
Advanced
Systems
Topics

CST Part 2, Lent 2004

Lectures 7–10

Scalable synchronization

Timothy L Harris

tim.harris@cl.cam.ac.uk

Lecture 7: Scalable synchronization

Aims of this section:

➤ to explore software techniques for developing
applications for large multi-processor machines,

➤ to describe how effective concurrency-control
abstractions can be implemented,

➤ to introduce current research areas in mainstream
concurrent programming.

Reference material:

➤ http://www.cl.cam.ac.uk/Teaching/
2003/AdvSysTop/

➤ Lea, D. (1999). Concurrent Programming in Java.
Addison-Wesley (2nd ed.) – particularly Chapter 2

➤ Hennessy, J. and Petterson, D. Computer Architecture, a
Quantitative Approach. Morgan Kaufmann (3rd ed.) –
particularly Chapter 6

Scalable synchronization Slide 7-1

Overview

Four lectures in this section,

➤ Introduction (Wed 18 Feb)
� What computers have 1 000 processors. . .
� What systems need (or at least have) 10 000 threads. . .
� Main factors that affect performance
� Recap from CS&A

➤ Architectures and algorithms (Fri 20 Feb)
� Sharing work between threads
� Reducing synchronization
� Double-ended queues
� Concurrent hashtables

➤ Implementing mutual exclusion (Mon 23 Feb)
� Simple spin-locks
� Linux ‘big reader’ locks
� Queue-based spin-locks

➤ Programming without locks (Wed 25 Feb)
� Non-blocking data structures
� Correctness requirements
� Current research

Scalable synchronization Slide 7-2

Programming environment

➤ (i) hardware parallelism
(ii) shared memory
(iii) cache-coherent

➤ Modern uniprocessors use SMT

➤ On x86, 2-way is common, 4-way and 8-way commodity

➤ SunFire 15k, 106-way:

(191cm tall, 85cm across,
166cm deep, 1 000 kg)

Scalable synchronization Slide 7-3

A simple program

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8

E
la

ps
ed

 ti
m

e
/ m

s

Threads

➤ 4-processor Sun Fire v480 server

➤ 1...8 threads run, each counting to 1 000 000 000

➤ Measure the wall-time it takes

➤ System load (number of runnable threads, in this case)
grows 1..8

Scalable synchronization Slide 7-4

Another simple program

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8

E
la

ps
ed

 ti
m

e
/ m

s

Threads

➤ Each thread has a reference to a shared hashtable

➤ Loops storing an entry in it (1 time in 1000) or reading
entries from it (999 times in 1000)

➤ Using the built-in java.util.Hashtable class

Scalable synchronization Slide 7-5

Another simple program (2)

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8

E
la

ps
ed

 ti
m

e
/ m

s

Threads

➤ This time using ConcurrentHashMap from Doug Lea’s
“util.concurrent ” package

➤ Always faster. Scales better over 1..4 processors

This course is about designing software that
performs gracefully as load increases and that
makes effective use of all of the resources available
e.g. on that 106-processor box

Scalable synchronization Slide 7-6

Motivating examples

Multi-threaded servers

➤ Improving server architecture over basic designs that use
one thread per client (Zeus vs Apache)

➤ Implementing effective shared data structures
(ConcurrentHashMap vs Hashtable)

Work sharing

➤ Tasks that can readily be partitioned between numbers of
threads

➤ Coarse granularity
� parallel ray tracing
� little communication once started

➤ Fine granularity
� parallel garbage collection
� potential for lots of communication

➤ Usually 1 thread per available processor

Scalable synchronization Slide 7-7

General approach

1. Identify tasks that can usefully operate in parallel

� Top/middle/bottom thirds of an image in the ray
tracing example

� Returning files to different clients

2. Ensure that they operate safely while doing so

� e.g. basic locking strategies (as in Hashtable and
CS&A last year)

3. Make it unlikely that they ‘get in each others way’

� Even though its safe to do so, there’s no benefit from
running 2 CPU-bound tasks on a simple uniprocessor

