
Complexity Theory 1

Complexity Theory

Anuj Dawar

Computer Laboratory

University of Cambridge

Lent Term 2004

http://www.cl.cam.ac.uk/Teaching/current/Complexity/

Anuj Dawar February 13, 2004

Complexity Theory 2

Texts

The main text for the course is:

Computational Complexity.

Christos H. Papadimitriou.

Introduction to the Theory of Computation.

Michael Sipser.

Other useful references include:

Computers and Intractability: A guide to the theory of

NP-completeness.

Michael R. Garey and David S. Johnson.

Structural Complexity. Vols I and II.

J.L. Balcázar, J. Dı́az and J. Gabarró.

Computability and Complexity from a Programming Perspective.

Neil Jones.
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Outline

A rough lecture-by-lecture guide, with relevant sections from the

text by Papadimitriou (or Sipser, where marked with an S).

• Algorithms and problems. 1.1–1.3.

• Time and space. 2.1–2.5, 2.7.

• Time Complexity classes. 7.1, S7.2.

• Nondeterminism. 2.7, 9.1, S7.3.

• NP-completeness. 8.1–8.2, 9.2.

• Graph-theoretic problems. 9.3
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Outline - contd.

• Sets, numbers and scheduling. 9.4

• coNP. 10.1–10.2.

• Cryptographic complexity. 12.1–12.2.

• Space Complexity 7.1, 7.3, S8.1.

• Hierarchy 7.2, S9.1.

• Protocols 12.2, 19.1–19.2.
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Complexity Theory

Complexity Theory seeks to understand what makes certain

problems algorithmically difficult to solve.

In Data Structures and Algorithms, we saw how to measure the

complexity of specific algorithms, by asymptotic measures of

number of steps.

In Computation Theory, we saw that certain problems were not

solvable at all, algorithmically.

Both of these are prerequisites for the present course.
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Algorithms and Problems

Insertion Sort runs in time O(n2), while Merge Sort is an

O(n log n) algorithm.

The first half of this statement is short for:

If we count the number of steps performed by the Insertion

Sort algorithm on an input of size n, taking the largest

such number, from among all inputs of that size, then the

function of n so defined is eventually bounded by a

constant multiple of n2.

It makes sense to compare the two algorithms, because they seek to

solve the same problem.

But, what is the complexity of the sorting problem?
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Lower and Upper Bounds

What is the running time complexity of the fastest algorithm that

sorts a list?

By the analysis of the Merge Sort algorithm, we know that this is

no worse than O(n log n).

The complexity of a particular algorithm establishes an upper

bound on the complexity of the problem.

To establish a lower bound, we need to show that no possible

algorithm, including those as yet undreamed of, can do better.

In the case of sorting, we can establish a lower bound of Ω(n log n),

showing that Merge Sort is asymptotically optimal.

Sorting is a rare example where known upper and lower bounds

match.
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Review

The complexity of an algorithm (whether measuring number of

steps, or amount of memory) is usually described asymptotically:

Definition

For functions f : IN→ IN and g : IN→ IN, we say that:

• f = O(g), if there is an n0 ∈ IN and a constant c such that for

all n > n0, f(n) ≤ cg(n);

• f = Ω(g), if there is an n0 ∈ IN and a constant c such that for

all n > n0, f(n) ≥ cg(n).

• f = θ(g) if f = O(g) and f = Ω(g).

Usually, O is used for upper bounds and Ω for lower bounds.
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Lower Bound on Sorting

An algorithm A sorting a list of n distinct numbers a1, . . . , an.

done done done done done

ai < aj?

ak < al?
ap < aq?

ar < as?.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

To work for all permutations of the input list, the tree must have at

least n! leaves and therefore height at least log2(n!) = θ(n logn).
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Travelling Salesman

Given

• V — a set of vertices.

• c : V × V → IN — a cost matrix.

Find an ordering v1, . . . , vn of V for which the total cost:

c(vn, v1) +

n−1∑

i=1

c(vi, vi+1)

is the smallest possible.
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Complexity of TSP

Obvious algorithm: Try all possible orderings of V and find the

one with lowest cost.

The worst case running time is θ(n!).

Lower bound: An analysis like that for sorting shows a lower

bound of Ω(n log n).

Upper bound: The currently fastest known algorithm has a

running time of O(n22n).

Between these two is the chasm of our ignorance.
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Formalising Algorithms

To prove a lower bound on the complexity of a problem, rather

than a specific algorithm, we need to prove a statement about all

algorithms for solving it.

In order to prove facts about all algorithms, we need a

mathematically precise definition of algorithm.

We will use the Turing machine.

The simplicity of the Turing machine means it’s not useful

for actually expressing algorithms, but very well suited for

proofs about all algorithms.
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Turing Machines

For our purposes, a Turing Machine consists of:

• K — a finite set of states;

• Σ — a finite set of symbols, including t.

