
8 — STOCHASTIC PROCESSES

The word stochastic is derived from the Greek στoχαστικoς, meaning ‘to aim at a target’.
Stochastic processes involve state which changes in a random way. A Markov process is a
particular kind of stochastic process. Using discrete time the state of the process at time
n + 1 depends only on its state at time n. The classic example of a stochastic process is
the random walk. . .

Random Walk

The simplest form of the random walk problem imagines a line marked out in unit steps
or paces from some origin:

−3 −2 −1 0 1 2 3

A person or other object starts at the origin and then makes a sequence of steps, some to
the right and some to the left, at random.

It is reasonable to think of a sequence of turns. At each turn a weighted coin is tossed and
if it lands heads one step is taken to the right and if it lands tails one step is taken to the
left.

In the analysis below assume:

• Probability of a left-step (tails) is q
where p + q = 1

• Probability of a right-step (heads) is p

Consider a walk which consists of a total of n steps or turns. Let X be a random variable
whose value, r, is the number of those n steps which are to the right.

Given a total of n steps, each of which has a probability p of being a right-step, the
probability of there being r right-steps is given by the Binomial distribution:

P(X = r) =

(
n

r

)

prqn−r (8.1)

Usually one is interested in the net displacement. Call this k measured in net steps to the
right of the origin. Clearly:

Net displacement to the right = Total right-steps − Total left-steps

Since the total number of left-steps is n − r the net displacement k can be expressed
algebraically:

k = r − (n − r) = 2r − n hence r = 1
2 (n + k)

Rewriting (8.1):

P
(
X = 1

2 (n + k)
)

=

(
n

1
2 (n + k)

)

p
1

2
(n+k)q

1

2
(n−k) (8.2)

An incomplete interpretation is the following: for fixed n, this is the probability that the
number of right-steps is such as to give a net displacement of k steps to the right.
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Interpretation of the Probability

Since X is the number of right-steps, its value must be an integer. Therefore the probability
P

(
X = 1

2 (n + k)
)

requires the term 1
2 (n + k) to be an integer. Accordingly n + k (and

hence n − k) are even in the expression for the probability:

P
(
X = 1

2 (n + k)
)

=

(
n

1
2 (n + k)

)

p
1

2
(n+k)q

1

2
(n−k)

Further, −n 6 k 6 n.

This accords with common sense. If the total number of steps is 2 the net displacement
must be one of the three possibilities: two steps to the left, back to the start, or two steps
to the right. These correspond to values of k = −2, 0,+2. Clearly it is impossible to get
more than two units away from the origin if you take only two steps and it is equally
impossible to end up exactly one unit from the origin if you take two steps.

The following table shows the probabilities associated with the different possible values of
k for n = 1, 2, 3, 4:

n k P(net = k)

1 −1 q

1 p

2 −2 q2

0 2pq

2 p2

3 −3 q3

−1 3pq2

1 3p2q

3 p3

4 −4 q4

−2 4pq3

0 6p2q2

2 4p3q

4 p4

For given n, P(net = k) is the probability that the net displacement is k units to the right
of the origin. For each n any missing value of k (such as k = 2 when n = 3) is impossible
and P(net = k) = 0.

Notice that for each n the tabulated probabilities total 1. Thus for n = 3 the sum of the
probabilities is q3 + 3pq+3p2q + pq = (q + p)3 = 1.
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Expected Displacement and Drift

Given that X is distributed Binomial(n, p), the expectation E(X) = np. This is also the
expectation E

(
1
2 (n + k)

)
, so:

np = E(X) = E
(

1
2 (n + k)

)
= 1

2

(
n + E(k)

)

Hence:
E(k) = 2np − n = n(2p − 1) = n

(
2p − (p + q)

)
= n(p − q)

If p = q the expected displacement is zero but if p 6= q the expected displacement is
non-zero and the walk is not expected to end at the starting point. This phenomenon is
known as drift. The expected net displacement is proportional to the number of steps so
the longer the walk the greater the drift.

The term recurrent random walk is used to describe a random walk which is certain to
return to the starting point in a finite number of steps. In the present case, the random
walk is recurrent if and only if p = q = 1

2 .

The term transient random walk is used to describe a random walk which has a non-zero
probability of never returning to the starting point. In the present case, the random walk
is transient if p 6= q.

Corollary

A footnote to the random walk analysis is to consider the probability of landing on the
origin at step n. Clearly n must be even and k = 0 so, from (8.2):

P
(
X = 1

2n
)

=







(
n
1
2n

)

p
1

2
nq

1

2
n, if n even

0, otherwise

Remember that X is the number of right-steps. When this is 1
2n the number of right-steps

is obviously the same as the number of left-steps; thus P(X = 1
2n) is exactly equivalent to

P(return to origin at step n).