� e.g. copying a shared read-only data structure so that
locking is needed less often

4. Reduce the overheads introduced by their co-ordination

� e.g. usually silly to start a new thread to do a tiny
amount of work

� Specialized algorithms exist for some cases, e.g.
shared work queues operating correctly without any
locks

Scalable synchronization Slide 7-8

General approach (2)

➤ In many cases step 3 comes down to avoiding contention
for resources that cannot be shared effectively and
encouraging locality to aid caching of those that can

➤ e.g. locks, CPU time, cache lines, disk

➤ In each case sharing them introduces costs which are not
otherwise present

� Waiting for resources held under mutual exclusion

� Lock acquisition / release times

� Context switch times

� Management of scheduler data structures

� Pollution of caches (both hardware and
software-implemented)

� Invalidation of remote hardware cache lines on write

� Disk head movements

➤ Remember from CSM: it’s the bottleneck resource which
is ultimately important

Scalable synchronization Slide 7-9

Java recap

➤ Each object has an associated mutual exclusion lock
(mutex) which can be held by at most one thread at any
time

➤ If a thread calls a synchronized method then it blocks
until it can acquire the target object’s mutex

➤ No guarantee of fairness – FIFO or other queueing
disciplines must be implemented explicitly if needed

public class Hashtable

{

...

public synchronized Object get(Object key)

{

...

}

public synchronized Object put

(Object key, Object value)

{

...

}

}

Scalable synchronization Slide 7-10

Java recap (2)

➤ Each object also has an associated condition variable
(condvar) which can be used to control when threads
acting on the object get blocked and woken up

� wait() releases the mutex on this and blocks on its
condition variable

� notify() selects one of the threads blocked on
this ’s condvar and releases it – the woken thread
must then re-acquire a lock on the mutex before
continuing

� notifyAll() releases all of the threads block on
this ’s condvar

➤ These operations can only be called when holding
this ’s mutex as well

Scalable synchronization Slide 7-11

Java recap (3)

class FairLock

{

private int nextTicket = 0;

private int currentTurn = 0;

public synchronized void awaitTurn()

throws InterruptedException

{

int me = nextTicket ++;

while (currentTurn != me) {

wait();

}

}

public synchronized void finished()

{

currentTurn ++;

notifyAll();

}

}

Scalable synchronization Slide 7-12

Fine-grained parallelism

➤ Often operations on structured data can be executed in
parallel, e.g.

public void sum(int a[], int b[]) {

for (int i = 0; i < a.length; i ++) {

a[i] += b[i];

}

}

➤ How can the compiler identify such code? What
assumptions are needed for parallel execution to be safe
in this case? How can it be executed effecitvely?

➤ OpenMP provides a set of pragmas through which the
programmer can indicate where concurrent execution is
safe, e.g.

#pragma omp parallel

#pragma omp for

for (int i = 0; i < a.length; i ++) {

a[i] += b[i];

}

➤ Notice how the program is still correct for
single-threaded execution

Scalable synchronization Slide 7-13

Fine-grained parallelism (2)

➤ Non-iterative work-sharing:

#pragma omp sections

{

#pragma omp section

<block-1>

#pragme omp section

<block-2>

}

➤ Other pragmas indicate sections the must be executed by
only one thread (single), by one thread at a time
(critical), or barrier points which synchronize all
threads in a team, or reduction clauses to avoid data
dependencies

#pragma omp parallel for reduction(+: a) \

reduction(||: am)

for (i = 0; i < n; i ++) {

a += b[i];

am = am || b[i] == c[i];

}

➤ The implementation is responsible for creating a suitable
number of threads and deciding how to assign work to
them

Scalable synchronization Slide 7-14

Exercises

7-1 Discuss how FairLock could be made robust against
interruption.

7-2 A particular application can either be structured on a
2-processor machine as a single thread processing n
work items, or as a pair of threads each processing n=2
items.

Processing an item involves purely local computation of
mean length l and a small period of mean length s during
which it must have exclusive access to a shared data
structure.