• s ∈ K — an initial state;

• δ : (K × Σ)→ K ∪ {a, r} × Σ× {L,R, S}
A transition function that specifies, for each state and symbol a

next state (or accept acc or reject rej), a symbol to overwrite

the current symbol, and a direction for the tape head to move

(L – left, R – right, or S - stationary)
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Configurations

A complete description of the configuration of a machine can be

given if we know what state it is in, what are the contents of its

tape, and what is the position of its head. This can be summed up

in a simple triple:

Definition

A configuration is a triple (q, w, u), where q ∈ K and w, u ∈ Σ?

The intuition is that (q, w, u) represents a machine in state q with

the string wu on its tape, and the head pointing at the last symbol

in w.

The configuration of a machine completely determines the future

behaviour of the machine.
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Computations

Given a machine M = (K,Σ, s, δ) we say that a configuration

(q, w, u) yields in one step (q′, w′, u′), written

(q, w, u)→M (q′, w′, u′)

if

• w = va ;

• δ(q, a) = (q′, b,D); and

• either D = L and w′ = v u′ = bu

or D = S and w′ = vb and u′ = u

or D = R and w′ = vbc and u′ = x, where u = cx. If u is

empty, then w′ = vbt and u′ is empty.
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Computations

The relation →?
M is the reflexive and transitive closure of →M .

A sequence of configurations c1, . . . , cn, where for each i,

ci →M ci+1, is called a computation of M .

The language L(M) ⊆ Σ? accepted by the machine M is the set of

strings

{x | (s, ., x)→?
M (acc, w, u)for some w and u}

A machine M is said to halt on input x if for some w and u, either

(s, ., x)→?
M (acc, w, u) or (s, ., x)→?

M (rej, w, u)
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Decidability

A language L ⊆ Σ? is recursively enumerable if it is L(M) for some

M .

A language L is decidable if it is L(M) for some machine M which

halts on every input.

A language L is semi-decidable if it is recursively enumerable.

A function f : Σ? → Σ? is computable, if there is a machine M ,

such that for all x, (s, ., x)→?
M (acc, f(x), ε)
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Example

Consider the machine with δ given by:

. 0 1 t

s s, .,R s, 0, R s, 1, R q,t, L

q acc, ., R q,t, L rej,t, R q,t, L

This machine will accept any string that contains only 0s before

the first blank (but only after replacing them all by blanks).
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Multi-Tape Machines

The formalisation of Turing machines extends in a natural way to

multi-tape machines. For instance a machine with k tapes is

specified by:

• K, Σ, s; and

• δ : (K × Σk)→ K ∪ {a, r} × (Σ× {L,R, S})k

Similarly, a configuration is of the form:

(q, w1, u1, . . . , wk, uk)
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Complexity

For any function f : IN→ IN, we say that a language L is in

TIME(f(n)) if there is a machine M = (K,Σ, s, δ), such that:

• L = L(M); and

• The running time ofM is O(f(n)).

Similarly, we define SPACE(f(n)) to be the languages accepted by a

machine which uses O(f(n)) tape cells on inputs of length n.

In defining space complexity, we assume a machine M , which has a

read-only input tape, and a separate work tape. We only count

cells on the work tape towards the complexity.
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Nondeterminism

If, in the definition of a Turing machine, we relax the condition on

δ being a function and instead allow an arbitrary relation, we

obtain a nondeterministic Turing machine.

δ ⊆ (K × Σ)× (K ∪ {a, r} × Σ× {R,L, S}).

The yields relation →M is also no longer functional.

We still define the language accepted by M by:

{x | (s, ., x)→?
M (acc, w, u) for some w and u}

though, for some x, there may be computations leading to

accepting as well as rejecting states.
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Computation Trees

With a nondeterministic machine, each configuration gives rise to a

tree of successive configurations.

(s, ., x)

(q0, u0, w0)(q1, u1, w1)(q2, u2, w2)

(q00, u00, w00)

(q11, u11, w11)
.
.
.

.

.

.

(rej, u2, w2)

(acc, . . .)

(q10, u10, w10)
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Decidability and Complexity

For every decidable language L, there is a computable function f

such that

L ∈ TIME(f(n))

If L is a semi-decidable (but not decidable) language accepted by

M , then there is no computable function f such that every

accepting computation of M , on input of length n is of length at

most f(n).
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Complexity Classes

A complexity class is a collection of languages determined by three

things:

• A model of computation (such as a deterministic Turing

machine, or a nondeterministic TM, or a parallel Random

Access Machine).

• A resource (such as time, space or number of processors).

• A set of bounds. This is a set of functions that are used to

bound the amount of resource we can use.
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Polynomial Bounds

By making the bounds broad enough, we can make our definitions

fairly independent of the model of computation.

The collection of languages recognised in polynomial time is

the same whether we consider Turing machines, register

machines, or any other deterministic model of computation.

The collection of languages recognised in linear time, on

the other hand, is different on a one-tape and a two-tape

Turing machine.

We can say that being recognisable in polynomial time is a

property of the language, while being recognisable in linear time is

sensitive to the model of computation.
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Polynomial Time

P =

∞⋃

k=1

TIME(nk)

The class of languages decidable in polynomial time.

The complexity class P plays an important role in our theory.

• It is robust, as explained.

• It serves as our formal definition of what is feasibly computable

One could argue whether an algorithm running in time θ(n100) is

feasible, but it will eventually run faster than one that takes time

θ(2n).

