. Such document types were already defined for email attachments when the Web was designed and MIME types (Multipurpose Internet Mail Extensions) are also used for web documents. MIME defines types and subtypes. Some examples are:

Type

Subtype

text

plain

HTML

XML

application
octet-stream

postscript

PDF

image

GIF

JPEG

28.5 Executing programs at server and client

We saw above that a web page may contain a script which is executed by the client’s browser:

<SCRIPT type = “text/javascript”> ……the script…………..</SCRIPT>.

It is also possible for an HTML page to contain a script to be executed at the server side:

<SERVER type = “text/javascript”> ……the script…………..</SERVER>

The result of executing the script, but not the script itself, is sent to the client along with the rest of the document. This facility might be used to personalize a page by inserting a “welcome back” string before returning a page to a registered client. Figure 28.2 shows server-side and client-side script execution.

(Figure 28.2 near here)
Figure 28.2 Client-server interaction including script processing

We also saw in Section 28.4 that forms may be sent for users to fill in either embedded in web pages or separately, perhaps for authentication before a requested page is returned. We now explore the software architecture that supports these activities and show extensions that allow programs (applets and servlets) as well as scripts to be executed.

 Figure 28.3 shows one of the first enhancements of the basic client-server interaction shown in Figure 28.1. The non-intuitively-named Common Gateway Interface (CGI) is a protocol which defines how a web server should take user data as input, usually supplied by means of an HTML form, process it and generate HTML as output. A CGI script may be written in any language such as C or Perl. The client-side processing of the form causes the CGI program name and its input parameters to be sent to the server in the form of an HTTP GET request for a new page. The contents of the form are passed as a string of attribute, value pairs. An attribute is what was output as part of the form, the corresponding value is what the user typed in response or selected from a menu, e.g.

http://host-dnsname/path-to-cgi-program/script.cgi?name1=value1&name2=value2

This basic scheme is routinely used to download files and images as well as to invoke CGI scripts. An example of the use of a CGI program is to send the form data to an email address as well as to generate the next HTML page to send to the user.

(Figure 28.3 near here.
Figure 28.3 Client-server interaction with forms and CGI programs

The Web server causes the CGI program to be executed with these parameter values and in return expects a web page for sending on to the client. The CGI program may simply fetch the required page from storage, adding the data as appropriate, or may carry out more sophisticated page generation. Either way, the Web server has delegated the task to the CGI program and a web page is returned to it; any page generation by the CGI program is not visible to the server. CGI programs may be passed to the Web server and stored in the server’s file system along with html documents. There are obvious security concerns as the server is being asked to execute an imported program, see Section 28.6.

As well as client-side and server-side scripts it is possible to include precompiled programs in HTML pages. Programs to be executed at the client side are applets and those to be executed at the server side are servlets. Current practice is that applets and servlets are written in Java and embedded in the form of Java bytecode. Many applets are available with Java, for example one applet might be designed to play a game with the user, such as “noughts and crosses”, another might show an animation as part of a web page. Applets are executed by the client browser; servlets are executed by the Web server; the flow of control is therefore similar to that when scripts are interpreted as shown in Figure 28.2. Notice that a CGI program is executed by a separate process in a separate address space from the Web server.

28.6 Security

Access control

We have seen above that a user might have to fill in a form before being allowed to see a document. The owner of the document associates a password and a list of user names with it and typically tells collaborators by telephone or by email what their names and passwords are. They must then fill in the form with this information before seeing the document. The approach is suitable as part of the management of collaborative authoring by distributed groups. Synchronization of access is currently left to the collaborators. This control is typically carried out through a combination of README files, email and telephone. The W3C are currently turning their attention to support for collaborative authoring.

An example where the Web provides an ideal publishing forum yet where access control is important is in a conference management website, where authors submit papers for inclusion in the conference. A programme committee is responsible for reviewing the submissions and selecting the best papers for the conference. The papers and reviews are confidential documents. A selection of the papers will eventually appear in the published conference proceedings. Before the Web existed, submitted papers were typically distributed as hard copy or by email. The submissions are now made available as part of a conference website but access to them must be strictly controlled.

Secure communication of confidential data

When buying goods and services via the Web an option may be to pay online by supplying ones credit card details. This is information that must not be transmitted “in clear”; the client must be assured that the data is securely encrypted before transmission. Many other forms of data may be deemed confidential, indeed those designing questionnaires using the HTML forms facility should be aware of the need to transmit user data securely. Users are informed that a secure communication is about to take place by a notification form in which they can click to proceed or cancel. The method in common use for implementing secure communication is the Secure Socket Layer (SSL) protocol described in Section 8.6.5.

Mobile code

We have seen examples of code originating at a web server being executed by a client browser. The code might take the form of scripts or applets, both specified in the document. There is reason for concern that an erroneous or malicious script or applet might be a trojan horse and, as well as carrying out its intended function, might damage the client’s environment. For this reason, browers run in virtual machines with controlled access to the environment in which they run.