Acquiring a lock takes, on average a and releasing it
takes r.

(i) Assuming that s is sufficiently small that the lock is
never contended, derive an expression showing when
the single-threaded solution is faster than the
2-threaded one.

(ii) Repeat your calculation, but take into account the
possibility of a thread having to block. You may
assume (unrealistically) that a thread encounters the
lock held with probability s=(s+ l)

(iii) Why is the previous assumption unrealistic?

Scalable synchronization Slide 7-15

Exercises (2)

7-3 Compare the performance of the FairLock class against
that of a built-in Java mutex. How would you expect
FairLock ’s performance to scale as the number of
threads increases and as the number of available
processors increases?

7-4� An application is being written to transfer two files over
HTTP from a remote well-provisioned server. Do you
think the overall transfer of both would be faster (i) using
two concurrent connections to the server and two threads
performing the transfers or (ii) performing the transfers
sequentially. Explain why and any additional assumptions
that you have made.

‘Starred’ exercises are outside the syllabus of the course
and are included as extensions or as topics for discussion

Scalable synchronization Slide 7-16

Lecture 8: Architectures & algorithms

Previous lecture

➤ Course structure etc.

➤ Reducing contention & encouraging locality as the main
goals

➤ Recap of Java mutexes and condvars

Overview of this lecture

➤ Partitioning work between threads

➤ Example: Michael & Scott’s lock-based queue

➤ Techniques for reducing contention

➤ Example: ConcurrentHashMap

Scalable synchronization Slide 8-1

Deploying threads

To separate out reasonably independent tasks

➤ Examples from CS&A last year – dealing with different
clients, updating the screen vs computing the data to
display

✔ In modern systems each thread can block/unblock
independently

✘ Uncontrolled thread creation creates contention on the
CPU

✘ Sometimes a risk of +ve feedback effects – high load
causes poor response times causes clients to retry causing
higher load...

To make effective use of available processing resources

➤ Divide a task into 2 sections on a 2-processor machine,
into 4 on a 4-processor etc; no benefit having more

➤ “Correct” number of threads not known until runtime
(and dependent on other system load)

Scalable synchronization Slide 8-2

Deploying threads (2)

Decouple the ideas of

➤ commands – things to be done

� Each line of a scene to ray-trace
� Each object to examine in a garbage collector
� Each request received from a remote client

➤ executors – things responsible for arranging the
execution of commands

Commands should be lightweight to create – perhaps a
single object in an application, or an entry on a queue in a
garbage collector

Executors can be more costly to create and likely to be
long-lived – e.g. having an associated thread

Terminology here varies greatly: this course aims to follow
usage from the util.concurrent toolkit so you can see
“real” examples alongside these notes

Scalable synchronization Slide 8-3

Commands & executors in util.concurrent

➤ A command is represented by an instance of Runnable ,
holding encapsulated state and supplying its code as a
run method:

public interface Runnable {

public abstract void run();

}

➤ An executor is interacted with through a similar interface
by passing a command to its execute method:

public interface Executor {

public void execute(Runnable command)

throws InterruptedException;

}

Different implementations indicate common approaches

➤ DirectExecutor – synchronous

➤ LockedExecutor – synchronous, one at a time

➤ QueuedExecutor – asynchronous, one at a time

➤ PooledExecutor – asynchronous, bounded # threads

➤ ThreadedExecutor – asynchronous,
unbounded # threads

Scalable synchronization Slide 8-4

Thread pools

Minimum
pool
size = 2

Maximum
pool
size = 6

➤ Commands enter a single queue

➤ Each thread taking commands from the queue, executing
them to completion before taking the next

➤ Items are queued if >6 threads are running

➤ New threads are created if <2 are running

➤ The queue size can be bounded or unbounded

➤ How to signal queue overflow?
� Block the caller until there is space in the queue
� Run the command immediately
� Signal an error
� Discard an item (which?) from the queue

Scalable synchronization Slide 8-5

Thread pools (2)

What about commands that are not simple things to run to
completion?

