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Syllabus  
There are five section to these notes. 

1. Revision and The polygon. Revision of the ray tracing, polygon scan conversion, 
and line drawing methods of making images from 3D models; the pros and cons 
of each approach. [0.3 lecture] Drawing polygons. Hardware speed-ups. Polygon 
mesh management: data structures. [0.5 lecture]  

2. Other geometric primitives. Plane, sphere, cylinder, cone, box, disc, torus. Ray 
intersection calculations for ray tracing. Calculating the normal. Converting the 
primitives into polygons for use in polygon scan conversion. [1.2 lecture]  

3. Splines for modelling arbitrary 3D geometry. Splines are the industry standard 
3D modelling mechanism. We first revise Bezier curves and surfaces, then move 
on to consider B-splines, from uniform, non-rational B-splines through to non-
uniform, rational B-splines (NURBS). [2 lectures]  

4. Other ways to create complex geometry including Subdivision surfaces. 
Subdivision surfaces are an alternative mechanism for representing arbitrary 3D 
geometry. We look at them and consider the pros and cons when compared to 
NURBS [1 lecture]. We then consider other ways of creating geometry: 

Generative models: extrusion, revolution, sweeping, generalised cylinders.  
Constructive solid geometry (CSG): set theory applied to solid objects.  
Implicit surfaces and voxels: 3D pixels and the marching cubes algorithm. 

[2 lectures]  
5. Lighting. Revision of the basic diffuse + specular + ambient approximation. 

Radiosity: solving the inter-object diffuse reflection equations to produce more 
realistic images. [1 lecture]  

Why Advanced Graphics?  
The title "Advanced Graphics" dates from the year in which the course was first 
proposed. At this time a 16 lecture course on various advanced topics in graphics was 
envisaged. The course is now only 8 lectures long (the other 8 have been allocated to 
HCI). It is almost exclusively about 3D modelling techniques, so the course title is, 
perhaps, a little misleading. 3D modelling is important because it underpins all of the 
practical uses of 3D computer graphics.  
What's examinable?  
Everything except where explicitly noted otherwise. This means that anything that is 
covered in the lectures is examinable, even if it is not in the notes, and that anything 
that is in the notes is examinable, unless noted otherwise. If, for some reason, we do 
not get time to cover the final section of the course ("Lighting") in lectures, then that 
section will not be examinable.  
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Lecture handouts and supervision material  
Some of the lecture course material is available on the web 
(http://www.cl.cam.ac.uk/Teaching/current/AdvGraph). This material is also 
printed out to provide these lecture notes. Other material is bound in with these notes 
(this material cannot be put on the web for copyright reasons).There are exercises 
scattered throughout the notes. These can usually be found at the end of sections.  
Book list and their abbreviations  
The following books are referred to in the course. Each is preceded by the abbreviation 
used in these notes to refer to that book. 

FvDFH Foley, J.D., van Dam, A., Feiner, S.K. & Hughes, J.F. (1990). Computer 
Graphics: Principles and Practice. Addison-Wesley (2nd ed.). The traditional 
"bible" of Computer Graphics. It tends to be fairly terse on many topics but it 
has wide coverage of all of the basics.  
F&vD Foley J.D. & van Dam, A. (1984). Fundamentals of Interactive Computer 
Graphics. Addison-Wesley (1st ed.). The earlier version of FvDFH. It contains 
only about half of the material of the second edition, but is still fairly 
comprehensive about the basics of computer graphics.  
SSC Slater, M., Steed, A. & Chrysanthou, Y. (2002). Computer Graphics & 
Virtual Environments. Addison Wesley. A more recent book which covers all the 
basics. Also has sections on Constructive Solid Geometry (Ch. 18), Quadrics 
(also Ch. 18), Radiosity (Ch. 15), and an introduction to Bezier and B-Spline 
curves and surfaces (Ch. 19).  
R&A Rogers, D.F. & Adams, J.A. (1990). Mathematical Elements for Computer 
Graphics. McGraw-Hill (2nd ed.). A fairly thorough coverage of the 
mathematics of the 2D and 3D representation of shape as it was understood in 
the year of publication. Explains Bezier, B-spline, and NURBS curves and 
surfaces in great detail. Also covers conics and quadrics.  
Farin Farin, G. (2002, 5th ed.; 1997, 4th ed.). Curves and Surfaces for CAGD. 
Morgan Kaufmann (5th ed.). Academic Press (4th ed.). A good alternative source 
for information on Bezier, B-Spline, NURBS, and conics. Regurlarly updated 
since its original publication in 1988.  
W&W Warren, J. & Weimer, H. (2002). Subdivision Methods for Geometric 
Design. Morgan Kaufmann. The only book on the market devoted entirely to 
subdivision methods.  
Wyvill Wyvill, B. "A Computer Animation Tutorial" (1990) in Rogers, A. F. & 
Earnshaw, R. A. (eds) Computer Graphics Techniques: Theory and Practice. 
Springer-Verlag. Pages 258-268 give an introduction to implicit surfaces (Wyvill 
called them SOFT objects).  
GG I-V Graphics Gems I (1990) to Graphics Gems V (1995). Acadmic Press. A 
collection of five books containing a wide variety of algorithms for use in 
computer graphics. A wide range of tips, tricks and techniques is included.  

Other abbreviations  
RT ray tracing  
PSC polygon scan conversion (e.g. z-buffer)  
LD line drawing  
SMEG Some Mathematical Elements of Graphics, the mathematical supplement 
provided in the printed notes.  
Other material in the handout  
In addition to these notes I have included copies of the following: 

1. Lorenson and Cline's 1987 SIGGRAPH paper "Marching cubes: a high 
resolution 3D surface construction algorithm", Proc SIGGRAPH '87, pages 
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163–169. This is relevant to the section on voxels and that on marching cubes.  
2. Extracts from Rogers and Adams (R&A): table 4-8 (conics), figure 6-18 

(quadrics), and parts of sections 6-2 (surfaces of revolution), 6-3 (sweeps), 5-8 
(Bezier curves), 5-9 (B-splines), and 5-13 (NURBS).  

3. Some Mathematical Elements of Graphics (SMEG), my attempt to encapsulate 
the necessary mathematics for the work on ray tracing primitives (section 1), 
Bezier splines (section 2), B-splines (sections 3 and 4), and subdivision surfaces 
(section 5).  

4. The handwritten radiosity lecture notes.  
Note on copyright material  
The first two items in the above list are copyrighted material provided under the 
University of Cambridge's license from the Copyright Licensing Agency. This allows us 
to make one copy for each student and supervisor ("tutor") on the course within 
certain limits.These are: no more than three works and no more than 5% or one whole 
article or chapter from each work. This material is provided solely for the student's 
own study. Further copying of this handout is a breach of copyright.  
Be warned: to fit inside these limits I have heavily edited the extracts from R&A. In 
particular, I have included none of the worked examples. To thoroughly understand 
the material I suggest that you read this extract and then buy or borrow a copy of 
R&A in order to go through the examples.  
Why HTML?  
These notes are "typeset" in HTML. This was originally an experiment. HTML does 
not allow for particularly nice formatting in this printed copy of the notes. However, 
HTML does allow me to put a copy of the notes on the web, with full colour images 
(much better than the greyscale, half-toned images in this paper copy), and with lots of 
hyperlinks (especially in Part 1) for further investigation.  
Exercises  
Scattered throughout these notes are exercises. My thanks to Jonathan Pfautz and 
Andy Penrose (now both graduated with their PhDs) for some of the exercises.  