Making the distinction between polynomial and exponential results

in a useful and elegant theory.
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Example: Reachability

The Reachability decision problem is, given a directed graph

G = (V,E) and two nodes a, b ∈ V , to determine whether there is a

path from a to b in G.

A simple search algorithm as follows solves it:

1. mark node a, leaving other nodes unmarked, and initialise set

S to {a};

2. while S is not empty, choose node i in S: remove i from S and

for all j such that there is an edge (i, j) and j is unmarked,

mark j and add j to S;

3. if b is marked, accept else reject.
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Analysis

This algorithm requires O(n2) time and O(n) space.

The description of the algorithm would have to be refined for an

implementation on a Turing machine, but it is easy enough to show

that:

Reachability ∈ P

To formally define Reachability as a language, we would have to also

choose a way of representing the input (V,E, a, b) as a string.
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Example: Euclid’s Algorithm

Consider the decision problem (or language) RelPrime defined by:

{(x, y) | gcd(x, y) = 1}

The standard algorithm for solving it is due to Euclid:

1. Input (x, y).

2. Repeat until y = 0: x← x mod y; Swap x and y

3. If x = 1 then accept else reject.
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Analysis

The number of repetitions at step 2 of the algorithms is at most

log x.

why?

This implies that RelPrime is in P.

If the algorithm took θ(x) steps to terminate, it would not be a

polynomial time algorithm, as x is not polynomial in the length of

the input.
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Boolean Expressions

Boolean expressions are built up from an infinite set of variables

X = {x1, x2, . . .}

and the two constants true and false by the rules:

• a constant or variable by itself is an expression;

• if φ is a Boolean expression, then so is (¬φ);

• if φ and ψ are both Boolean expressions, then so are (φ ∧ ψ)

and (φ ∨ ψ).
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Evaluation

If an expression contains no variables, then it can be evaluated to

either true or false.

Otherwise, it can be evaluated, given a truth assignment to its

variables.

Examples:

(true ∨ false) ∧ (¬false)

(x1 ∨ false) ∧ ((¬x1) ∨ x2)

(x1 ∨ false) ∧ (¬x1)

(x1 ∨ (¬x1)) ∧ true
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Boolean Evaluation

There is a deterministic Turing machine, which given a Boolean

expression without variables of length n will determine, in time

O(n2) whether the expression evaluates to true.

The algorithm works by scanning the input, rewriting formulas

according to the following rules:
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Rules

• (true ∨ φ)⇒ true

• (φ ∨ true)⇒ true

• (false ∨ φ)⇒ φ

• (false ∧ φ)⇒ false

• (φ ∧ false)⇒ false

• (true ∧ φ)⇒ φ

• (¬true)⇒ false

• (¬false)⇒ true
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Analysis

Each scan of the input (O(n) steps) must find at least one

subexpression matching one of the rule patterns.

Applying a rule always eliminates at least one symbol from the

formula.

Thus, there are at most O(n) scans required.

The algorithm works in O(n2) steps.
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Circuits

A circuit is a graph G = (V,E), with V = {1, . . . , n} together with

a labeling: l : V → {true, false,∧,∨,¬}, satisfying:

• If there is an edge (i, j), then i < j;

• Every node in V has indegree at most 2.

• A node v has

indegree 0 iff l(v) ∈ {true, false};
indegree 1 iff l(v) = ¬;

indegree 2 iff l(v) ∈ {∨,∧}

The value of the expression is given by the value at node n.
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CVP

A circuit is a more compact way of representing a Boolean

expression.

Identical subexpressions need not be repeated.

CVP - the circuit value problem is, given a circuit, determine the

value of the result node n.

CVP is solvable in polynomial time, by the algorithm which

examines the nodes in increasing order, assigning a value true or

false to each node.
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Composites

Consider the decision problem (or language) Composite defined by:

{x | x is not prime}

The obvious algorithm:

For all y with 1 < y ≤ √x check whether y|x.

requires Ω(
√
x) steps and is therefore not polynomial in the length

of the input.

Is Composite ∈ P?
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Satisfiability

For Boolean expressions φ that contain variables, we can ask

Is there an assignment of truth values to the variables

which would make the formula evaluate to true?

The set of Boolean expressions for which this is true is the language

SAT of satisfiable expressions.

This can be decided by a deterministic Turing machine in time

O(n22n).

An expression of length n can contain at most n variables.

For each of the 2n possible truth assignments to these variables, we

check whether it results in a Boolean expression that evaluates to

true.

Is SAT ∈ P?
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Hamiltonian Graphs

Given a graph G = (V,E), a Hamiltonian cycle in G is a path in

the graph, starting and ending at the same node, such that every

node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Is HAM ∈ P?
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Examples

The first of these graphs is not Hamiltonian, but the second one is.
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Polynomial Verification

The problems Composite, SAT and HAM have something in

common.

In each case, there is a search space of possible solutions.

the factors of x; a truth assignment to the variables of φ; a

list of the vertices of G.

The number of possible solutions is exponential in the length of the

input.

