
11 — TRANSFORMING DENSITY FUNCTIONS

It can be expedient to use a transformation function to transform one probability density
function into another. As an introduction to this topic, it is helpful to recapitulate the
method of integration by substitution of a new variable.

Integration by Substitution of a new Variable

Imagine that a newcomer to integration comes across the following:
∫

√
π

2

0

2x cos x2 dx

Assuming that the newcomer doesn’t notice that the integrand is the derivative of sin x2,
one way to proceed would be to substitute a new variable y for x2:

Let y = x2

Replace the limits x = 0 and x =
√

π
2 by y = 0 and y = π

2

Replace 2x cos x2 by 2
√

y cos y

Note that x =
√

y and hence dx
dy

= 1
2
√

y
and so replace dx by dy

2
√

y

The original problem is thereby transformed into the following integration:
∫ π

2

0

cos y dy =
[

sin y
]

π

2

0
= 1

The General Case

It is instructive to develop the general case alongside the above example:

General Case Above Example

∫ b

a

f(x) dx

∫

√
π

2

0

2x cos x2 dx

Choose a transformation function y(x) y(x) = x2

Note its inverse x(y) x(y) =
√

y

Replace the limits by y(a) and y(b) 0 and π
2

Replace f(x) by f
(

x(y)
)

2
√

y cos y

Replace dx by
dx

dy
dy

1

2
√

y
dy

Result is

∫ y(b)

y(a)

f
(

x(y)
) dx

dy
dy

∫ π

2

0

cos y dy
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Application to Probability Density Functions

The previous section informally leads to the general formula for integration by substitution
of a new variable:

∫ b

a

f(x) dx =

∫ y(b)

y(a)

f
(

x(y)
) dx

dy
dy (11.1)

This formula has direct application to the process of transforming probability density
functions. . .

Suppose X is a random variable whose probability density function is f(x).

By definition:

P(a 6 X < b) =

∫ b

a

f(x) dx (11.2)

Any function of a random variable is itself a random variable and, if y is taken as some
transformation function, y(X) will be a derived random variable. Let Y = y(X).

Notice that if X = a the derived random variable Y = y(a) and if X = b, Y = y(b).
Moreover, (subject to certain assumptions about y) if a 6 X < b then y(a) 6 Y < y(b)
and P

(

y(a) 6 Y < y(b)
)

= P(a 6 X < b). Hence, by (11.2) and (11.1):

P
(

y(a) 6 Y < y(b)
)

= P(a 6 X < b) =

∫ b

a

f(x) dx =

∫ y(b)

y(a)

f
(

x(y)
) dx

dy
dy (11.3)

Notice that the right-hand integrand f
(

x(y)
) dx

dy
is expressed wholly in terms of y.

Calling this integrand g(y):

P
(

y(a) 6 Y < y(b)
)

=

∫ y(b)

y(a)

g(y) dy

This demonstrates that g(y) is the probability density function associated with Y .

The transformation is illustrated by the following figures in which the function f(x) (on
the left) is transformed by y(x) (centre) into the new function g(y) (right):

X Y

f(x) y(b) g(y)

y(a)

a b a b y(a) y(b)

x x y
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Observations and Constraints

The crucial step is (11.3). One imagines noting a sequence of values of a random variable
X and for each value in the range a to b using a transformation function y(x) to compute
a value for a derived random variable Y .

Given certain assumptions about y(x), the value of Y must be in the range y(a) to y(b)
and the probability of Y being in this range is clearly the same as the probability of X

being in the range a to b.

In summary: the shaded region in the right-hand figure has the same area as the shaded
region in the left-hand figure.

There are three important conditions that any probability density function f(x) has to
satisfy:

• f(x) must be single valued for all x

• f(x) > 0 for all x

•
∫ +∞

−∞

f(x) dx = 1

Often the function usefully applies over some finite interval of x and is deemed to be
zero outside this interval. The function 2x cos x2 could be used in the specification of a
probability density function:

f(x) =

{

2x cos x2, if 0 6 x <
√

π
2

0, otherwise

By inspection, f(x) is single valued and non-negative and, given the analysis on page 11.1,
the integral from −∞ to +∞ is one.