Exercises 

1. Exercises look like this. 
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1A) Ray tracing versus polygon scan 
conversion  
These are the two standard methods of producing images of three-dimensional solid objects. 
They were covered in some detail in the Part IB course. If you want to revise them then check 
out FvDFH sections 14.4, 15.10 and 15.4 or F&vD sections 16.6 and 15.5. Line drawing is 
also used for representing three-dimensional objects in some applications. It is briefly 
covered later on. 

Ray tracing 

Ray tracing has the tremendous advantage that it can 
produce realistic looking images. The technique allows a 
wide variety of lighting effects to be implemented. It also 
permits a range of primitive shapes which is limited only by 
the ability of the programmer to write an algorithm to 
intersect a ray with the shape. It is considered by many to 
be the natural or obvious way to render 3D objects. 

Ray tracing works by firing one or more rays from the eye 
point through each pixel. The colour assigned to a ray is the colour of the first object that it 
hits, determined by the object's surface properties at the ray-object intersection point and the 
illumination at that point. The colour of a pixel is some average of the colours of all the rays 
fired through it. The power of ray tracing lies in the fact that secondary rays are fired from 
the ray-object intersection point to determine its exact illumination (and hence colour). This 
spawning of secondary rays allows reflection, refraction, and shadowing to be handled with 
ease.  

Ray tracing's big disadvantage is that it is slow. It takes minutes, or hours, to render a 
reasonably detailed scene. Until recently, ray tracing had never been implemented in 
hardware. A Cambridge company, Advanced Rendering Technologies, has now done this. 
The quality of the images that they can produce is extraordinarily high compared with 
polygon scan conversion. This is their main selling point. However, ray tracing is so 
computationally intensive that it is not possible produce images at the same speed as 
hardware assisted polygon scan conversion. Other researchers are trying to do this by using 
multiple (dozens) processors, but ray tracing will always be slower than polygon scan 
conversion.  

Ray tracing therefore is only used where the visual effects cannot be obtained using polygon 
scan conversion. This means that it is, in practice, used by a minority of movie and television 
special effects companies, advertising companies, and enthusiastic amateurs.  
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Example 

This kitchen was rendered using the ray tracing 
program Rayshade, which has not been updated for 
ten years now. An alternative ray tracer, which is 
kept up to date, is POVray 
(http://www.povray.org/), with which you may like 
to experiment. It is worth visiting the POVray 
website to see the stunning imagery which has been 
produced using the ray tracer .  

These close-ups of the kitchen scene show 
some of the power of ray tracing. The kitchen 
sink reflects the wall tiles. The benchtop in 
front of the kitchen sink has a specular 
highlight on its curved front edge.  

The washing machine door is a perfectly curved object (impossible to 
achieve with polygons). The inner curve is part of a cone, the outer 
curve is a a cylinder. You can see the floor tiles reflected in the door. 
Both the washing machine door and the sink basin were made using 
CSG techniques (see Part 4C).  

The grill on the stove casts interesting shadows (there are two 
lights in the scene). This sort of thing is much easier to do with 
ray tracing than with polygon scan conversion.  

Polygon scan conversion 

This term encompasses a range of algorithms 
where polygons are rendered, normally one at 
a time, into a frame buffer. The term scan 
comes from the fact that an image on a CRT 
is made up of scan lines. Examples of polygon 
scan conversion algorithms are the painter's 
algorithm, the z-buffer, and the A-buffer 
(FvDFH chapter 15 or F&vD chapter 15). In 
this course we will generally assume that 
polygon scan conversion (PSC) refers to the z-buffer algorithm or one of its derivatives. 

The advantage of polygon scan conversion is that it is fast. Polygon scan conversion 
algorithms are used in computer games, flight simulators, and other applications where 
interactivity is important. To give a human the illusion that they are interacting with a 3D 
model in real time, you need to present the human with animation running at 10 frames per 
second or faster. Research at the University of North Carolina has experimentally shown 
that 15 frames per second is a minimum for immersive virtual reality applications. Polygon 
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scan conversion is capable of providing this sort of speed. The NVIDIA GeForce4 graphics 
processing unit (GPU) can process 136 million vertices per second in its geometry processor 
and 4.8 billion antialiased samples per second in its pixel processor. The GPU is capable of 
over 1.2 trillion operations per second.  

One problem with polygon scan conversion is that it can only support simplistic lighting 
models, so images do not necessarily look realistic. For example: transparency can be 
supported, but refraction requires the use of an advanced and time-consuming technique 
called "refraction mapping"; reflections can be supported -- at the expense of duplicating all 
of the polygons on the "other side" of the reflecting surface; shadows can be produced, by a 
more complicated method than ray tracing. Where ray tracing is a clean and simple 
algorithm, polygon scan conversion uses a variety of tricks of the trade to get the desired 
results. The other limitation of PSC is that it only has a single primitive: the polygon, which 
means that everything is made up of flat surfaces. This is especially unrealistic when 
modelling natural objects such as humans or animals, unless you use polygons that are no 
bigger than a pixel, which is what happens these days. An image generated using a polygon 
scan conversion algorithm, even one which makes heavy use of texture mapping, will tend to 
look computer generated.  

Examples 

 

Texture mapping is a simple way of making a PSC (or a RT) scene look better without 
introducing lots of polygons. The image above left shows a scene without any texture maps. 
The equivalent scene with texture maps is shown above right. Obviously this scene was 
designed to be viewed with the texture maps turned on. This example shows that texture 
mapping can make very simple geometry look interesting to a human observer. 

The image at left was 
generated using PSC. Texture 
mapping has been used to 
make the back and side walls 
more interesting. All the 
objects are reflected in the 
floor. This reflection is 
achieved by duplicating all of 
the geometry, upside-down, 
under the floor, and making 
the floor partially transparent. 

The close-up at right shows the reflection of the red ball, along with a circular "shadow" of 
the ball. This shadow is, in fact, a polygonal approximation to a circle drawn on the floor 
polygon and bears no relationship to the lights whatsoever. You will need to look at the 
version of these images on the Lab's website to see the images more clearly and in colour.  
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Environment mapping is another clever idea which makes PSC images look more realistic. In 
environment mapping we have a texture map of the environment which can be thought of as 
wrapping completely around the entire scene (you could think of it as six textures on the six 
inside faces of a big box). The environment map itself is not drawn, but if any polygon is 
reflective then the normal to the polygon is found at each pixel (this normal is needed for 
Gouraud shading anyway) and from this the appropriate point (and therefore colour) on the 
environment map can be located. You may note that finding the correct point on the 
environment map is actually a very simple (and easily optimised) piece of ray tracing. This 
example shows a silvered SGI O2 computer reflecting an environment map of the interior of 
a cafe.  