✘ Ones that block (e.g. ongoing interaction with clients)
� With suitable independence we could maybe just

increase the maximum pool size

✘ Ones that generate other commands (e.g. parallel GC)
� Could just add them to the queue, but...
� ...may harm locality
� ...also, what if the queue fills?

Good solutions depend on the application, but common
approaches are:

➤ Use asynchronous I/O so that a ‘command’ is generated
in response to one I/O completing

➤ That new command is then responsible for the next step
of execution (e.g. replying to one client command)
before issuing the next I/O

➤ Encourage affinity between particular series of commands
and particular threads

Scalable synchronization Slide 8-6

Thread pools (3)

➤ Provide separate queues for each active worker thread

➤ If command C1 generates command C2 then place it on
the queue C1 came from

➤ ...at the head or at the tail?

➤ Note the analogy (and contrasts) with thread scheduling

What happens if a queue runs empty?

➤ Take an item from another queue

➤ From the head or from the tail?

➤ One item or many?

Scalable synchronization Slide 8-7

Thread pools (4)

This motivates the design of specialized queues for work
stealing

A basic version: Michael & Scott’s 2-lock concurrent queue
supporting concurrent push tail and pop head
operations

val = 10 val = 20
null

Head
Tail

➤ Head always points to a dummy node

➤ Tail points to the last node in the list

➤ Separate mutual exclusion locks protect the two
operations – the dummy node prevents them from
conflicting

More intricate designs provide one thread fast access to the
head and stealing (of 1 item or 1/2 contents) from the tail

Scalable synchronization Slide 8-8

Reducing contention

We now turn to look at the shared data structures that are
accessed during execution; what general techniques can we
use (e.g. as on Michael & Scott’s queue)?

➤ Confinement: guarantee that some objects must always
remain thread-local! no need to lock/unlock them
seperately
� e.g. after locking some other ‘controlling’ object
� e.g. per-thread copies of a read-only data structure

➤ Accept stale/changing data: particularly during reads!
allow them to proceed without locking
� What’s the worst that can happen?
� Can stale data be detected?

➤ Copy-on-write: access data through indirection and copy
when updated! again, reads proceed without locking
� Assumes writes are rare
� e.g. lists of event recipients in Swing

Scalable synchronization Slide 8-9

Reducing contention (2)

➤ Reduce locking granularity: lots of ‘small’ locks instead
of a few ‘large’ ones! operations using different locks
proceed in parallel
� Need to think about deadlock again
� Not a magic solution

➤ Simple per-node locks in a red-black tree:

A B

C A

B C

X

Y

Y

X

➤ Even read operations need to take out locks all of the way
from the root

➤ Otherwise, suppose one thread is searching for A and has
got to node X, another thread performs a rotation...

➤ We’ll return to this in the context of lock-free designs in
Lecture 10.

Scalable synchronization Slide 8-10

Reducing contention (3)

Example: ConcurrentHashMap

Hash

Table divided into segments (shown here as the same
colour). One update lock per segment.

Read operations:

➤ Proceed without locking

➤ If successful then return

➤ If failed then acquire segment lock and retry

Write operations:

➤ Acquire segment lock required

➤ If resizing then acquire all segment locks

Scalable synchronization Slide 8-11

Exercises

8-1 When might a thread pool be configured to create more
threads than there are processors available?

8-2 Discuss the advantages and disadvantages of configuring
a thread pool to use an unbounded input queue.
Describe a situation in which each of the suggested
overflow-management strategies would be appropriate.

8-3 A parallel garbage collector proceeds by taking objects to
scan, one by one, off a per-thread queue. For each object
it has to examine each of its fields and generate a new
work item for each of the objects it encounters that has
not been seen before.

Discuss the merits of placing these items on the head of
the thread’s queue versus the tail.

When the queue is empty, discuss the merits of stealing
items from the head of another thread’s queue versus the
tail.

You do not need to consider the details of how a parallel
garbage collector would work, but you may find it useful
to consider how your algorithm would proceed with a
number of common data structures such as lists and trees.