Given a potential solution, it is easy to check whether or not it is a

solutiion.
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Verifiers

A verifier V for a language L is an algorithm such that

L = {x | (x, c) is accepted by V for some c}

If V runs in time polynomial in the length of x, then we say that

L is polynomially verifiable.

Many natural examples arise, whenever we have to construct a

solution to some design constraints or specifications.
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Nondeterministic Complexity Classes

We have already defined TIME(f(n)) and SPACE(f(n)).

NTIME(f(n)) is defined as the class of those languages L which are

accepted by a nondeterministic Turing machine M , such that for

every x ∈ L, there is an accepting computation of M on x of

length at most f(n).

NP =
∞⋃

k=1

NTIME(nk)
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Nondeterminism

(s, ., x)

(q0, u0, w0)(q1, u1, w1)(q2, u2, w2)

(q00, u00, w00)

(q11, u11, w11)
.
.
.

.

.

.

(rej, u2, w2)

(acc, . . .)

(q10, u10, w10)

For a language in NTIME(f(n)), the height of the tree is bounded

by f(n) when the input is of length n.
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NP

A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V ,

which runs in time p(n).

The following describes a nondeterministic algorithm that accepts

L

1. input x of length n

2. nondeterministically guess c of length ≤ nk

3. run V on (x, c)
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NP

In the other direction, suppose M is a nondeterministic machine

that accepts a language L in time nk.

We define the deterministic algorithm V which on input (x, c)

simulates M on input x.

At the ith nondeterministic choice point, V looks at the ith

character in c to decide which branch to follow.

If M accepts then V accepts, otherwise it rejects.

V is a polynomial verifier for L.
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Generate and Test

We can think of nondeterministic algorithms in the generate-and

test paradigm:

yes

no
generatex Vx verify

Where the generate component is nondeterministic and the verify

component is deterministic.
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Reductions

Given two languages L1 ⊆ Σ?1, and L2 ⊆ Σ?2,

A reduction of L1 to L2 is a computable function

f : Σ?1 → Σ?2

such that for every string x ∈ Σ?1,

f(x) ∈ L2 if, and only if, x ∈ L1
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Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L1

is polynomial time reducible to L2.

L1 ≤P L2

If f is also computable in SPACE(logn), we write

L1 ≤L L2
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Reductions 2

If L1 ≤P L2 we understand that L1 is no more difficult to solve

than L2, at least as far as polynomial time computation is

concerned.

That is to say,

If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P

We can get an algorithm to decide L1 by first computing f , and

then using the polynomial time algorithm for L2.
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Completeness

The usefulness of reductions is that they allow us to establish the

relative complexity of problems, even when we cannot prove

absolute lower bounds.

Cook (1972) first showed that there are problems in NP that are

maximally difficult.

A language L is said to be NP-hard if for every language A ∈ NP,

A ≤P L.

A language L is NP-complete if it is in NP and it is NP-hard.
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SAT is NP-complete

Cook showed that the language SAT of satisfiable Boolean

expressions is NP-complete.

To establish this, we need to show that for every language L in NP,

there is a polynomial time reduction from L to SAT.

Since L is in NP, there is a nondeterministic Turing machine

M = (K,Σ, s, δ)

and a bound nk such that a string x is in L if, and only if, it is

accepted by M within nk steps.
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Boolean Formula

We need to give, for each x ∈ Σ?, a Boolean expression f(x) which

is satisfiable if, and only if, there is an accepting computation of M

on input x.

f(x) has the following variables:

Si,q for each i ≤ nk and q ∈ K
Ti,j,σ for each i, j ≤ nk and σ ∈ Σ

Hi,j for each i, j ≤ nk
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Intuitively, these variables are intended to mean:

• Si,q – the state of the machine at time i is q.

• Ti,j,σ – at time i, the symbol at position j of the tape is σ.

• Hi,j – at time i, the tape head is pointing at tape cell j.

We now have to see how to write the formula f(x), so that it

enforces these meanings.
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Initial state is s and the head is initially at the beginning of the

tape.

S1,s ∧H1,1

The head is never in two places at once
∧

i

∧

j

(Hi,j →
∧

j′ 6=j
(¬Hi,j′))

The machine is never in two states at once
∧

q

∧

i

(Si,q →
∧

q′ 6=q
(¬Si,q′))

Each tape cell contains only one symbol
∧

i

∧

j

∧

σ

(Ti,j,σ →
∧

σ′ 6=σ
(¬Ti,j,σ′))
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The initial tape contents are x
∧

j≤n
T1,j,xj ∧

∧

n<j

T1,j,t

The tape does not change except under the head
∧

i

∧

j

∧

j′ 6=j

∧

σ

(Hi,j ∧ Ti,j′,σ)→ Ti+1,j′,σ

Each step is according to δ.

∧

i

∧

j

∧

σ

∧

q

(Hi,j ∧ Si,q ∧ Ti,j,σ)

→
∨

∆

(Hi+1,j′ ∧ Si+1,q′ ∧ Ti+1,j,σ′)
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where ∆ is the set of all triples (q′, σ′, D) such that

((q, σ), (q′, σ′, D)) ∈ δ and

j′ =





j if D = S

j − 1 if D = L

j + 1 if D = R

Finally, some accepting state is reached
∨

i

Si,acc
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CNF

A Boolean expression is in conjunctive normal form if it is the

conjunction of a set of clauses, each of which is the disjunction of a

set of literals, each of these being either a variable or the negation

of a variable.