The Gambler’s Ruin Problem

Many stochastic processes are disguised variants of the random walk problem. One of the
best-known variants is the Gambler’s Ruin problem. You suppose there are two gamblers,
A and B, and they each have a pile of pound coins:

A has initial capital of £n

B has initial capital of £(a − n)

Play then proceeds by a sequence of turns. At each turn:

Probability(A wins the turn) = p
where p + q = 1

Probability(B wins the turn) = q

At the end of each turn one pound is transferred from the loser’s pile of pound coins to
that of the winner. Note that the total capital is £a and that stays constant.

The game ends when one player is ruined and has no money left.
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A diagrammatic representation of the game at the start is:

partition

A’s initial capital ↓ B’s initial capital
︷ ︸︸ ︷︷ ︸︸ ︷

u0 un−1 un un+1 ua

0 1 n − 1 n n + 1 a − 1 a

The horizontal line is a units long and is marked off at unit intervals numbered 0, 1, 2, . . . , a.
Point n is marked as the partition. The n units of line to the left of the partition represent
A’s initial capital and the a − n units of line to the right of the partition represent B’s
initial capital.

At each turn the partition moves one place to the right if A wins (this outcome has
probability p) and one place to the left if B wins (this outcome has probability q).

Let un = probability that A ultimately wins starting from n

Let vn = probability that B ultimately wins starting from n

It is important to note that un + vn may be less than unity. In this kind of problem there
is often the possibility of there being no winner. There could be a non-zero probability of
the game going on for ever with the partition moving backwards and forwards but never
reaching 0 or a.

The only respectable way of tackling this problem is to determine un and vn separately
and check whether or not they sum to 1.

Probability that A wins

First, extend the notation un so that, for example:

Let un+1 = probability that A ultimately wins starting from n + 1

Let un−1 = probability that A ultimately wins starting from n − 1

Consider the position of the partition after the first turn:

• The partition is at n+1 with probability p and from n+1 the probability of ultimately
winning is un+1.

• The partition is at n−1 with probability q and from n−1 the probability of ultimately
winning is un−1.

Now p + q necessarily sum to 1 (unlike un + vn about which the sum is still in doubt) so
after one turn the partition must be at n + 1 or n − 1 with probabilities un+1 and un−1

respectively so:

un = p un+1 + q un−1 (8.3)
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This is a homogeneous difference equation. In words:

The probability of A ultimately winning from n =

(probability of first turn landing on n + 1) × (probability of winning from n + 1) +

(probability of first turn landing on n − 1) × (probability of winning from n − 1)

The difference equation (8.3) holds for n = 1, 2, . . . , (a− 1) but since the game ends when
n = 0 or n = a the equation does not hold for u0 or ua. Either leads to an invalid
right-hand side.

Points 0 and a on a random walk are known as absorbing barriers. No walk can pass these
barriers.

The absorbing barriers lead to the boundary conditions:

u0 = 0 probability that A wins when B has all the capital

ua = 1 probability that A wins when B is out of capital

From (7.4), the general solution to the difference equation is:

un = A1(1)
n + A2

(
q

p

)n

provided p 6= q (8.4)

Given the boundary conditions u0 = 0 and ua = 1:

A1 + A2 = 0 and A1 + A2

(
q

p

)a

= 1

Solve for A1 and A2 and back substitute in (8.4) to give:

un =

(
q

p

)n
− 1

(
q

p

)a
− 1

(8.5)

Further discussion of this will be postponed until after a solution has been found for vn . . .

Probability that B wins

As with un, first extend the notation vn so that, for example:

Let vn+1 = probability that B ultimately wins starting from n + 1

Let vn−1 = probability that B ultimately wins starting from n − 1

The difference equation is set up in exactly the same way as for un and is now:

vn = p vn+1 + q vn−1
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The absorbing barriers now lead to different boundary conditions:

v0 = 1 probability that B wins when A is out of capital

va = 0 probability that B wins when A has all the capital

The general solution has exactly the same form as (8.4):

vn = A1(1)
n + A2

(
q

p

)n

provided p 6= q (8.6)

Given the boundary conditions v0 = 1 and va = 0:

A1 + A2 = 1 and A1 + A2

(
q

p

)a

= 0

Solve for A1 and A2 and back substitute in (8.6) to give:

vn =

(
q

p

)n
−

(
q

p

)a

1 −
(

q

p

)a (8.7)

Now that both un and vn are determined, their sum can be computed:

un + vn =

(
q

p

)n
− 1 +

(
q

p

)a
−

(
q

p

)n

(
q

p

)a
− 1

= 1

Happily the sum is unity so there really is a winner.

Observation about the Solutions

If both players have a reasonable amount of capital to start with the outcome is very
sensitive to the sign of the difference between p and q . . .

The assumptions are that the total capital a is fairly large and that 0 � n � a (so that
the partition is initially not close to 0 or a).

If p > q then q

p
< 1 and when p

q
is raised to the powers n and a small values result. By

inspection of (8.5) and (8.7) un → 1 and vn → 0. A small rightward bias makes it very
likely that the partition will end up at the right-hand end.

If p < q then p

q
< 1 and when q

p
is raised to the powers n and a small values result. By

inspection of (8.5) and (8.7) un → 0 and vn → 1. A small leftward bias makes it very
likely that the partition will end up at the left-hand end.