The constraints on the specification of a probability density function result in implicit
constraints on any transformation function y(x), most importantly:

• Throughout the useful range of x, both y(x) and its inverse x(y) must be defined and
must be single-valued.

• Throughout this range,
dx

dy
must be defined and either

dx

dy
> 0 or

dx

dy
6 0.

If dx
dy

were to change sign there would be values of x for which y(x) would be multivalued

(as would be the case if the graph of y(x) were an S-shaped curve).

A consequence of the constraints is that any practical transformation function y(x) must
either increase monotonically over the useful range of x (in which case for any a < b,
y(a) < y(b)) or decrease monotonically (in which case for any a < b, y(a) > y(b)).

Noting these constraints, it is customary for the relationship between a probability density
function f(x), the inverse x(y) of a transformation function, and the derived probability
density function g(y) to be written:

g(y) = f
(

x(y)
)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

(11.4)
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Example I

Take a particular random variable X whose probability density function f(x) is:

f(x) =







x

2
, if 0 6 x < 2

0, otherwise

Suppose the transformation function y(x) is:

y(x) = 1 −
√

4 − x2

2

Note that the useful part of the range of x is 0 to 2 and, over this range, y(x) increases

monotonically from 0 to 1.

Let Y = y(X), the derived random variable, and let g(y) be the probability density function
associated with Y . What is the function g(y)?

The problem is illustrated by the following figures:

X Y
2 2 2

1 1 g(y)

f(x) y(x)

0 0 0
0 2 0 2 0 1 2

x x y

First, derive x(y) the inverse of the function y(x).

Given:

y = 1 −
√

4 − x2

2

4(y − 1)2 = 4 − x2

So:
4y2 − 8y + 4 = 4 − x2

x2 = 4y(2 − y)

x = 2
√

y(2 − y)
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Accordingly:

f
(

x(y)
)

=
√

y(2 − y) and
dx

dy
=

2(1 − y)
√

y(2 − y)

From (11.4):

g(y) = f
(

x(y)
)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

= 2(1 − y)

As illustrated in the figures, the function y(x) transforms one triangular distribution f(x)
into another g(y). The two triangles are opposite ways round and the transformation
function y(x) has to ensure that although low values of X are relatively rare, low values
of Y are common.

Expressing this informally: y(x) stays low for most of the range of x so that even when x

is well over one, the value of y is well under a half. This ensures that the transformation
shifts the bias appropriately.

An Alternative Question

In the example, a probability density function and a transformation function were given
and the requirement was to determine what new probability density function results.

Suppose instead that two probability density functions are given and the requirement is
to find a function which transforms one into the other.

Take the particular functions used in the previous example and pose the question as follows.

Given:

f(x) =







x

2
, if 0 6 x < 2

0, otherwise
and g(y) =

{

2(1 − y), if 0 6 y < 1

0, otherwise

determine the function y(x) which will transform f(x) into g(y).

From the relationship g(y) = f
(

x(y)
)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

:

2(1 − y) =
x

2

dx

dy

or:

x
dx

dy
= 4(1 − y)

This differential equation is readily solved and yields:

x2

2
= 4y − 2y2 + c

Since X = 0 has to transform into Y = 0, the constant c = 0.
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Continuing:
x2 = 4(2y − y2)

Hence the inverse function x(y) is:

x(y) = 2
√

y(2 − y)

A little more processing is required to determine y(x):

y2 − 2y + 1 = 1 −
x2

4

Hence:

(y − 1)2 = 1 −
x2

4

This leads to:

y = 1 ±
√

1 −
x2

4

Choice of sign is important. Note, again, that X = 0 has to transform into Y = 0 and
hence minus is appropriate.

This gives the solution:

y(x) = 1 −
√

4 − x2

2

Transforming a Uniform Distribution

It would be unusual to wish to transform a triangular distribution but there is a good
reason for wanting to be able to transform a uniform distribution into something else.