The commonly used language for writing applets is Java and applets arrive at the client browser in the form of Java bytecode which is interpreted rather than executed directly.

The interpreter functions as a controller, as part of a Java Virtual Machine in which the applet runs. Protection of the client’s environment is through controlling the objects that can be created and monitoring every I/O request. The former results from the use of a trusted class loader and forbidding an imported program from using or generating its own class loader. I/O requests to local files are almost invariably disallowed and the only network connection that may be established is to the originating server. An applet is allowed access to the graphics library and to mouse and keyboard input which are necessary for user-browser interaction.

23.7 Concurrency control
Although there are many millions of web documents they are effectively read-only over a coarse time grain. Also, web documents tend to be read by human users at browsers rather than by other software. For these reasons, web software provides very little support for concurrency control. Any problems are left for the users to solve, as discussed in Section 28.2 for name changes leaving dangling references, and in Section 28.6 for synchronization for collaborative authoring.

The single writer, multiple readers paradigm applies to web documents, but strong consistency is not enforced. An owner may make changes to a page and replace an old version with a new one at any time. Many readers may be displaying the old version of the page while the change is being made. Once the page is replaced, any subsequent requests to the Web server holding it will yield the new page. But, as we shall see below, there may be many cached copies of the old version and the new version will take time to propagate, depending on how the caches are managed.

More generally, a subtree of pages could be updated with related changes. Again, there is no support for transactional update and inconsistencies could be seen by readers. Because human users are involved, they can perceive and resolve such problems by forcing a reload of a page from its original source.

Servers must cope with a high volume of requests and each server instance must deploy multithreading. At a website with high demand there may be many server machines. Again, concurrency control is made relatively simple by the read-only nature of web pages. Because the update rate is very low, the Website data can be freely shared between threads and server machines without the need for complex locking or consistency maintenance.

28.8 Scalability issues

Web servers can come under extremely heavy load, for example when a news event breaks millions of people may turn to the Web for immediate information and images. In general, because of the scale of the Web, any website that provides a useful service may have very large numbers of client requests arriving effectively simultaneously. Designers therefore need to consider how server architectures can scale to handle large numbers of simultaneously ongoing client requests. One approach is to use server clusters, deploying a number of machines to provide the service. Another is to use mirror sites where a whole website is replicated. Users are not aware of server clusters but they are aware of the different server address components in mirrored URLs.

Because web documents are read-only over reasonably long time-frames caching is potentially effective and is widely used; that is, copies of a document are stored local to clients who have accessed it recently. A cache may be for an individual, stored in the Web browser’s cache, or for a domain such as a university department. Such a domain runs a web proxy through which all requests for web pages pass. The Web proxy passes a request for an uncached document to the external server and, when it is returned, stores the page in its own cache. The next time any client within the domain requests this page, the request is satisfied from the cache. Caches are of finite size and are managed according to a replacement algorithm such as “least recently used”. There may be caches serving larger domains, such as universities or geographical regions, forming a hierarchical caching scheme.
Web pages may change. Users may request a reload from source, using the browser reload function, but users may often be in no position to know when this is appropriate. Cache management might include measures for consistency maintenance. A simple scheme is always to ask the originating server whether the page has changed since the timestamp of the version held in the cache. Recall that one HTTP message option was GET HEADER which is used for this purpose. Although the amount of data transferred is greatly reduced by this procedure the number of interactions with the server is not. Alternative schemes are to use expiry times or to request servers to tell proxies when pages are changed. In practice cache hit rates have not been found to be very high, even for large caches, and cooperative caching is sometimes used. Here proxies are aware of each other and attempt to find a local copy of a page before going to the page-holding server.

28.9 Web-based middleware: XML and SOAP

XML generalised the simple, display-focussed document markup of HTML to give a markup language with power and flexibility, a subset of SGML. XML documents are made up of storage cells called entities which contain either parsed or unparsed data. Parsed data is made up of characters, some of which form the markup and the rest character data. Markup encodes the document’s logical structure. Users can define arbitrarily named headings and subheadings, nesting to any depth, for example:

<bank-account>
some-ID

<name> <surname>ower’s-surname</surname>

<forename>owner’s-forename </forename> </name>

etc – other account details

 </bank-account>

In contrast, in HTML the only facility is to indicate the importance of the heading, selecting from a small number of levels, and the size and boldness of the type to be used for each heading. The user is in fact creating a document type when defining an XML document. A document begins in a root or “document” entity and a well-formed document, with correct nesting, conforms to a grammar.

Each XML document has an associated document type declaration which indicates the defined markup names (the elements) and the types of their values, thus defining the document’s grammar or document type definition (DTD). The DTD may be contained in the document itself, may be in a separate document or may have both components.