 

PSC is, of course, widely used in interactive games. Here we see an incautious opponent 
about to drive into our player's sights. The graphics are not particularly sophisticated: there 
are very few polygons in the scene, but the scene is made more interesting, visually, by using 
texture mapping. When playing the game people tend to worry more about winning (or, in 
some cases, not losing too badly) than about the quality of the graphics. Graphical quality is 
arguably more useful in selling the game to the player than in actual game play. Modern 
games have considerably more complexity in their models than this ten year old example. 
The game industry is what is currently driving the development of graphics card technology.  

Line drawing 

An alternative to the above methods is to draw the 3D model as a wire frame outline. This is 
obviously unrealistic, but is useful in particular applications. The wire frame outline can be 
either see through or hidden lines can be removed (FvDFH section 15.3 or F&vD section 
14.2.6). In general, the lines that are drawn will be the edges of the polygons which would 
be drawn by a PSC algorithm. 

Line drawing has historically been faster than PSC. However, modern graphics cards can 
handle both lines and polygons as about the same speed. Line drawing of 3D models is used 
in Computer Aided Design (CAD) and in 3D model design. The software which people use 
to design 3D models tends to use both LD in its user interface with PSC providing preview 
images of the model. It is interesting to note that, when R&A was first written (1976), the 
authors had only line drawing algorithms with which to illustrate their 3D models. The only 
figure in the entire book which does not use exclusively line drawing is Fig. 6-52, which has 
screen shots of a prototype PSC system.  

Out in the real world... 

3D graphics finds applications in three main areas: 
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visualisation -- scientific, medical, and architectural  
simulation -- for example, flight simulators  
entertainment -- movie and TV special effects and games  

Visualisation generally does not require realistic looking images. In science we are usually 
visualising complex three dimensional structures, such as protein molecules, which have no 
"realistic" visual analogue. In medicine we generally prefer an image that helps in diagnosis 
over one which looks beautiful. PSC is therefore normally used in visualisation (although 
some data require voxel rendering -- see Part 4D).  

Simulation uses PSC because it can generate images at interactive speeds. At the high (and 
very expensive) end a great deal of computer power is used. Ten years ago, the most 
expensive flight simulators (those with full hydraulic suspension and other fancy stuff) cost 
about £10M, of which £1,000,000 went on the graphics kit. Similar rendering power is 
available today on a graphics card which costs a couple of hundred pounds and fits in a PC.  

3D games (for example Quake, Unreal, Descent) use PSC because it gives interactive speeds. 
A lot of other "3D" games (for example SimCity, Civilisation, Diablo) use pre-drawn sprites 
(small images) which they simply copy to the appropriate position on the screen. This 
essentially reduces the problem to an image compositing operation, requiring much less 
processor time. The sprites can be hand drawn by an artist or created in a 3D modelling 
package and rendered to sprites in the company's design office. Donkey Kong Country, for 
example, was the first game to use sprites which were ray traced from 3D models.  

You may have noticed that the previous sentence is the first mention of ray tracing in this 
section. It transpires that the principal uses of ray tracing, in the commercial world, are in 
producing a small quantity of super-realistic images for advertising and in producing a small 
proportion of the special effects for film and television. Most special effects outdone using 
sophisticated PSC algorithms.  

The first movie to use 3D computer graphics was Star Wars [1977]. You may remember that 
there were some line drawn computer graphics toward the end of the movie. All of the 
spaceship shots, and all of the other fancy effects, were done using models, mattes (hand-
painted backdrops), and hand-painting on the actual film. Computer graphics technology 
has progressed incredibly since then. The recent re-release of the Star Wars trilogy included a 
number of computer graphic enhancements, all of which were composited into the original 
movie.  

A more recent example of computer graphics in a movie is the (rather bloodythirsty) Starship 
Troopers [1997]. Most of the giant insects in the movie are completely computer generated. 
The spaceships are a combination of computer graphic models and real models. The largest 
of these real models was 18' (6m) long: so it is obviously still worthwhile spending a lot of 
time and energy on the real thing.  

Special effects are not necessarily computer generated. Compare King Kong [1933] with 
Godzilla [1998]. The plots have not changed that much, but the special effects have 
improved enormously: changing from hand animation (and a man in a monkey suit) to swish 
computer generated imagery. Not every special effect you see in a modern movie is computer 
generated. In Starship Troopers, for example, the explosions are real. They were set off by a 
pyrotechnics expert against a dark background (probably the night sky), filmed, and later 
composited into the movie. In Titanic [1997] the scenes with actors in the water were shot in 
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the warm Gulf of Mexico. In order that they look as if they were shot in the freezing North 
Atlantic, cold breaths had to be composited in later. These were filmed in a cold room over 
the course of one day by a special effects studio. Film makers obviously need to balance 
quality, ease of production, and cost. They will use whatever technology gives them the best 
trade off. This is increasingly computer graphics, but computer graphics is still not useful for 
everything by quite a long way.  

A recent development is the completely computer generated movie. Toy Story [1995] was the 
world's first feature length computer generated movie. Two more were released in 1998 (A 
Bug's Life [1998] and Antz [1998]). Toy Story 2 [1999], Dinosaur [2000], Shrek [2001], 
Monsters Inc [2001], and the graphically less sophisticated Ice Age [2002] have followed. 
More are in the pipeline. Note the subject matter of these movies (toys, bugs, dinosaurs, 
monsters). It is still very difficulto model humans realistically and much research in 
undertaken in the field of realistic human modelling.  

PSC or RT for SFX? 

While RT gives a better range of lighting effects than PSC, we can often get acceptable 
results with PSC through the use of techniques such as environment mapping and the use of 
lots and lots and lots of tiny polygons. The special effects industry still dithers over whether 
to jump in and use RT. Many special effects are done using PSC, with maybe a bit of RT for 
special things (giving a hybrid RT/PSC algorithm). Toy Story, for example, used Pixar's 
proprietary PSC algorithm. It still took between 1 and 3 hours to render each frame 
(although you must remember that these frames have a resolution of 1526 by 922 pixels) 
and over 800,000 CPU hours were absorbed in the making of the movie (roughly a CPU 
century). More expensive algorithms can be used in less time if you are rendering for 
television (I estimate that about one sixth of the pixels are needed compared to a movie) or if 
you are only rendering a small part of a big image for compositing into live action. 

At SIGGRAPH 98 I had the chance to hear about the software that some real special effects 
companies were using. Two of these companies use RT and two are pretty happy using PSC. 

BlueSky|ViFX  
Everything is ray traced using CGI-Studio.  

Digital Domain  
Use ray tracing in commercial software, except when the commercial software cannot 
do what they want. Used MentalRay on Fifth Element [1997]; used Alias models 
(NURBS) passed to Lightwave (polygons) for one advertisement; used MentalRay plus 
Renderman for another advertisement.  

Rhythm + Hues  
Use a proprietry renderer, which is about 10 years old. It has been rewritten many 
times. They make only limited use of ray tracing.  

Station X  
Use Lightwave plus an internally developed renderer which is a hybrid between ray 
tracing and z-buffer.  

At Eurographics 2002 and SIGGRAPH 2002, it was apparent that little has changed over 
the last four years, and that PSC is still the technology of choice for almost all commercial 
applications of computer graphics. 
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1B) Polygon mesh management  
Relevant mainly to PSC and LD. 