Scalable synchronization Slide 8-12

Exercises (2)

8-4 Design a double ended queue supporting concurrent
push tail , pop head and push head operations. As
with Michael & Scott’s design, you should allow
operations on both ends to proceed concurrently
wherever possible.

8-5� Now consider supporting pop tail , pop head and
push head . Why is this a much more difficult problem?

8-6� Examine either the java.nio features for asynchronous
and non-blocking I/O in Java, or their equivalents in
POSIX. Implement a simple single-threaded web server
which can still manage separate clients.

Scalable synchronization Slide 8-13

Lecture 9: Implementing mutual exclusion

Previous lecture

➤ Work stealing

➤ Reducing contention for locks

➤ ConcurrentHashMap

Overview of this lecture

➤ Reducing contention for cache lines

➤ Simple spin-locks

➤ Queue-based locks

Scalable synchronization Slide 9-1

Setting, recap

Cache-coherent shared memory multiprocessor (MIMD),
with either uniform memory access from each CPU:

CPU
+cache

CPU
+cache

CPU
+cache

CPU
+cache

Memory

or non-uniform access (ccNUMA):

CPU
+cache

CPU
+cache

CPU
+cache

CPU
+cache

Memory

Memory

CPU
+cache

CPU
+cache

CPU
+cache

CPU
+cache

Interconnect

Scalable synchronization Slide 9-2

Setting, recap (2)

Memory access much faster when satisfied by a cache, e.g.
from Hennessy & Patterson for 17-64 processors:

Processor cycles
Cache hit 1
Local memory 85
Remote, in home directory 150
Remote, cached elsewhere 170

➤ Usually an item can be cached read-only by multiple
processors or read-write exclusively by one

➤ Locality between CPUs and local data is important

➤ Servicing cache misses will dominate execution time in
poorly designed algorithms (see Comp Arch for
uniprocessor examples)

➤ Stealing data cached elsewhere is usually worst of all (a
“three-hop miss”)

➤ Know the cache block size to prevent false contention

➤ Consumption of interconnect bandwidth is also a
concern

Scalable synchronization Slide 9-3

Basic spin-locks

Assume that we’ve got an operation CAS(compare and
swap) which acts on a single memory location

seen = CAS (&y, ov, nv);

➤ Look at the contents of y

➤ If they equal ov then write nv there

➤ Return the value seen

➤ Do all of this atomically

class BasicSpinLock {

private boolean locked = false;

void lock () {

while (CAS(&locked,false,true) != false) {}

}

void unlock () {

locked = false;

}

}

➤ What are the problems here?

Scalable synchronization Slide 9-4

Basic spin-locks (2)

✘ CASmust acquire exclusive access to the cache block
holding locked

✘ This block will ping-pong between all of the processors,
probably with the worst case “three-hop miss” penalty

✘ The interconnect will probably be saturated

✘ This will harm the performance of other processes on the
machine, including that of the thread holding the lock,
delaying its release

Is this any better:

class ReadThenCASLock {

private boolean locked = false;

void lock () {

while (CAS(&locked,false,true) != false) {

while (locked == true) { /*2*/ }

}

}

void unlock () { locked = false; }

}

Scalable synchronization Slide 9-5

Basic spin-locks (3)

✔ Threads now spin at /*2*/ and only go for the lock
when they see it available

✔ Any number of threads can now spin without causing
interconnect traffic

✘ They’ll stampede for the lock when it becomes available

Several options exist:

➤ Use a lock that allows greater concurrency (e.g. build
MRSW out of CAS)

➤ Introduce a purely-local delay between seeing the lock
available and going for it
� Count to a large random number
� Exponentially increase this
� Re-check the lock after counting

➤ Explicitly queue threads and arrange that the one at the
head of the queue acquires the lock next

Scalable synchronization Slide 9-6

MRSW locks

class MRSWLock {

private int readers = 0; // -1 => writer

void read_lock () {

int seen;

while ((seen = readers) == -1 ||

CAS(&readers, seen, seen+1) != seen) { }

}

void read_unlock () {

int seen = readers;

while (CAS(&readers, seen, seen-1) != seen)

seen = readers;