For any Boolean expression φ, there is an equivalent expression ψ

in conjunctive normal form.

ψ can be exponentially longer than φ.

However, CNF-SAT, the collection of satisfiable CNF expressions, is

NP-complete.
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3SAT

A Boolean expression is in 3CNF if it is in conjunctive normal form

and each clause contains at most 3 literals.

3SAT is defined as the language consisting of those expressions in

3CNF that are satisfiable.

3SAT is NP-complete, as there is a polynomial time reduction from

CNF-SAT to 3SAT.
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Composing Reductions

Polynomial time reductions are clearly closed under composition.

So, if L1 ≤P L2 and L2 ≤P L3, then we also have L1 ≤P L3.

Note, this is also true of ≤L, though less obvious.

If we show, for some problem A in NP that

SAT ≤P A

or

3SAT ≤P A
it follows that A is also NP-complete.
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Independent Set

Given a graph G = (V,E), a subset X ⊆ V of the vertices is said to

be an independent set, if there are no edges (u, v) for u, v ∈ X.

The natural algorithmic problem is, given a graph, find the largest

independent set.

To turn this optimisation problem into a decision problem, we

define IND as:

The set of pairs (G,K), where G is a graph, and K is an

integer, such that G contains an independent set with K or

more vertices.

IND is clearly in NP. We now show it is NP-complete.
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Reduction

We can construct a reduction from 3SAT to IND.

A Boolean expression φ in 3CNF with m clauses is mapped by the

reduction to the pair (G,m), where G is the graph obtained from φ

as follows:

G contains m triangles, one for each clause of φ, with each

node representing one of the literals in the clause.

Additionally, there is an edge between two nodes in

different triangles if they represent literals where one is the

negation of the other.
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Example

(x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ ¬x2 ∨ ¬x1)

x1

x2
¬x3

¬x1

¬x2x3

Anuj Dawar February 13, 2004



Complexity Theory 65

Clique

Given a graph G = (V,E), a subset X ⊆ V of the vertices is called

a clique, if for every u, v ∈ X, (u, v) is an edge.

As with IND, we can define a decision problem version:

CLIQUE is defined as:

The set of pairs (G,K), where G is a graph, and K is an

integer, such that G contains a clique with K or more

vertices.
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Clique 2

CLIQUE is in NP by the algorithm which guesses a clique and then

verifies it.

CLIQUE is NP-complete, since

IND ≤P CLIQUE

by the reduction that maps the pair (G,K) to (Ḡ,K), where Ḡ is

the complement graph of G.
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k-Colourability

A graph G = (V,E) is k-colourable, if there is a function

χ : V → {1, . . . , k}

such that, for each u, v ∈ V , if (u, v) ∈ E,

χ(u) 6= χ(v)

This gives rise to a decision problem for each k.

2-colourability is in P.

For all k > 2, k-colourability is NP-complete.
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3-Colourability

3-Colourability is in NP, as we can guess a colouring and verify it.

To show NP-completeness, we can construct a reduction from 3SAT

to 3-Colourability.

For each variable x, have two vertices x, x̄ which are connected in a

triangle with the vertex a (common to all variables).

In addition, for each clause containing the literals l1, l2 and l3 we

have a gadget.
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Gadget

l1

l2

l3 b

With a further edge from a to b.
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Hamiltonian Cycle

We can construct a reduction from 3SAT to HAM

Essentially, this involves coding up a Boolean expression as a

graph, so that every satisfying truth assignment to the expression

corresponds to a Hamiltonian circuit of the graph.

This reduction is much more intricate than the one for IND.
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Travelling Salesman

As with other optimisation problems, we can make a decision

problem version of the Travelling Salesman problem.

The problem TSP consists of the set of triples

(V, c : V × V → IN, t)

such that there is a tour of the set of vertices V , which under the

cost matrix c, has cost t or less.

Anuj Dawar February 13, 2004

Complexity Theory 72

Reduction

There is a simple reduction from HAM to TSP, mapping a graph

(V,E) to the triple (V, c : V × V → IN, n), where

c(u, v) =





1 if (u, v) ∈ E
2 otherwise

and n is the size of V .
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Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to

be NP-complete.

Literally hundreds of naturally arising problems have been proved

NP-complete, in areas involving network design, scheduling,

optimisation, data storage and retrieval, artificial intelligence and

many others.

Such problems arise naturally whenever we have to construct a

solution within constraints, and the most effective way appears to

be an exhaustive search of an exponential solution space.

We now examine three more NP-complete problems, whose

significance lies in that they have been used to prove a large

number of other problems NP-complete, through reductions.
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3D Matching

The decision problem of 3D Matching is defined as:

Given three disjoint sets X, Y and Z, and a set of triples

M ⊆ X × Y × Z, does M contain a matching?

I.e. is there a subset M ′ ⊆M , such that each element of

X, Y and Z appears in exactly one triple of M ′?