Drawing polygons 

In order to draw a polygon, you obviously need to know its vertices. To get the shading 
correct you also need to know its normal. The direction of the normal tells you which side is 
the front of the polygon and which is the back. Many systems assume one-sided polygons: 
the front side is shaded and the back side either is coloured matt grey or black or is not even 
considered. This is sensible if the polygon is part of a closed polyhedron. In many 
applications, all objects consist of closed polyhedra; but you cannot guarantee that this will 
always be the case, which means that you will get unexpected results when the back sides of 
polygons are actually visible on screen. 

The normal vector does not need to be specified independently of the polygon's vertices 
because it can be calculated from the vertices. As an example: assume a polygon has three 
vertices, A, B and C. The normal vector can be calculated as: n = (C-B) x (A-B).  

Any three adjacent vertices in a polygon can be used to calculate the normal vector but the 
order in which the vertices are specified is important: it changes whether the vector points up 
or down relative to the polygon. In a right-handed co-ordinate system the three vertices must 
be specified anti-clockwise round the polygon as you look down the desired normal vector 
(i.e. as you look at the front side of the polygon). Note that, if there are more than three 
vertices in the polygon, they must all lie in the same plane, otherwise the shape will not be a 
polygon!  

Thus, for drawing purposes, we need to know only the vertices and surface properties of the 
polygon. The vertices naturally give us both edge and orientation information. The surface 
properties are such things as the specular and diffuse colours, and details of any texture 
mapping which may be applied to the polygon.  

Interaction with polygon mesh data 

The above is fine for drawing but, if you wish to manipulate the polygon mesh (for example, 
in a 3D modelling package), then is is useful to know quite a lot more about the connectivity 

Exercises 

1. Compare and contrast the capabilities and uses of ray tracing and polygon scan 
conversion.  

2. In what circumstances is line drawing more useful than either ray tracing or polygon 
scan conversion.  

3. (a) When is realism critical? Give 5 examples of applications where different levels of 
visual realism are necessary. Choose ray tracing or polygon scan conversion for each 
application and explain why you made your choice. (b) How would you determine 
what level of visual realism is `necessary' for a given application?  

4. "The quality of the special effects cannot compensate for a bad script." Discuss with 
reference to movies that you have seen.  
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of the mesh. For example: if you want to move a vertex, which is shared by four polygons, 
you do not want to have to search through all the polygons in your data structure trying to 
find the ones which contain a vertex which matches your vertex data. 

The winged-edge data structure is particularly useful for handling polygon mesh data. It 
contains explicit links for all of the relationships between vertices, edges and polygons, thus 
making it easy to find, for example, which polygons are attached to a given vertex, or which 
polygons are adjacent to a given polygon (by traversing the edge list for the given polygon, 
and finding which polygon lies on the other side of each edge).  

The vertex object contains the vertex's co-ordinates, a pointer to a list of all edges of which 
this vertex is an end-point, and a pointer to a list of all polygons of which the vertex is a 
vertex.  

The polygon object contains (a pointer to) the polygon's surface property information, a 
pointer to a list of all edges which bound this polygon, and a pointer to an ordered list of all 
vertices of the polygon.  

The edge object contains pointers to its start and end vertices, and pointers to the polygons 
which lie to the left and right of it.  

  

The above diagram shows just one possible implementation of a polygon mesh data 
structure. FvDFH section 12.5.2 describes another winged-edge data structure which 
contains slightly less information, and therefore requires more accesses to find certain pieces 
of information than the one shown above. The implementation that would be chosen 
depends on the needs of the particular application which is using the data structure. With 
regard to surface properties, another alternative would be to attach shading information to 
vertices rather than to polygons. This could then be used to Gouraud shade or Phong shade 
the polygons.  

F&vD section 13.2 also contains a bit of information on polygon meshes. 

Advanced Graphics Study Guide, 2002-03

14/10/2002



In general, we will want a polygon mesh to form a manifold surface. This is where the 
neighbourhood of every point is topologically equivalent to a disc (except at the edges of the 
manifold, where it is topologically equivalent to a half disc). The principal upshot of this is 
that each edge in the polygon mesh can be the edge of either one or two polygons, no more 
and no less. The trade-off is between ease of extracting information and ease of updating the 
data structure.  

Hardware PSC quirks 
A piece of PSC hardware, such as the Silicon Graphics Reality Engine or the NVIDIA 
GeForce family of graphics cards, will generally consist of a geometry engine and a rendering 
engine. The geometry engine will handle the transformations of all vertices and normals (and 
possibly handle some of the shading calculations). The rendering engine will implement the 
PSC algorithm on the transformed data. Modern graphics cards allow for user programming 
in both the geometry and rendering engine. Machine instructions are provided for the usual 
operations (addition, multiplication), and also for such necessary things as taking the dot 
product of two vectors. In both geometry and rendering engine the user is extremely limited 
in the number of instructions (currently about 128 maximum in the program), the number of 
available working registers (about 12), and the fact that there is no mechanism for jumps or 
loops, nor for general memory access. On recent NVIDIA cards, the information which is 
passed to the geometry engine, for a single vertex, is position, weight, normal, primary and 
secondary colour, fog coordinate, and eight texture coordinates; all sixteen of these are 
floating-point four-component vectors. The output from the geometry engine is 
homogeneous clip space position, primary and secondary colours for front and back faces of 
the polygon, fog coordinate, point size, and texture coordinate set; where they are all again 
floating-point four-component vectors except for the output fog coordinate and the point 
size. You are not expected to remember all of these input and output registers, but they give 
you an idea of the complexity of the processing which can go on inside a graphics card. 

Triangles only 

When making a piece of hardware to render a polygon, it is much easier to make the 
hardware handle a fixed number of vertices per polygon, than a variable number. Many 
hardware implementations thus simply implement triangle drawing. This is not a serious 
drawback. Polygons with more vertices are simply split into triangles. 

The triangle strip set and triangle fan set 

In addition to simple triangle drawing, Silicon Graphics machines implement both the 
triangle strip set and triangle fan set to speed up processing through the geometry engine. 
Each triangle in the set has two vertices in common with the previous triangle. Each vertex is 
transformed only once by the geometry engine, giving a factor of three speed up in geometry 
processing. 

For example, assume we have triangles ABC, BCD, CDE and DEF. In standard triangle 
rendering, the vertices would be sent to the geometry engine in the order ABC BCD CDE 
DEF; each triangle's vertices being sent separately. With a triangle strip set the vertices are 
sent as ABCDEF; the adjacent triangles' vertices overlapping. 
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A triangle fan set is similar. In the four triangle case we would have triangles ABC, ACD, 
ADE and AEF. The vertices would again be sent just as ABCDEF. It is obviously important 
that the rastering engine be told whether it is drawing standard triangles or a triangle strip 
set or a triangle fan set.  

The vertex cache 

The triangle strip and fan sets work because there is a vertex cache which can hold all the 
relevant data about two vertices. More recent graphics cards have a vertex cache which can 
hold the twenty most recently used vertices, hence obviating the need to be explicitly specify 
fan sets and strip sets, although you still need to send the triangles to the card in some 
reasonably coherent order. 