The generation of a uniform distribution by computer is a well-understood process and
a typical programming language will be supplied with a library procedure to generate a
random variable whose values are uniformly distributed.

All that remains to generate a random variable which is distributed differently is to use
an appropriate transformation function.

It is very common to start with a distribution which is Uniform(0,1) which is to say that
the probability density function f(x) is:

f(x) =

{

1, if 0 6 x < 1

0, otherwise

Over the useful range of x, the relationship g(y) = f
(

x(y)
)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

simplifies to:

g(y) =

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

(11.5)
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Example II

Take a random variable X whose probability density function f(x) is Uniform(0,1) and
suppose that the transformation function y(x) is:

y(x) = −
1

λ
ln x (λ > 0)

Note that the useful part of the range of x is 0 to 1 and, over this range, y(x) decreases

monotonically from ∞ to 0.

Let Y = y(X) and let g(y) be the probability density function associated with Y . What
is the function g(y)?

The problem is illustrated by the following figures (in which λ = 2):

X Y
1 1 2

f(x) y(x) g(y)

0 0 0
0 1 0 1 0 2

x x y

First, derive x(y) the inverse of the function y(x).

Given:

y = −
1

λ
ln x

x = e−λy

Accordingly:
dx

dy
= −λ.e−λy

Given that λ > 0 this derivative dx
dy

is everywhere negative.

From (11.5):

g(y) =

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

= λ.e−λy

As illustrated in the figures, the function y(x) transforms the distribution f(x) which is
Uniform(0,1) into g(y) which is the exponential distribution.
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Example III — Introduction

Suppose raindrops fall in a uniformly distributed way onto the surface of a circular pond
which has unit radius.

D

x

1

Let X be a random variable whose value x is the distance of a raindrop (shown at D in
the figure) from the centre of the pond. What is the probability density function f(x)
associated with X?

Consider a narrow annular concentric strip of radius x and width δx. The area of this
strip is 2πx δx. The area of the pond as a whole is π.12.

Hence:

P(x 6 X < x + δx) =
2πx δx

π.12

The probability density function f(x) is therefore 2x or, more strictly:

f(x) =

{

2x, if 0 6 x < 1

0, otherwise

Note, as a check, that f(x) is single valued and non-negative and its integral from −∞ to
+∞ is one.

This is another triangular distribution and leads to the unsurprising result that more
raindrops fall close to the edge of the pond than fall close to the centre.

Example III — Transformation

The value of the random variable X described in the previous section corresponded to the
distance of a random raindrop from the centre of the circular pond.

Suppose one is interested in the square of the distance from the centre of the pond and
how this derived value is distributed.

To investigate this, take the random variable X and apply to it the transformation function
y(x) specified as:

y(x) = x2

Note that the useful part of the range of x is 0 to 1 and, over this range, y(x) increases
monotonically from 0 to 1.

Let Y = y(X) and let g(y) be the probability density function associated with Y . What
is the function g(y)?
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The problem is illustrated by the following figures:

X Y
2 1 1

f(x) y(x) g(y)

0 0 0
0 1 2 0 1 0 1

x x y

First, derive x(y) the inverse of the function y(x):

x(y) =
√

y

Accordingly:

f
(

x(y)
)

= 2
√

y and
dx

dy
=

1

2
√

y

From (11.4):

g(y) = f
(

x(y)
)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

= 1

As illustrated in the figures, the function y(x) transforms the triangular distribution f(x)
into the distribution g(y) which is Uniform(0,1).

Transforming a Uniform Distribution into a Normal Distribution

It would be very useful if there were an easy way of transforming a uniform distribution
into a normal distribution.

Suppose that X is a random variable whose distribution is Uniform(0,1) and Y is a random
variable whose distribution is Normal(0,1). The associated probability density functions
(f(x) and g(y) respectively) are:

f(x) =

{

1, if 0 6 x < 1

0, otherwise
and g(y) =

1√
2π

e−
1

2
y2

The goal is to determine a function y(x) which will transform f(x) into g(y). Given that
f(x) is Uniform(0,1), relationship (11.5) above leads to the differential equation:

dx

dy
=

1√
2π

e−
1

2
y2

(11.6)

Unfortunately this differential equation is intractable.
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Glossary

The following technical term has been introduced:

transformation function

Exercises — XI

1. Although (11.6) cannot be solved analytically, it succumbs to numerical methods.
The required transformation function y(x) is incorporated into Excel as the built-in
function NORMSINV. Its use is illustrated in the Excel worksheet which is shown on the
facing page. Prepare a worksheet like this one.