We can show that 3DM is NP-complete by a reduction from 3SAT.
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Reduction

If a Boolean expression φ in 3CNF has n variables, and m clauses,

we construct for each variable v the following gadget.

zv1

zv2

zv3

zv4

x1 y1

z̄v1

z̄v2

y2

x2

y3 x3

y4

x4
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In addition, for every clause c, we have two elements xc and yc.

If the literal v occurs in c, we include the triple

(xc, yc, zvc)

in M .

Similarly, if ¬v occurs in c, we include the triple

(xc, yc, z̄vc)

in M .

Finally, we include extra dummy elements in X and Y to make the

numbers match up.
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Exact Set Covering

Two other well known problems are proved NP-complete by

immediate reduction from 3DM.

Exact Cover by 3-Sets is defined by:

Given a set U with 3n elements, and a collection

S = {S1, . . . , Sm} of three-element subsets of U , is there a

sub collection containing exactly n of these sets whose

union is all of U?

The reduction from 3DM simply takes U = X ∪ Y ∪ Z, and S to be

the collection of three-element subsets resulting from M .
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Set Covering

More generally, we have the Set Covering problem:

Given a set U , a collection of S = {S1, . . . , Sm} subsets of

U and an integer budget B, is there a collection of B sets

in S whose union is U?
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Knapsack

KNAPSACK is a problem which generalises many natural

scheduling and optimisation problems, and through reductions has

been used to show many such problems NP-complete.

In the problem, we are given n items, each with a positive integer

value vi and weight wi.

We are also given a maximum total weight W , and a minimum

total value V .

Can we select a subset of the items whose total weight does

not exceed W , and whose total value exceeds V ?
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Reduction

The proof that KNAPSACK is NP-complete is by a reduction from

the problem of Exact Cover by 3-Sets.

Given a set U = {1, . . . , 3n} and a collection of 3-element subsets of

U , S = {S1, . . . , Sm}.
We map this to an instance of KNAPSACK with m elements each

corresponding to one of the Si, and having weight and value

Σj∈Si(m+ 1)3n−j

and set the target weight and value both to

Σ3n−1
j=0 (m+ 1)3n−j
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Scheduling

Some examples of the kinds of scheduling tasks that have been

proved NP-complete include:

Timetable Design

Given a set H of work periods, a set W of workers each

with an associated subset of H (available periods), a set T

of tasks and an assignment r : W × T → IN of required

work, is there a mapping f : W × T ×H → {0, 1} which

completes all tasks?
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Scheduling

Sequencing with Deadlines

Given a set T of tasks and for each task a length l ∈ IN, a

release time r ∈ IN and a deadline d ∈ IN, is there a work

schedule which completes each task between its release

time and its deadline?

Job Scheduling

Given a set T of tasks, a number m ∈ IN of processors a

length l ∈ IN for each task, and an overall deadline D ∈ IN,

is there a multi-processor schedule which completes all

tasks by the deadline?
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Responses to NP-Completeness

Confronted by an NP-complete problem, say constructing a

timetable, what can one do?

• It’s a single instance, does asymptotic complexity matter?

• What’s the critical size? Is scalability important?

• Are there guaranteed restrictions on the input? Will a special

purpose algorithm suffice?

• Will an approximate solution suffice? Are perfomance

guarantees required?

• Are there useful heuristics that can constrain a search? Ways

of ordering choices to control backtracking?
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Validity

We define VAL—the set of valid Boolean expressions—to be those

Boolean expressions for which every assignment of truth values to

variables yields an expression equivalent to true.

φ ∈ VAL ⇔ ¬φ 6∈ SAT

By an exhaustive serch algorithm similar to the one for SAT, VAL is

in TIME(n22n).

Is VAL ∈ NP?
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Validity

VAL = {φ | φ 6∈ VAL}—the complement of VAL is in NP.

Guess a a falsifying truth assignment and verify it.

Such an algorithm does not work for VAL.

In this case, we have to determine whether every truth assignment

results in true—a requirement that does not sit as well with the

definition of acceptance by a nondeterministic machine.
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Complementation

If we interchange accepting and rejecting states in a deterministic

machine that accepts the language L, we get one that accepts L.

If a language L ∈ P, then also L ∈ P.

Complexity classes defined in terms of nondeterministic machine

models are not necessarily closed under complementation of

languages.

Define,

co-NP – the languages whose complements are in NP.
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Succinct Certificates

The complexity class NP can be characterised as the collection of

languages of the form:

L = {x | ∃yR(x, y)}

Where R is a relation on strings satisfying two key conditions

1. R is decidable in polynomial time.

2. R is polynomially balanced. That is, there is a polynomial p

such that if R(x, y) and the length of x is n, then the length of

y is no more than p(n).
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Succinct Certificates

y is a certificate for the membership of x in L.