2A) Ray tracing primitives  
Relevant mainly to RT. 

A primitive is a shape for which a ray-shape intersection routine has been written. More 
complex objects can be built out of the primitives. Most ray tracers will have a variety of 
primitives. They are limited only by the ability of the programmer to write a function to 
analytically intersect a ray with the surface of the shape.  

For practical experience, download and play with either POVray (http://www.povray.org/) 
or Rayshade (http://graphics.stanford.edu/~cek/rayshade/).  

Exercises 

1. Calculate both surface normal vectors (left-handed and right-handed) for a triangle 
with points (1, 1, 0), (2, 0, 1), (-1, -2, -1).  

2. Confirm that the following statements provide a good definition of a reasonable 
polygon mesh: 

a. A vertex belongs to at least two edges.  
b. A vertex is a vertex of at least one polygon.  
c. An edge has exactly two end points.  
d. An edge is an edge of either one or two polygons.  
e. A polygon has at least three vertices.  
f. A polygon has at least three edges. 

3. Work out the algorithm that is required to modify a winged-edge data structure when 
an edge is split. You may ignore surface property information for the polygons and 
you may assume that the edge that is split is split exactly in half. The algorithm could 
by called by the function call: 
split_edge( vertex_list v, edge_list e, polygon_list p, edge
edge_to_split) 
where the winged-edge data structure is made up of the three linked lists of objects 
(vertices, edges, and polygons).  

4. [2002/7/9] Describe the situations in which it is sensible to use a winged-edged data 
structure to represent a polygon mesh and, conversely, the situations in which a 
winged-edged data structure is not a sensible option for representing a polygon mesh. 
What is the minimum information which is required to successfully draw a polygon 
mesh using Gouraud shading? [4 marks]  
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Common primitives 

SMEG section 1 contains the mathematics of ray-primitive intersections. This section of the 
study guide gives you an overview. You should read the two documents together. Plane 
The infinite plane is a simple object with which to intersect a ray. On its own it can represent 
boundary objects such as the ground or the sky or perhaps an infinite wall. Intersection with 
the infinite plane is a useful building block in a ray tracing system.  

Polygon 
Having the polygon as a ray tracing primitive allows a ray tracer to 
render anything that a PSC algorithm could. To find the intersection of a 
ray with a polygon, first find the intersection of the ray with the infinite 
plane in which the polygon lies. Then ascertain whether the intersection 
lies inside or outside the polygon: this is a reasonably straightforward 
two dimensional graphics operation.  

Box 
A box is essentially six polygons and could be ray traced as such. 
However, intersection with an axis-aligned box can be optimised. Any 
box can be axis-aligned by appropriate transformations. We can thus 
write a routine to intersect an arbitrary ray with an axis-aligned box and 
then transform the ray under consideration in exactly the same way as 
we transform the box which we are trying to intersect with it. This sort 
of idea generalises neatly to the concept of specifying any object in a convenient object 
coordinate system and then applying transforms to the whole object to place it at the 
appropriate point in the world coordinate system.  

Sphere 
The sphere is the simplest finite object with which to intersect a ray. 
Practically any ray tracing program will include the sphere as a primitive. 
Scaling a sphere by different amounts along the different axes will 
produce an ellipsoid: a squashed or stretched sphere. There is thus no 
need to include the ellipsoid as a primitive provided that your ray tracer 
contains the usual complement of transformations. (It would be a poor 
ray tracer if it did not!)  

Cylinder 
Intersecting a ray with an infinitely long cylinder is practically as easy as 
intersecting one with a sphere. The tricky bit, if it can be called that, is to 
intersect a ray with a more useful finite length cylinder. This is achieved 
by intersecting the ray with the appropriate infinitely long cylinder and 
then ascertaining where along the cylinder the intersection lies. If it lies in 
the finite length in which you are interested then keep the intersection. If 
it does not then ignore the intersection. Note that the ray tracer used to render the 
accompanying image has cylinders without end caps. This is the correct result if you follow 
the procedure outlined in this paragraph. Adding end caps to your cylinders requires extra 
calculations.  
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Cone 
Cones are very like cylinders. Like the infinite cylinder, there is a simple 
mathematical definition of an infinite cone which makes it easy to write a 
ray-cone intersection algorithm. Note that a cone does not need to have a 
point -- it can be truncated short of its `top', as illustrated in the 
accompanying image. The particular ray tracer used does not add end 
caps to cones.  

Disc 
The disc is essential in ray tracers which implement cones and cylinders 
without end caps. It is handled in much the same way as the polygon. 
The routine to check if the intersection with the plane lies inside or 
outside of the disc is simpler than the equivalent routine for the polygon. 
In the accompanying ray traced image, the disc has been positioned so 
that it just catches the light -- this illustrates how specular reflection 
varies across a completely flat surface. The sphere, cone and torus images illustrate how 
specular reflection varies across three curved surfaces.  

Torus 
Toroids are reasonably rare in real life (doughnuts and tyre inner tubes 
notwithstanding). They are somehow alluring to the kinds of people who 
implement ray tracers and, having a reasonably straightforward 
mathematical definition, are reasonably simple to implement. They thus 
appear as primitives in many ray tracers. They become more useful when 
combined with Constructive Solid Geometry (see Part 4C).  

Converting ray tracing primitives to polygons 

If one wishes to use the curved primitives (sphere, cylinder, cone, torus, disc) with PSC then 
they must be converted to polygons. This is covered in SMEG section 1.5. 

Exercises 

1. Give mathematical equations which define a plane, a sphere, an infinitely long 
cylinder, an infinitely long cone, and a torus. You will find it helpful to centre each 
primitive at the origin and to align it in a sensible way with respect to the coordinate 
axes. As a starting point remember that a circle can be represented by the 
equation:   

2. Show how to intersect a ray with each of the five primitives from question 1. You 
may assume that you are provided with functions to find the roots of linear, 
quadratic, cubic and quartic equations. Show how to compute the normal vector at 
the intersection point.  

3. Show how to intersect a ray with a finite length closed cylinder. Ensure that you 
handle all special cases, including that of a ray which is parallel to the axis of a finite 
length cylinder. Give both intersection point and normal vector for all cases in which 
an intersection occurs.  

4. Give a complete algorithm for intersecting a ray with a finite length closed cone, 
including calculation of both intersection point and normal vector.  

5. Work out if there exists a faster intersection algorithm for an axis aligned 2x2x2 unit 
box than just six separate polygon intersection calculations.  

Advanced Graphics Study Guide, 2002-03

14/10/2002



2B) Conics, quadrics, and superquadrics  
The ray tracing primitives, described in Part 2A, have relatively simple mathematical 
definitions. This is what makes them attractive: the simple mathematical definition allows 
for simple ray-object intersection code. Following from this, it would seem logical to 
investigate other shapes with simple mathematical definitions. Spheres, cones and cylinders 
are part of a more general family of parametric surfaces called quadrics (N.B. tori are not 
quadrics). Quadrics are the 3D analogue of 2D conics. We describe these general families 
below, but it turns out that they are of little practical use. It would seem that the general 
quadrics are a "dead end" in graphics research. 