}

void write_lock () {

while (readers != 0 ||

CAS(&readers, 0, -1) != 0) { }

}

void write_unlock () {

readers = 0;

}

}

Scalable synchronization Slide 9-7

Linux “big reader” locks

➤ Supports read lock , read unlock , write lock ,
write unlock with usual MRSW semantics

➤ Assumes that read operations are much more common
than write operations

➤ Built from per-CPU MRSW locks

➤ A reader just acquires the lock for that CPU

➤ A writer must acquire all of the locks

locks in order

Reader uses 1 entry

Writer acquires

Locked: read

Locked: read

Locked: read

Locked: write

Locked: write

Unlocked

Unlocked

Unlocked

Scalable synchronization Slide 9-8

Queue-based spin locks

➤ Basic idea: each thread spins on an entirely separate
location and keeps a reference to who gets the lock next:

Thread 3

false

Thread 2

tail

nulltrue

Thread 1

true

➤ Each qnode has a next field and a blocked flag

➤ In this case thread 3 holds the lock and will pass it to 1
and then to 2

➤ A shared tail reference shows which thread is last in
the queue

➤ How do we acquire the lock (i.e. add a new node to the
queue) safely without needing locks?

➤ How does one thread ‘poke’ the next one in the queue to
get it to unblock?

Scalable synchronization Slide 9-9

Queue-based spin locks (2)

1. Suppose Thread 4 wants the lock. It prepares a new
qnode in private storage:

Thread 2

true null

tail

true null

Thread 4

2. It uses CASto update tail to refer to its node:

Thread 2

true null true null

Thread 4

tail

3. It writes to the next field of the previous tail:

true null

Thread 4

tail

Thread 2

true

4. Thread 4 now spins watching the flag in its qnode

Scalable synchronization Slide 9-10

Queue-based spin locks (3)

Suppose Thread 2 now holds the lock:

true null

Thread 4

tail

Thread 2

false

If next is non-null (as here), wake the successor:

tail

Thread 2

false null

Thread 4

false

If next is null then either (i) there really isn’t anyone
waiting or (ii) another thread is between steps 2 and 3 on
the previous slide:

➤ Thread 2 first tries to CASthe tail from itself to null
(leaving no-one waiting)

➤ If that fails then someone must be waiting: spin watching
next until the successor makes itself known

Scalable synchronization Slide 9-11

Queue-based spin locks (4)

➤ Note how the CASused to update tail serves to define
a total ordering between the threads that will acquire the
lock

➤ It is critical that CASreturns the value that is seen when it
makes its atomic update: this makes sure that each thread
is aware of its immediate predecessor

This queue-based spin lock can be decomposed into two
separate algorithms:

➤ The basic queue management using the next field:

qnode push_tail (qnode q);

qnode pop_head (qnode q);

push tail adds the qnode q to the tail of the queue
and returns the previous tail

pop head removes the qnode q from the head of the
queue and returns the new head

➤ ...and the actual blocking and unblocking

Scalable synchronization Slide 9-12

Exercises

9-1 The BasicSpinLock design is being used on a machine
with n processors. Each processor wants to briefly
acquire the lock and perform a small amount of
computation before releasing it. Initially the lock is held
and all processors are spinning attempting CAS
operations.

Each access to the locked field takes, on average, 170
cycles and therefore vastly dominates the cost of
executing other parts of the algorithm and indeed the
work performed while holding the lock.

Estimate how many cycles will elapse between the lock
first becoming available and all n processors having
completed their work.

9-2 Explain why the ReadThenCASLock would be likely to
perform better for even a moderate number of processors.
Discuss the merits of rewriting the lock method to be:

void lock () {

do {

while (locked == true) { }

} while (CAS(&locked,false,true) != false);

}

Scalable synchronization Slide 9-13

Exercises (2)

9-3 An implementation of Linux-style big reader locks for a
32-CPU machine uses the same basic scheme as the
MRSWLockin these slides, but defines the array as:

int readers[] = new int[32];

Why is this a bad idea?