Example: If L is SAT, then for a satisfiable expression x, a

certificate would be a satisfying truth assignment.
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co-NP

As co-NP is the collection of complements of languages in NP, and

P is closed under complementation, co-NP can also be characterised

as the collection of languages of the form:

L = {x | ∀y |y| < p(|x|)→ R(x, y)}

NP – the collection of languages with succinct certificates of

membership.

co-NP – the collection of languages with succinct certificates of

disqualification.
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P

NP co-NP

Any of the situations is consistent with our present state of

knowledge:

• P = NP = co-NP

• P = NP ∩ co-NP 6= NP 6= co-NP

• P 6= NP ∩ co-NP = NP = co-NP

• P 6= NP ∩ co-NP 6= NP 6= co-NP
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co-NP-complete

VAL – the collection of Boolean expressions that are valid is

co-NP-complete.

Any language L that is the complement of an NP-complete

language is co-NP-complete.

Any reduction of a language L1 to L2 is also a reduction of L̄1–the

complement of L1–to L̄2–the complement of L2.

There is an easy reduction from the complement of SAT to VAL,

namely the map that takes an expression to its negation.

VAL ∈ P⇒ P = NP = co-NP

VAL ∈ NP⇒ NP = co-NP
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Prime Numbers

Consider the decision problem PRIME:

Given a number x, is it prime?

This problem is in co-NP.

∀y(y < x→ (y = 1 ∨ ¬(div(y, x))))

Note, the algorithm that checks for all numbers up to
√
n

whether any of them divides n, is not polynomial, as
√
n is

not polynomial in the size of the input string, which is

log n.
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Primality

Another way of putting this is that Composite is in NP.

Pratt (1976) showed that PRIME is in NP, by exhibiting succinct

certificates of primality based on:

A number p > 2 is prime if, and only if, there is a number

r, 1 < r < p, such that rp−1 = 1 mod p and

r
p−1
q 6= 1 mod p for all prime divisors q of p− 1.
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Primality

In 2002, Agrawal, Kayal and Saxena showed that PRIME is in P.

If a is co-prime to p,

(x− a)p ≡ (xp − a) (mod p)

if, and only if, p is a prime.

Checking this equivalence would take to long. Instead, the

equivalence is checked modulo a polynomial xr − 1, for “suitable” r.

The existence of suitable small r relies on deep results in number

theory.
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Optimisation

The Travelling Salesman Problem was originally conceived of as an

optimisation problem

to find a minimum cost tour.

We forced it into the mould of a decision problem – TSP – in order

to fit it into our theory of NP-completeness.

Similar arguments can be made about the problems CLIQUE and

IND.
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This is still reasonable, as we are establishing the difficulty of the

problems.

A polynomial time solution to the optimisation version would give

a polynomial time solution to the decision problem.

Also, a polynomial time solution to the decision problem would

allow a polynomial time algorithm for finding the optimal value,

using binary search, if necessary.
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Function Problems

Still, there is something interesting to be said for function problems

arising from NP problems.

Suppose

L = {x | ∃yR(x, y)}
where R is a polynomially-balanced, polynomial time decidable

relation.

A witness function for L is any function f such that:

• if x ∈ L, then f(x) = y for some y such that R(x, y);

• f(x) = “no” otherwise.

The class FNP is the collection of all witness functions for

languages in NP.
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FNP and FP

A function which, for any given Boolean expression φ, gives a

satisfying truth assignment if φ is satisfiable, and returns “no”

otherwise, is a witness function for SAT.

If any witness function for SAT is computable in polynomial time,

then P = NP.

If P = NP, then every function in FNP is computable in polynomial

time, by a binary search algorithm.

P = NP if, and only if, FNP = FP

Under a suitable definition of reduction, the witness functions for

SAT are FNP-complete.
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Factorisation

The factorisation function maps a number n to its prime

factorisation:

2k13k2 · · · pkmm .

This function is in FNP.

The corresponding decision problem (for which it is a witness

function) is trivial - it is the set of all numbers.

Still, it is not known whether this function can be computed in

polynomial time.
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Factors

Consider the language Factor

{(x, k) | x has a factor y with 1 < y < k}

Factor ∈ NP ∩ co-NP

Certificate of membership—a factor of x less than k.

Certificate of disqualification—the prime factorisation of x.
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Cryptography

Alice Bob

Eve

Alice wishes to communicate with Bob without Eve eavesdropping.

Anuj Dawar February 13, 2004

Complexity Theory 102

Private Key

In a private key system, there are two secret keys

e – the encryption key

d – the decryption key

and two functions D and E such that:

for any x,

D(E(x, e), d) = x

For instance, taking d = e and both D and E as exclusive or, we

have the one time pad:

(x⊕ e)⊕ e = x
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One Time Pad

The one time pad is provably secure, in that the only way Eve can

decode a message is by knowing the key.

If the original message x and the encrypted message y are known,

then so is the key:

e = x⊕ y
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Public Key

In public key cryptography, the encryption key e is public, and the

decryption key d is private.

We still have,

for any x,

D(E(x, e), d) = x

If E is polynomial time computable (and it must be if

communication is not to be painfully slow), then the function that

takes y = E(x, e) to x (without knowing d), must be in FNP.

Thus, public key cryptography is not provably secure in the way

that the one time pad is. It relies on the existence of functions in

FNP− FP.
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One Way Functions

A function f is called a one way function if it satisfies the following

conditions:

1. f is one-to-one.