Conics 

A conic is a two dimensional curve desribed by the general equation: 

  
This general form can be rotated, scaled, and translated so that it is aligned along the axes of 
the coordinate system. It will then have the simpler equation: 

6. Show how to convert a cylinder into a polygon mesh. What changes do you have to 
make if the mesh may contain only triangles?  

7. Show how to convert a torus into a polygon mesh.  
8. Show how to convert a sphere into a triangle mesh. How can you get the most even 

distribution of triangle vertices across the sphere?  
9. [1999/7/11] (a) Give a parametric definition of a torus centred at the origin and 

aligned with the coordinate axes. (b) Outline how you would find the first 
intersection point, if any, of a ray with the torus from the previous part.  

10. [2000/9/4] (a) Show how you would calculate the first intersection point between an 
arbitrary ray and a finite length open cylinder of unit radius aligned along the x-axis. 
[Note: an open cylinder is one which has no end caps.] Having found the intersection 
point, how would you find the normal vector?  

11. [2001/7/9] (b) (i) Show how to find the first intersection between a ray and a finite-
length, open-ended cone, centred at the origin, aligned along the x-axis, for which 
both ends of the finite-length are on the positive x-axis (i.e. 0 < xmin < xmax). [6 
marks] 
(ii) Extend this to cope with a closed cone (i.e. the same cone, but with end caps). 
Take care to consider any special cases. [5 marks] 
(iii) Extend this further to give the normal vector at the intersection point. [3 marks]  

12. [2002/7/9] (a) A disc is a finite, planar, circular object. Describe an algorithm to find 
the point of intersection of an arbitrary ray with an arbitrary disc in three dimensions. 
Ensure that you describe the parameters used to define both the ray and the disc. [6 
marks] 
(b) Given the above algorithm and an algorithm to find the intersection of an 
arbitrary ray with a finite-length open cylinder, a programmer has two choices for 
implementing an algorithm to find the intersection with a finite-length closed 
cylinder. She could simply use the finite-length open cylinder primitive and two disc 
primitives. Alternatively she could implement the finite-length closed cylinder as a 
primitive in its own right by adding extra code to the open cylinder algorithm. 
Compare the two alternatives in terms of effciency and accuracy. [4 marks]  
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The useful conics are the ellipse (of which the circle is a special case), the hyperbola, and the 
parabola. For more details see R&A section 4-10, especially Table 4-8 on page 242. Table 4-
8 is included in the handout. 

Quadrics 

The quadrics are the three dimensional analogue of the conics. The general equation is:  

  
This general form can be rotated, scaled, and translated so that it is aligned along the axes of 
the coordinate system. It will then have the simpler equation: 

  
The useful conics are the ellipsoid (of which the sphere is a special case), the infinite cylinder, 
and the infinite cone. Various hyperboloids, and paraboloids are also defined by these 
equations, but these have little real use unless one is designing satellite dishes (paraboloid), 
headlamp reflectors (also paraboloid), or power station cooling towers (hyperboloid). For 
more details see R&A section 6-4, especially Figure 6-18 on page 403. Figure 6-18 is 
included in the handout. 

Superquadrics 

These are an extension of quadrics, where the power on the coordinate does not have to be 
2. The general form of a superquadric centred at the origin and aligned along the coordinate 
axes is: 

  

Super-ellipsoids tend to be the only members of this family that are actually used, and even 
they are only used in very limited areas. The effect of n on a super-ellipsoid is roughly as 
follows: n=2 is a standard ellipsoid; n<2 is a more pointy version, the "points" being along 
the main axes; n>2 becomes closer to a box as n increases; n=1 is an octahedral shape; and 
n<1 is truly pointy along the main axes.  

The interested student may like to have a quick look at Alan Barr's two papers on 
superquadrics. The papers can be found in the Computer Laboratory library in IEEE 
Transactions on Computer Graphics and Applications volume 1, number 1 (January 1981), 
pages 11-23, and volume 1, number 3 (July 1981), pages 41-47.  

Brian Wyvill describes a use of super-ellipsoids on pages 264 and 265 of "A Computer 
Animation Tutorial" in Computer Graphics Techniques: Theory and Practice, Rogers and 
Earnshaw (editors), Springer-Verlag, 1990 (Wyvill).  

3A) Bezier curves  
Bezier curves were covered in the Part IB Computer Graphics and Image Processing course. 
SMEG section 2 gives some of the mathematical details, as does R&A Section 5-8. Parts of 
this Section of R&A are included in the handout. 

If you want to experiment with Bezier curves then there are a number of on-line tutorials. 
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One such is: 
http://www.cs.technion.ac.il/~cs234325/Homepage/Applets/applets/bezier/html/  

3B) B-splines  
B-splines are covered in some detail in SMEG section 3 and in R&A Section 5-9. Parts of 
this Section of R&A are included in the handout. Beware that none of the worked examples 
are in the handout. These may come in useful, and you will need to get hold of a real copy of 
R&A if you wish to work your way through them. 

Why B-splines? 

B-splines have many nice properties when compared to other families of curves which could 
be used. They: 

minimise the order of the polynomial pieces (order k)  
maximise the continuity between pieces (continuity C(k-2))  
minimise the number of control points controlling a piece (k points)  
have positive basis functions  
have basis functions which partition unity, implying that each piece lies inside its 
control points' convex hull  
are invarient with respect to affine transforms  

Exercises 

1. Explain what C0-, C1-, C2-, Cn-continuity mean.  
2. Derive the constraints on control point positions which ensure that two quartic Bezier 

curves join with (a) C0-continuity, (b) C1-continuity, and (c) C2-continuity.  

Exercises 

1. How many control points are required for a quartic Bezier and how many for a 
quartic B-spline?  

2. Why are cubics the default for B-spline use?  
3. Explain the difference between Uniform, Open Uniform, and Non-Uniform knot 

vectors. What are the advantages of each type?  
4. [2000/9/4] (b) A non-rational B-spline has knot vector [1,2,4,7,8,10,12]. Derive the 

first of the third order (second degree) basis functions, N1,3(t), and graph it. 
If this knot vector were used to draw a third order B-spline, how many control points 
would be required? [7 marks]  

5. [2001/8/4] (a) For a given order, k, there is only one basis function for uniform B-
splines. Every control point uses a shifted version of that one basis function. How 
many different basis functions are there for open-uniform B-splines of order k with n 
+ 1 control points, where n >= 2k - 3? [6 marks] 
(b) Explain what is different in the cases where n < 2k - 3 compared with the cases 
where n >= 2k - 3. [3 marks] 
(c) Sketch the different basis functions for k = 2 and k = 3 (when n >= 2k - 3). [4 
marks] 
(d) Show that the open-uniform B-spline with k = 3 and knot vector [ 0 0 0 1 1 1 ] is 
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3C) NURBS  
NURBS are covered in SMEG section 4 and in some detail in R&A Section 5-13. Parts of 
this Section of R&A are included in the handout. 

Non-uniform rational B-splines are the curves that are currently used in any graphics 
application that requires curves and surfaces with more functionality than Bezier curves can 
offer. In addition to the features listed in Part 3B, NURBS are invarient with respect to 
perspective transforms.  

NURBS are generally rendered by converting them to lots of small polygons and then using 
PSC. They can also by ray traced, but a general analytic ray-NURBS intersection algorithm is 
a nightmare, so numerical techniques are used to find the intersection point.  