9-4 Develop a pseudo-code implementation of a
queue-based spin lock, showing the memory accesses
and CASoperations that are used.

9-5� To what extent is the queue developed for queue-based
spin locks suitable as a general queue for work-stealing?
Show how it can be extended to support an operation

void push_head(qnode prev_head,

qnode new_head)

to push the qnode new head onto the head of the
queue, assuming that prev head is currently the head

Scalable synchronization Slide 9-14

Lecture 10: Programming without locks

Previous lecture

➤ Implementing mutual exclusion locks

➤ Reducing contention for cache lines

➤ Queue-based locks

Overview of this lecture

➤ What else can we build directly from CAS?

➤ Correctness criteria

➤ Strong progress guarantees

➤ Examples

Scalable synchronization Slide 10-1

Why?

Mutexes make it easy to ensure safety properties, but
introduce concerns over liveness:

➤ Deadlock due to circular waiting

➤ Priority inversion problems

➤ Data shared between an interrupt handler and the rest of
an OS

➤ Pre-emption or termination while holding locks

We’ve seen other performance concerns in this course:

➤ Programming with ‘a few big locks’ is easy, but may
prevent valid concurrent operations (e.g. reads & writes
on a hashtable using different keys)

➤ Programming with ‘lots of little locks’ is tricky (e.g.
red-black trees) and juggling locks takes time

➤ Balancing these depends on the system’s workload &
configuration

Scalable synchronization Slide 10-2

Non-blocking data structures

A non-blocking data structure provides the following
guarantee:

➤ The system as a whole can still make progress if any
(finite) number of threads in it are suspended

Note that this generally precludes the use of locks: if a lock
holder were to be suspended then the locked data structure
remain unavailable for ever

We can distinguish various kinds of non-blocking design,
each weaker than the one before:

➤ Wait free – per-thread progress bound

➤ Lock free – system wide progress bound

➤ Obstruction free – system wide progress bound if threads
run in isolation

Theoretical results show that CASis a universal primitive for
building wait free designs – i.e. it can build anything

Scalable synchronization Slide 10-3

Non-blocking data structures (2)

A simple example of why CAScan easily implement any
data structure:

➤ Suppose we have an complicated data structure without
any concurrency control, e.g.

class FibonacciHeap {

Object put(Object key, Object val) { ... }

...

}

➤ Access it through a level of indirection:

class LockFreeFibonacciHeap {

private FibonacciHeap fh =

new FibonacciHeap ();

Object put(Object key, Object val) {

FibonacciHeap copy, seen;

do {

seen = fh;

copy = seen.clone ();

copy.put (key, val);

} while (CAS (&fh, seen, copy) != seen);

}

...

}

Scalable synchronization Slide 10-4

Building directly from CAS

We’ll now look at building data structures from scratch using
CAS, e.g. consider inserting 30 into a sorted singly-linked
list:

tailhead

null10 4020

1. Search down the list for the node after which to make the
insert:

tailhead

20 null10 40

insert after

Scalable synchronization Slide 10-5

Building directly from CAS (2)

2. Create the new node in private storage:

tailhead

20

30

null10 40

3. Link it in using CASon its predecessor:

tailhead

20

30

null10 40

➤ The CASwill fail if the 20 node’s successor is no longer
the 40 node – e.g. if another thread has inserted a
number there

Scalable synchronization Slide 10-6

Correctness

Suppose we now build a lookup table with lists of
(key, value) pairs. We want to also ask question such as
“Which keys map to a particular value”.

The table initially maps the key 20 to the colour ‘red’

➤ One thread invokes key for(‘red’)

➤ Concurrently, a second thread invokes
insert(10, ‘red’) then delete(20)

➤ What are the answers allowed to be?