The following steps are involved:

(a) First set up a column of 99 values running from 0.01 to 0.99 in steps of 0.01.
Only the first 51 of these values appear on the facing page (the worksheet runs
to a second page which is not shown). Head this column x as shown.

(b) Set up a second column headed y(x). Each value is the result of applying the
function NORMSINV to the corresponding value of x. Note that 0.0 and 1.0 are
deliberately omitted as values of x because and y(0) = −∞ and y(1) = +∞. The
range of the Uniform distribution is 0 to 1 and this maps into the range of the
Normal distribution which is −∞ to +∞.

(c) Use the chart wizard to set up the plot of the transformation function: y(x)
against x over the range of values 0.01 to 0.99. The chart only hints at how
rapidly the function approaches −∞ and +∞ as x tends to zero or one.

(d) Set up the column headed Range, whose 12 values run from -2.75 to 2.75. These
values constitute the Bin Range required by the Histogram tool in Excel. . .

(e) Check the Tools menu. If the Data Analysis command is not there, choose the
Add-Ins command and, via that, pick up the Analysis ToolPak. Now choose the
Data Analysis command and, via that, select the Histogram tool.

Specify the range containing the 99 values under the heading y(x) as the Input
Range and specify the range containing the 12 values under the heading Range

as the Bin Range. Select the Output Range option and, as the Output Range
itself, specify the single cell two places to the right of the cell with Range in it.
This will be the top left-hand cell of the table which the Histogram tool should
then produce along with the lower chart.

(f ) Tidy up the chart and add comments to the worksheet. The overall result should
have a neat appearance roughly as the worksheet opposite.

Ideally the figures in the column headed Frequency should be half a row higher. The
value 19 would then more clearly indicate that it is the number of values found between

−0.25 and +0.25. The value 0 at the top is the number of values found less than −2.75
and the value 0 at the bottom is the number of values found more than +2.75 (hence
the word More). The numbers against the x-axis of the chart are also rather unhappily
placed.

Despite these minor shortcomings the table and chart strongly suggest that a Uniform
distribution has been transformed into a Normal distribution.
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2. Replace the 99 values in the column headed x by =RAND(). The new values will
be distributed Uniform(0,1) and the values in the y(x) column will continue to be
distributed Normal(0,1) but they will no longer be sorted. Ignore or delete the upper
chart. Delete the table and the lower chart and invoke the Histogram tool again. The
histogram which results will not be quite so convincing as its predecessor but it should
not be very different.

3. Extend the two main columns so that instead of 99 pairs of values there are 1000.
Delete the table and chart and invoke the Histogram tool (remember to extend the
Input Range). Note that the results are again fairly convincing.

4. Rework the original worksheet (on the previous page) but replace the transformation
function NORMSINV by − 1

2 lnx and invoke the Histogram tool once again. Check that
the results are in reasonable accordance with Example II on page 11.7.

5. Given the probability density functions:

f(x) =

{

1, if 0 6 x < 1

0, otherwise
and g(y) =







y

2
, if 0 6 y < 2

0, otherwise

determine the function y(x) which will transform f(x) into g(y).

Rework the worksheet again to illustrate the use of the derived transformation function
to transform the uniform distribution whose probability density function is f(x) into
the triangular distribution whose probability density function is g(y).

6. The triangular distribution obtained in the previous exercise is the same as that whose
probability density function was given as f(x) in Example I on page 11.4. By applying
the transformation function used in Example I to the values in the second column, set
up a third column whose values should be distributed in accordance with the triangular
distribution obtained in Example I. Use the Histogram tool to demonstrate this.
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