NURBS curves incorporate -- as special cases -- uniform B-splines, non-rational B-splines, 
Bezier curves, lines, and conics. NURBS surfaces incorporate planes, quadrics, and tori. Note 
that this does not quite mean what it says. It is tricky to get NURBS to represent infinite 
surfaces, but they can certainly represent finite sections of infinite surfaces such as planes, 
parabaloids, and hyperboloids.  

If you want to experiment with NURBS curves then there are a number of on-line tutorials. 
One such is: 
http://www.cs.technion.ac.il/~cs234325/Homepage/Applets/applets/bspline/html/  

equivalent to the quadratic Bezier curve. [7 marks]  
6. [2002/7/9] (d) Derive the formula of and sketch a graph of N3,3(t), the third of the 

quadratic B-spline basis functions, for the knot vector [ 0 0 0 1 3 3 4 5 5 5 ]. [6 
marks]  

Exercises 

1. Review from IB: What are homogeneous coordinates and what are they used for in 
computer graphics?  

2. Explain how to use homogeneous coordinates to get rational B-splines given that you 
know how to produce non-rational B-splines.  

3. What are the advantages of NURBS over Bezier curves? (i.e. why have NURBS, in 
general, replaced Bezier curves in CAD?)  

4. Show that you understand why NURBS includes Uniform B-splines, Non-Rational B-
splines, Beziers, lines, conics, quadrics, and tori.  

5. [1998/7/12] Consider the design of a user interface for a NURBS drawing system. 
Users should have access to the full expressive power of the NURBS representation. 
What things should users be able to modify to give them such access and what effect 
does each have on the resulting shape? [6 marks]  

6. For each of the items (in the previous question) that the user can edit: (i) Give sensible 
default values; (ii) Explain how they would be constrained if a `demo' version of the 
software was to be limited to cubic Uniform Non-rational B-Splines.  

7. [1999/7/11] (c) Show how to construct a circle using non-uniform rational B-splines 
(NURBS). [8 marks] 
[This question is ludicrously hard unless you remember the worked example in SMEG 
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4A) Generative models  

Sweeps 

These are three dimensional objects generated by sweeping a two dimensional shape along a 
path in 3D. Two special cases of the sweep are surfaces of revolution, where the path is a 
circle; and extrusions, where the path is a straight line. 

Surfaces of revolution are covered in R&A section 6-2. Sweeps are covered in R&A section 
6-3 and FvDFH section 12.4. Parts of Sections 6-2 and 6-3 of R&A are included in the 
handout.  

Extrusion 

 

On the left (above) is an example extrusion. On the right is its generating polygon (the red 
star), with the generated 3D object shown in semi-transparent cyan. 

Section 4.1 or R&A pages 371-375.] 
(d) Show how the circle definition from the previous part can be used to define a 
NURBS torus. [4marks] 
[You need explain only the general principle and the location of the torus' control 
points.]  
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Surface of revolution 

 

On the left (above) is an example surface of 
revolution. On the right (above) is its generating 
quadrilateral (the red polygon), with the generated 
3D object shown in semi-transparent cyan. Below 
that is another view of the same surface of 
revolution.  
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Revolution or extrusion? 

 

Some objects can be generated in more than one 
way. The hollow cylinder shown above (left) could 
be generated as either a surface of revolution (above 
right) or as an extrusion (immediately right).  

General sweeps 

If we push the idea of a sweep to its limit we can think of many things which could be 
modified to produce a three dimensional swept shape: 

Cross section  
Some two dimensional shape that is to 
be swept along the sweep path. It does 
not have to be circular. At right are two 
swept objects, one with a circular cross-
section, one with a polygonal cross-
section.  

Sweep path  
The 
path 
along 
which 
the two 
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dimensional 
cross section is swept to produce the three dimensional shape. It may be any curve. At 
right we see two views of the same swept object: a polygonal cross-section is swept 
along a convoluted path.  
Twist  
How the cross section twists 
(rotates) as it moves along the 
sweep path. The default would 
be to have no twist at all. At 
right is a swept object with 
and without some twist.  

Scale  
 

How the cross section scales (changes size) as it moves along the sweep path. The 
default would be to have it stay the same size along the whole path. Above are a 
cylinder, and the same cylinder with different scales along its length.  
Normal vector direction  
The normal vector of the 2D cross section will usually point along the sweep path at 
each point. Changing this will change the nature of the swept object. See R&A Figure 
6-17 (in the handout) for an example.  

At right is a swept object with a circular cross-
section, semi-circular path, and varying scale. 

You may be able to think of parameters, other 
than those in the list above, which could be 
modify. The examples given here were all 
generated using a generalised cylinder tool from 
Silicon Graphics would could vary cross-section, 
path, twist and scale. This is sufficient for most purposes. The input to such a system will 
either be NURBS curves or polylines. The output will be a NURBS surface or a polygon 
mesh.  
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Exercises 

1. [1998/7/12] Show how the following object can be represented as a swept object. 

   
 

2. Use the following different methods of specifying a geometrical model for this picture 
(assuming it's a three dimensional model and not a line drawing). Come as close as 
you can to the original for any of the methods, and describe the difficulties in using a 
particular method for this model. 

 
a. Extrusions  
b. Surfaces of revolution  
c. General sweeps, more complex than either extrusion or surface or revolution.  

3. For each of the following categories list five real-world objects which could be 
represented by the primitives in the category. 

a. The ray-tracing primitives in Part 2A  
b. Extrusions  
c. Surfaces of revolution  
d. General sweeps  

4. A flume (water tunnel) at a swimming complex is modeled as a circle swept along a 
particular path. The designers also want to model the volume swept out by a person 
traveling down the flume. (We can approximate the cross-section of a person with 
something roughly elliptical and we'll assume the `virtual' person doesn't move legs or 
arms while hurtling along.) Explain which parameters in the list would be need to be 
modified to specify the shape of the flume and which would need to be modified to 
model the volume swept out by a person traveling down the flume (alternatively, 
specify which parameters would be held constant, in each case, for the entire length of 
the sweep).  
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4B) Converting swept objects to polygons  
Swept objects are hard to ray trace. Imagine trying to write a ray/object intersection 
algorithm for a general swept object. This means that we generally need to polygonise swept 
objects in order to render them. For PSC we obviously must convert them to polygons.  

A swept surface may be easily converted to polygons by converting the outline of the 2D 
cross section to a polygon, and converting the sweep path to connected set of line segments. 
Moving the polygon to each vertex of the set of line segments, and connecting vertices 
accordingly, will produced a polygon mesh which approximates the swept surface.  

4C) Constructive Solid Geometry  
Constructive solid geometry (CSG) essentially consists of Boolean set operations on closed 
primitives in 3D space. The three CSG operations are union, intersection and difference. 

CSG is covered in FvDFH sections 12.7 and 15.10.3.  

The following example illustrates the three CSG operations in use on simple three 
dimensional primitives.  

The two primitives: a sphere and a box.  

The union of the two primitives.  

The intersection of the two primitives.  

The difference of the two primitives: box minus sphere.  