➤ A OK, B OK, X returns {10, 20} seems an intuitive option

➤ In that case, even though the operations take some time
to run, they appear to occur atomically at the marked
points:

X: key_for (’red’)

A: insert(10, ’red’) B: delete(20)

Scalable synchronization Slide 10-7

Correctness (2)

✔ A OK, B OK, X returns {20} corresponds to:

X: key_for (’red’)

A: insert(10, ’red’) B: delete(20)

✔ A OK, B OK, X returns {10} corresponds to:

X: key_for (’red’)

A: insert(10, ’red’) B: delete(20)

✘ A OK, B OK, X returns {} doesn’t correspond to any such
execution – there’s always some key associated with ‘red’

� Suppose the keys are simply held in order and CASis
used to safely add and remove (key,value) pairs

� The key for implementation traverses down the list,
gets to (say) 15, then A runs, then B, then X continues

Scalable synchronization Slide 10-8

Correctness (3)

This idea of correctness is known as linearisability:

➤ Each operation should appear to take place atomically at
some point between when its invoked and when it returns

➤ Notice that this is more restrictive than serializability

➤ A linearizable non-blocking implementation can be used
knowing only the operations it provides, not the detail of
how they are implemented

➤ In many implementations this means identifying a single
CASoperation (for updates) or a single memory read (for
read-only operations) which atomically checks and/or
updates all of the state that the result depends on

➤ Compound operations are still a problem – e.g. given two
hashtables with linearizable operations, how to we do a
‘transfer’ that doesn’t leave the item in both (or neither) in
the middle...

Scalable synchronization Slide 10-9

Current research

➤ Programming with fine-grained locks is hard...

➤ programming without locks is even harder :-(

➤ A nice abstraction is a software transactional memory
(STM) which holds ordinary values and supports
operations such as

void STMStartTransaction();

word_t STMReadValue(addr_t address);

void STMWriteValue(addr_t address, word_t val);

boolean STMCommitTransaction();

➤ The STM implementation ensures that all of the accesses
within a transaction appear to be executed in a
linearizable manner

➤ We’ve developed a range of STMs supporting lock-free
and obstruction-free updates

➤ In current research we’re evaluating their performance
and comparing ‘simple’ implementations of data
structures, using them, to carefully engineered data
structures (e.g. ConcurrentHashMap)

Scalable synchronization Slide 10-10

Current research (2)

➤ Another direction of research is exposing this to
mainstream programmers as a language extension, e.g.

atomica {

...

}

➤ Anything within an atomic block would be
implemented using the STM

➤ An extension to this is to allow threads to block
mid-transaction until an update is made to an address
that they are interested in, e.g.

do {

atomic (!full) {

full = true;

value = new_val;

done = true;

}

} while (!done);

➤ This would block the current thread until full is false
and then, atomically with that, perform the updates to
full , to value and to the local variable done

Scalable synchronization Slide 10-11

Summary

We’ve seen a range of techniques for designing scalable
concurrent applications for multiprocessors

The main points to remember:

➤ Lots of threads usually means lots of context switching:
using a moderate number (e.g. #processors if they are
CPU-bound) is often better

➤ Excessive contention and low locality will lead to poor
performance: try to ensure threads can proceed using
‘local’ resources as often as possible

➤ Designing scalable shared data structures is hard and
depends on the workload and the execution
environment: higher level programming abstractions may
help here

Scalable synchronization Slide 10-12

Exercises

10-1 Distinguish between the properties of a wait-free system,
a lock-free one and an obstruction-free one. Which is
most appropriate for a hard-real-time application? What
other aspects of the system must be considered in order
to guarantee meeting external deadlines?

10-2 Someone suggests performing deletions from a sorted
singly linked list by finding the element to delete and
using CASto update the next pointer contained in its
predecessor. Show why a solution based solely on this
approach is incorrect.

10-3 A new processor supports a DCASoperation that acts as
an atomic compare-and-swap on two arbitrary memory
addresses. Outline how DCAScan be used to perform
deletions from a sorted singly liked list.

10-4� Why would it be difficult to provide a wait free software
transactional memory (STM)?

Scalable synchronization Slide 10-13