2. for each x, |x|1/k ≤ |f(x)| ≤ |x|k for some k.

3. f ∈ FP.

4. f−1 6∈ FP.

We cannot hope to prove the existence of one-way functions

without at the same time proving P 6= NP.

It is strongly believed that the RSA function:

f(x, e, p, q) = (xe mod pq, pq, e)

is a one-way function.
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UP

Though one cannot hope to prove that the RSA function is one-way

without separating P and NP, we might hope to make it as secure

as a proof of NP-completeness.

Definition

A nondeterministic machine is unambiguous if, for any input x,

there is at most one accepting computation of the machine.

UP is the class of languages accepted by unambiguous machines in

polynomial time.
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UP

Equivalently, UP is the class of languages of the form

{x | ∃yR(x, y)}

Where R is polynomial time computable, polynomially balanced,

and for each x, there is at most one y such that R(x, y).
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UP One-way Functions

We have

P ⊆ UP ⊆ NP

It seems unlikely that there are any NP-complete problems in UP.

One-way functions exist if, and only if, P 6= UP.
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Space Complexity

We’ve already seen the definition SPACE(f(n)): the languages

accepted by a machine which uses O(f(n)) tape cells on inputs of

length n. Counting only work space

NSPACE(f(n)) is the class of languages accepted by a

nondeterministic Turing machine using at most f(n) work space.

As we are only counting work space, it makes sense to consider

bounding functions f that are less than linear.
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Classes

L = SPACE(log n)

NL = NSPACE(log n)

PSPACE =
⋃∞
k=1 SPACE(nk)

The class of languages decidable in polynomial space.

NPSPACE =
⋃∞
k=1 NSPACE(nk)

Also, define

co-NL – the languages whose complements are in NL.

co-NPSPACE – the languages whose complements are in NPSPACE.
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Inclusions

We have the following inclusions:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP

where EXP =
⋃∞
k=1 TIME(2n

k

)

Moreover,

L ⊆ NL ∩ co-NL

P ⊆ NP ∩ co-NP

PSPACE ⊆ NPSPACE ∩ co-NPSPACE
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Establishing Inclusions

To establish the known inclusions between the main complexity

classes, we prove the following.

• SPACE(f(n)) ⊆ NSPACE(f(n));

• TIME(f(n)) ⊆ NTIME(f(n));

• NTIME(f(n)) ⊆ SPACE(f(n));

• NSPACE(f(n)) ⊆ TIME(klogn+f(n));

The first two are straightforward from definitions.

The third is an easy simulation.

The last requires some more work.
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NL Reachability

We can construct an algorithm to show that the Reachability

problem is in NL:

1. write the index of node a in the work space;

2. if i is the index currently written on the work space:

(a) if i = b then accept, else

guess an index j (log n bits) and write it on the work space.

(b) if (i, j) is not an edge, reject, else replace i by j and return

to (2).
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We can use the O(n2) algorithm for Reachability to show that:

NSPACE(f(n)) ⊆ TIME(klogn+f(n))

for some constant k.

Let M be a nondeterministic machine working in space bounds

f(n).

For any input x of length n, there is a constant c (depending on the

number of states and alphabet of M) such that the total number of

possible configurations of M within space bounds f(n) is bounded

by n · cf(n).

Here, cf(n) represents the number of different possible

contents of the work space, and n different head positions

on the input.
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Configuration Graph

Define the configuration graph of M,x to be the graph whose nodes

are the possible configurations, and there is an edge from i to j if,

and only if, i→M j.

Then, M accepts x if, and only if, some accepting configuration is

reachable from the starting configuration (s, ., x, ., ε) in the

configuration graph of M,x.
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Using the O(n2) algorithm for Reachability, we get that M can be

simulated by a deterministic machine operating in time

c′(ncf(n))2 = c′c2(logn+f(n)) = k(logn+f(n))

In particular, this establishes that NL ⊆ P and NPSPACE ⊆ EXP.
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Savitch’s Theorem

Further simulation results for nondeterministic space are obtained

by other algorithms for Reachability.

We can show that Reachability can be solved by a deterministic

algorithm in O((logn)2) space.

Consider the following recursive algorithm for determining whether

there is a path from a to b of length at most n (for n a power of 2):
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O((log n)2) space Reachability algorithm:

Path(a, b, i)

if i = 1 and (a, b) is not an edge reject

else if (a, b) is an edge or a = b accept

else, for each node x, check:

1. is there a path a− x of length i/2; and

2. is there a path x− b of length i/2?

if such an x is found, then accept, else reject.

The maximum depth of recursion is log n, and the number of bits

of information kept at each stage is 3 logn.
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Savitch’s Theorem - 2

The space efficient algorithm for reachability used on the

configuration graph of a nondeterministic machine shows:

NSPACE(f(n)) ⊆ SPACE(f(n)2)

for f(n) ≥ log n.

This yields

PSPACE = NPSPACE = co-NPSPACE.
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Complementation

A still more clever algorithm for Reachability has been used to show

that nondeterministic space classes are closed under

complementation:

If f(n) ≥ log n, then

NSPACE(f(n)) = co-NSPACE(f(n))
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