Exercises 

1. [1998/7/12] Show how to convert the swept object from Part 4A Exercise 1 into 
polygons. What extra work would you need to do if you had to convert it into 
triangles?  
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The following example, based on FvDFH Plate III.2, shows an object for which CSG is 
(probably) the only sensible modelling technique. The object rendered in the right-hand 
image is constructed from the primitives shown in the left-hand image. It is mostly made out 
of cylinders, but you will recognise the extruded star from Part 4A.  

 

At right, I tried the "Godel, Escher, Bach" 
treatment on my initials. Unfortunately the 
letters N, A, and D are not as amenable to this 
as the letters G, E, and B: notice that the 
shadow of the N has a slight curve at its top 
right, owing to the N's intersection with the 
curve on the D and the slope on the A. Various 
other arrangements of the three letters were 
tried, all of which gave more noticable 
artefacts than this. Each of the letters is a CSG 
object (the D, for example, is constructed from 
cylinders and boxes). The final effect is 
produced simply by intersecting the three 
letters.  

More information is required to fully understand how CSG can be raytraced. Some of this is 
given in SSC Chapter 18. 

Exercises 

1. Work out how to represent a Lego technic brick as a CSG object. You may assume 
that you have box and cylinder primitives. 
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4D) Implicit surfaces, voxels and the 
marching cubes algorithm  

Implicit surfaces 

These are covered in Wyvill (see introduction to this study guide for the full reference). 
introduction to implicit surfaces on his website at the University of Calgary. For those 
reading the printed notes, the place to go is: 
http://pages.cpsc.ucalgary.ca/~blob/currentwork.html. Click on "Implicit Tutorial" 
for the introduction to implicit surfaces mentioned about. Click on the other links to explore 
the wonderful world of implicit surfaces. 

Voxels and the marching cubes algorithm 

Voxels are the three dimensional analogue of pixels. Rather than storing a colour in a voxel, 
you will generally store a density value. Voxels and the marching cubes algorithm are both 

   
 

2. [1998/7/12] Work out how to represent the following object using CSG. You may 
assume the following primitives: sphere, cylinder, cone, torus, box. 

   
 

3. [1999/9/4] (c) List the three ways of combining objects using constructive solid 
geometry (CSG). Describe how an object built using CSG can be represented using a 
binary tree. Given the intersection points of a ray with each primitive in the tree, 
explain how these points are passed up the tree by each type of combination node to 
produce a list of intersection points for the whole CSG object. [8 marks]  

4. [2002/8/4](c) Describe how an object built using constructive solid geometry (CSG) 
can be represented using a binary tree. Given the intersection points of a ray with 
each primitive in the tree, show how to calculate the first intersection point of the ray 
with the entire CSG object. [6 marks]  
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covered in Lorenson and Cline's 1987 SIGGRAPH paper "Marching cubes: a high resolution 
3D surface construction algorithm", Proc SIGGRAPH 87, pages 163-169. This paper is 
included in the handout. One of the reasons for including the paper is to give you a taster of 
what a good graphics research paper looks like. Two of the exercises relate to evaluating this 
paper in terms of (i) its research content and (ii) its written style.. 

4E) Subdivision surfaces  
Subdivision schemes work by taking a coarse polygon mesh and introducing new vertices to 
create a finer mesh. Iterating this process several times creates a very fine mesh of polygons. 
Given that we are interested in drawing things only to a certain level of accuracy (there is no 

Exercises 

1. Give a definition of an implicit surface and give three examples of where such things 
might be useful.  

2. Explain how voxel data can be thought of a defining an implicit surface (or surfaces). 
Explain, conversely, an implicit surface can be converted into voxel data.  

3. Following Section 4 of Lorenson and Cline's paper, sketch an implementation of the 
two-dimensional `marching squares' algorithm -- where you generate line segments in 
2D rather than triangles in 3D. An appliation of this algorithm would be the drawing 
of isobars on a weather map, given pressure values at a regular (2D) grid of points. 
[This question is practically identical to the exam question below.]  

4. [2001/7/9] (a) The marching squares algorithm is a two-dimensional version of 
marching cubes, where you generate line segments in 2D rather than triangles in 3D. 
It could be used, for example, where you have a regular grid of height values and 
want to draw contours of constant height. Sketch an implementation of this two-
dimensional marching squares algorithm. [6 marks]  

5. Medical data is captured in slices. Each slice is a 2D image of density data. The 
distance between slices may be different to the distance between the pixels within a 
slice (for example, see Lorenson and Cline, Section 7.1, p. 167). What effect, if any, 
does this difference have on the voxel data? What effect, if any, does it have on the 
marching cubes algorithm?  

6. Consider Lorenson and Cline, Section 6. This research was done about fifteen years 
ago. Given your knowledge of processor performance, what differences in 
performance would you expect to see between then and now?  

7. Lorenson and Cline is an example of a graphics research paper. Critically evaluate 
Lorenson and Cline. How good is this piece of research?  

8. Research papers at the SIGGRAPH conference are limited in their length. Evaluate 
Lorenson and Cline in terms of the following questions. What has been left out that 
would have been useful? What has been included that could have been left out? 
Where could the explanation have been better? Are any of the figures extraneous? 
Where would an extra figure have been helpful? For light relief, list any grammatical 
or spelling errors that you find (there is at least one of each).  

9. [2002/8/4] (b) Implicit surfaces are normally combined by adding the field functions 
together to create a "blobby" blended surface. Describe an alternative mechanism (or 
mechanisms) for combining implicit surfaces which would produce results more akin 
to CSG union and intersection. Explain why it produces these results. Given this 
mechanism, suggest a way of combining implicit surfaces to produce a result similar 
to CSG di�erence. [4 marks]  
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point in having polygons that are much smaller than pixels), the easily understood 
subdivision idea has definite benefits over the mathematically complicated B-spline methods. 
In fact, as will be explained in lectures, two of the subdivision schemes (Doo-Sabin and 
Catmull-Clark) produce, in the limit, B-spline surfaces (uniform quadratic and uniform cubic 
respectively). 

Subdivision schemes have been around for a long time. Subdivision methods for curves were 
first mathematically analysed in 1947. Their use in computer graphics dates from 1974 when 
Chaikin used them to derive a simple algorithm for generating curves quickly. In 1978 Doo 
and Sabin (quadratic) and Catmull and Clark (cubic) generalised Chaikin's work from 
curves to surfaces. Much work has been done since then, but it seems that it is only in the 
last five years that subdivision schemes have had widespread use.  

Some of the mathematical detail of subdivision surfaces is given in SMEG section 5. W&W 
survey the field and the related mathematical tools.  

5) Radiosity  
The hand-written notes in the handout contain all of the information for this part of the 
course. 

Exercises 

1. Do the "constructive" exercises at the end of SMEG section 5.1.  
2. Explain how Doo-Sabin subdivision works for an arbitrary polygon mesh. 

Exercises 

1. Explain what lighting effects radiosity is trying to model that are not modelled by RT 
or PSC.  

2. [1999/9/4] (d) Explain what a form factor is, in radiosity. Outline an implementable 
method of calculating form factors. [5 marks]  

3. [2002/8/4] (c) Describe the basic radiosity algorithm. [10 marks]  
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