Digital Electronics (Part 2)

Computer Laboratory

Part Ia, Part II (General) and Diploma in Computer Science

Copyright © Simon Moore, University of Cambridge, Computer Laboratory, 2003

Contents

Lecture notes:

- 9 LSI components and memories
- 10 Programmable logic devices

11 Asynchronous state machines

Datasheets:

- HCMOS family characteristics
- 74HC193 (counter)
- HT6166-70 (SRAM)
- GAL16V8 (PAL)

 $\bigcirc \bullet \bullet \bigcirc$

 $\bigcirc \bullet \bullet \bullet$

Sync. FIFO: State table

current state			next state
f	Rin	Aout	f'=Ain=Rout
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Sync to Async

- the signal transition graph for our f asynchronous state machine is below
- this satisfies the STG snippets

Muller C-element

- the function f we've just created is actually a Muller C-element with one input inverted
- the C-element is a little known latch designed by Muller in the 1950s
- truth table:

inp	outs	output	
а	b	C'	
0	0	0	
0	1	С	
1	0	С	
1	1	1	

••00

0000

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Timing assumptions for async. FIFO

- the data must arrive before the request
- delay-lines (e.g. chains of inverters) are typically added in the request (Rout to Rin)

Sync. FIFO: K-map for f

- $\blacksquare f' = Rin.\overline{Aout} + f.Rin + f.\overline{Rout}$
- note:
 - glitch free function of f' if just one input changes at a time
 - the environment rules specify that just one input changes at a time
 - $\ensuremath{\bullet}$ so do we need a DFF between f' and f?
- $\bullet \bigcirc \bigcirc \bullet$

....

Gate level implementation

RS latch implementations

- we could have implemented f using an RS latch with the following input functions:
 - $\mathsf{S}=\mathsf{Rin}.\overline{\mathsf{Aout}}$
 - $\mathsf{R} = \overline{\mathsf{Rin}}.\mathsf{Aout}$
- the S input function determines the input combinations in the on-set
- the R input function determines the input combinations in the *off-set*
- for a valid asynchronous state machine:
 - the input transitions must only respond when the state is appropriate
 - the on-set and off-set should be disjoint and be implemented with glitch free functions

Supervision Work

- if n asynchronous FIFO storage elements from this lecture were connected together, how many data items could we store?
- hard problem: how could we improve the FIFO storage?
- suggested exam. questions useful for a revision supervision:
 2001 Paper 2 Questions 2 and 3
 2001 Paper 10 Question 1 parts a to e
 2002 Paper 2 Question 2
 2002 Paper 10 Question 1
- 2003 Paper 2 Questions 2 and 3
 - 2003 Paper 10 Question 1