We appear to have discarded the ability to indicate how a document should be displayed compared with HTML. In fact, display requirements are specified in yet another associated document written in XSL (Extensible Style Language).

For example, a DTD might contain (where #PCDATA indicates a string of characters):

<!ELEMENT student (surname, forename, course, age-at-enrolment)>

<!ELEMENT surname (#PCDATA) >

<!ELEMENT forename (#PCDATA) >

<!ELEMENT course (#PCDATA) >

<!ELEMENT age-at-enrolment (#PCDATA) >

etc …

An XML document with this DTD might contain many student records including:

<student>

<surname>Smith</surname>

<forename>John</forename>

<course> Data Structures </course>

< age-at-enrolment)>19 </age-at-enrolment)>

</student>

The Web is an existing large-scale distributed system with an inbuilt scheme for naming and location based on DNS. Users are familiar with browsers which are therefore becoming almost essential interfaces to any distributed system. Browsers can transmit and receive messages in XML and this is leading to the widespread use of XML for a variety of purposes in addition to the definition and transmission of documents.
XML is suitable for marking up documents and giving them a type. Its use in general middleware, for specifying message contents and transmitting data in messages has its pros and cons. XML is programming language independent yet can be generated from programming languages, therefore supporting the interworking of heterogeneous components. However, XML tends to express the transmitted data in external form as strings of characters. This is not ideal for transmission and is inappropriate if generalized to include storage of data in databases.

A W3C standard has been defined for the invocation of services using XML messages: the Simple Object Access Protocol (SOAP), see http://www.w3.org/TR/SOAP. SOAP is described by W3C as a lightweight mechanism for exchanging structured and typed information between peers in a decentralised distributed environment using XML.
SOAP allows any service to be wrapped so to appear as a web server to its clients.
28.10 Summary

The Internet-based World-Wide Web is an example of a large scale, widely distributed system. We studied its overall architecture and the mechanisms used for naming, location, communication, security and scalability. We saw that the commonly used names are location-dependent, built above DNS. The Web mechanisms do not address the avoidance of dangling references when the owner moves a page thus changing its name. The communications protocol HTTP is built above TCP. Its original design deficiencies, requiring a new TCP connection for every transfer involved in a composite document, were corrected in later versions thus improving on the original bad performance. The original document markup language HTML combined the specification of a document’s structure with instructions for displaying it. XML is a generalisation of HTML and a subset of SGML, the document standard ISO 8879 (ISO/IEC, 1986).

Web documents, unlike SGML-specified documents need dynamic change and interaction with users. We saw how forms can be used for this purpose, how scripts can be executed at server or browser and how applets, servlets and CGI programs are located architecturally.

The fact that the Web is concerned with delivering documents which are read-only over long periods simplifies concurrency control and makes it possible to exploit replication and caching successfully. The fact that a single owner or manager may write to a document, and this occurs infrequently, simplifies concurrency control. The Web mechanisms do not address related changes to a number of different pages being made under transaction semantics. Consistency problems are left for the application-level, the human users, to handle. The Web is larger in scale than any other distributed system and scalability mechanisms are essential. Server clusters, hierarchical caching and mirror sites are widely deployed.

Recent developments are the use of web browsers as universal interfaces to distributed systems. This has led to the use of XML being extended from document markup to message definition and transfer and even data storage. This approach may or may not come to dominate future system usage. The W3C are active in defining standards. The recently defined SOAP allows any service to be wrapped so to appear as a web server to its clients.

Exercises

27.1 What is a document markup language? What is the fundamental difference between HTML and XML?

27.2 How is the information on how to display an XML document conveyed to a browser?

27.3 How is a website managed by a server inside a firewall made available for public access?

27.4 Discuss naming with respect to the Web:

How are unique names created for documents?

What happens when a web page is moved from one directory to another?

Give examples of where caching might usefully be used?

28.5
Criticise the original design of the HTTP protocol. How has it been improved over the years?

27.6 How is user interaction added to the basic functionality of displaying a document? How is such an interaction made secure, for example, for transmitting credit card details?

27.7 How are animations made part of documents and how are they executed when the document is displayed?

27.8 Web pages typically have a multiple reader, sigle writer pattern of access. To what extent is concurrency control enforced in the Web environment?

27.9 How is potentiall heavy load on web servers managed throughout the web architecture?

27.10 utline the purpose of the SOAP protocol.

_1077438071.doc
[image: image1.png]web client machine

store

web server machine
ueer browser web server
3. excute any
== -|1-- - - 4 process page server soript - — — — — — — — -
(parae narked-up and pass resulting
Teyboard docunent, execute page to client in
and included seript Tetponse to BT 5. process ||
1. process GET request~ |
L ser input and fetch page
GET page Eron store
el el
05 /Communications 05 /Communicatiogs
page (response from server;

Figure 24.2

GET page request to server

Client-server interaction including

seript processing