The fair Case

If p = q the solutions found for un and vn are invalid because the constants A1 and A2 in
the general solutions (8.4) and (8.6) are not independent.
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From (7.5), the appropriate general solution for un now is:

un = (A1 + A2n) (1)n

Using the same boundary conditions u0 = 0 and ua = 1:

A1 = 0 and A2 a = 1

Solving and substituting gives:

un =
n

a

The appropriate general solution for vn is likewise:

vn = (A1 + A2n) (1)n

Using the boundary conditions v0 = 1 and va = 0:

A1 = 1 and 1 + A2a = 0

Solving and substituting gives:

vn =
a − n

a

Again, happily, un + vn = 1 and there really is a winner.

Notice that both solutions show that the probability of each player winning is equal to that
player’s share of the capital. Gamblers say that the probability of winning is proportional
to the initial share of the stake.

The Expected Length of a Game — I

Assume that the length of a game is finite and:

Let dn turns be the expected duration of play when starting from n

Extend this notation so that:

dn+1 turns is the expected duration of play when starting from n + 1

dn−1 turns is the expected duration of play when starting from n − 1

Consider the situation after one turn. The partition is either at n+1 (and the probability
of this outcome is p) where there are expected to be dn+1 further turns or at n − 1 (and
the probability of this outcome is q) where there are expected to be dn−1 further turns.

Thus the expected number of turns from n is the very first turn plus either dn+1 more or
dn−1 more. This gives the inhomogeneous difference equation:

dn = 1 + p dn+1 + q dn−1 (8.8)
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Notice the special case p = 1 and q = 0 when the expected duration from n is simply the
first turn plus dn+1 more.

The boundary conditions now are d0 = 0 and da = 0. No further turns are to be expected
if the partition has reached an absorbing barrier.

From (7.6), the general solution to the new difference equation is:

dn = A1 + A2

(
q

p

)n

+
n

q − p
provided p 6= q (8.9)

Given the boundary conditions d0 = 0 and da = 0:

A1 + A2 = 0 and A1 + A2

(
q

p

)a

+
a

q − p
= 0

Solve for A1 and A2 and back substitute in (8.9) to give:

dn =
n

q − p
−

a

q − p
.
1 −

(
q

p

)n

1 −
(

q

p

)a

This is the expected duration of play when p 6= q.

The Expected Length of a Game — II

When p = q the general solution (8.9) is invalid. From (7.7), the appropriate solution is:

dn = A1 + A2n − n2 (8.10)

Given the boundary conditions d0 = 0 and da = 0:

A1 = 0 and A2a − a2 = 0

Solve for A1 and A2 and back substitute in (8.10) to give:

dn = n(a − n)

This is a remarkable result. Suppose the total capital a is £1000 but player A starts with
just £1 (so n = 1) whereas player B starts with £999. Since the partition starts off just
one unit from the left-hand end, there is a probability of 1

2 that the game will be over at
the first turn. Nevertheless the expected duration of play is 1.(1000 − 1) or 999 turns.

Although the probability of player A winning is only 1
1000 a mere £1 investment provides

entertainment that is expected to last 999 turns!

Glossary

The following technical terms have been introduced:

stochastic processes
random walk
drift

recurrent random walk
transient random walk
partition

absorbing barrier
boundary conditions
stake
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Exercises — VIII

1. Consider a variant of the Gambler’s Ruin problem. To decide the outcome of each
turn, the players are using a fat coin which sometimes lands on its edge. Such an
outcome is deemed a draw for the turn and no money changes hands. There are now
three probabilities relating to the outcome of each turn:

Probability(A wins the turn) = p

Probability(B wins the turn) = q

Probability(Turn is a draw) = r

Necessarily p + q + r = 1 and, in this question, assume that p 6= q. It is possible that
p = r or that q = r but such coincidences turn out not to matter. It is not immediately
clear whether the introduction of turns that have no effect alters the probabilities that
A ultimately wins or that B ultimately wins but it seems likely that the duration of
play (measured in turns) will be increased.

Complete the following tasks:

(a) Modify equation (8.3) and determine the probability un that A ultimately wins
starting from n.

(b) In a similar manner determine the probability vn that B ultimately wins starting
from n.

(c) Could the two results have been predicted at the outset? In what circumstances
will the game never finish?

(d) Modify equation (8.8) and determine dn the duration of play starting from n. If
the ratio p : q is kept constant while the value of r is increased steadily, does the
duration of play lengthen in a way that might have been predicted at the outset?

2. Suppose that at each turn the two players play one round of the paper-scissors-stone
game. The outcome may be a win for A, a win for B or a draw and money changes
hands only when there is clear win.

Complete the following tasks:

(a) Determine the probabilities p, q and r for a round of the paper-scissors-stone
game and note that p = q.

(b) Rework question 1 for the case p = q.

(c) Use the values of p, q and r appropriate for the paper-scissors-stone game in the
expressions derived for un, vn and dn. Could the results have been predicted at
the outset?
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