
4 — MEANS AND VARIANCES

The term expectation (or mean) has so far been confined to a single random variable.
Related to expectation is the term variance and this will be discussed before two important
new distributions are introduced. Expectation and variance will then be applied to cases
where there are two or more random variables.

Derived Random Variables

This course follows the common practice of using X and r to refer to the name and value
of a single random variable. The most-frequently used example of a random variable has
been the outcome of throwing a die.

If two people are betting on the outcome of throwing a die and wish to make matters (ever
so slightly) more interesting they might decide to bet on some function of the outcome
instead of the outcome itself. They might perhaps bet on the square of the outcome, the
sine of the outcome, seven more than the outcome, two to the power of the outcome and
so on.

Such a decision does not affect the number of possible outcomes or the values of the
outcomes themselves. What is affected is the values the people bet on and, of much
greater interest, the long-term average of the values bet on.

Any function of some random variable X is itself a random variable; call it Y where:

Y = f(X)

Subject to certain common-sense constraints f is an arbitrary function and Y is called a
derived random variable. If f is like the square function it will lead to integer values. If
it is like the sine function it will not and various issues arise which will not be addressed
here.

Generalised Expectation

Fortunately the expectation of some function f(X) of a random variable X is a trivial
generalisation of (3.1):

E
(

f(X)
)

=
∑

r

f(r).P(X = r) (4.1)

This can be derived in exactly the same way as the simple expectation by considering the
position of the centre of gravity of a light beam supporting weights. Suppose the bets are
on the square of the outcome of throwing a die. The weights are just the same but they
are placed at positions 0, 1, 4, 9, 16, 25 and 36 along the beam.

The analysis gives rise to the expectation:

E(X2) = 0.
0

6
+ 1.

1

6
+ 4.

1

6
+ 9.

1

6
+ 16.

1

6
+ 25.

1

6
+ 36.

1

6
=

91

6
= 15

1

6

Many functions of random variables will be used in this course but the square function
and one closely related to the square are undoubtedly the most important.
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Variance

Suppose that, instead of simply squaring the outcome of each throw, the players first
subtract the mean (3 1

2
of course) and then square. The expectation of the values bet on

now is:
E
(

(X − 3 1

2
)2
)

=
∑

r

(r − 3 1

2
)2.P(X = r)

This value is known as the variance (usually denoted by the letter V) or mean squared
deviation from the mean usually denoted by σ2. In general:

Variance = σ2 = V(X) = E
(

(X − µ)2
)

=
∑

r

(r − µ)2.P(X = r) (4.2)

The item V(X) is pronounced ‘the variance of X’. The sum over r again refers to the
range which is appropriate.

The variance gives a measure of the spread of values from the mean. Here is a table
showing how the variance of the outcomes of throwing a die may be calculated:

r r − µ (r − µ)2 P(X = r) (r − µ)2.P(X = r)

0 − 7

2

49

4

0

6
0

1 − 5

2

25

4

1

6

25

24

2 − 3

2

9

4

1

6

9

24

3 − 1

2

1

4

1

6

1

24

4 1

2

1

4

1

6

1

24

5 3

2

9

4

1

6

9

24

6 5

2

25

4

1

6

25

24

The sum of the entries in the rightmost column is 70

24
or 35

12
.

Standard Deviation

If expectation is related to the idea of a centre of gravity, the variance is related to the
idea of moment of inertia.

To produce a measure of the spread of values from the mean which has the same dimension
as values themselves it is common to use the square root of the variance and this is known
as the standard deviation (denoted by σ, which is

√
σ2 of course):

Standard Deviation = σ =
√

Variance

In the case of the die:

Standard Deviation = σ =

√

70

24
≈ 1.71
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The Geometric Distribution

A very common two-state entity to which the Binomial distribution is applied is any
experiment or trial whose outcome is regarded as a success or a failure with no other
possibility.

A special case of this is waiting for a No. 9 Bus. Each bus that stops at your stop is
regarded as a trial. If the bus is a No. 9 the trial counts as a success and any bus which
isn’t a No. 9 is regarded as a failure.

This is a perfectly ordinary example of the Binomial distribution if you simply note success
or failure for each of n buses. If you are hoping to catch a No. 9 Bus the circumstances are
different. As soon as a No. 9 Bus comes to your stop you get on board and the sequence
of trials abruptly terminates!

Let p be the probability of a single trial being a success and X be the random variable
which represents the number of failures before the first success (at which point matters
conclude). The probability of having to wait r trials before the first success is:

P(X = r) = (1 − p)rp

In this, 1− p is the probability of a trial being a failure and the probability of r such trials
is (1 − p)r. There has then to be a success and this explains the final p.

Here is an indexed set of probabilities. The sum happens to be 1 but that has yet to be
demonstrated. This is known as the Geometric distribution.

Note that the range of r runs indefinitely upwards from zero. When r = 0 there are no
failures before the first success. As r increases you have to sustain more and more failures
before the first success and, in principle, there is no limit to the number of failures.

The sum of the probabilities is therefore a summation to infinity. The summation is valid
because (1 − p) < 1:

∞
∑

r=0

P(X = r) = (1 − p)0p + (1 − p)1p + (1 − p)2p + · · ·

=
(

(1 − p)0 + (1 − p)1 + (1 − p)2 + · · ·
)

p =
1

1 − (1 − p)
p = 1

The Geometric distribution satisfies the informal requirement of being an indexed set of
probabilities whose sum is 1. As with other distributions, the Geometric distribution is a
family of distributions but this one has only one parameter. The description:

Geometric(p)

is used to refer to the general case.
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Note that the sum to some lesser limit, k say, represents the probability of having no more
than k failures before the first success:

k
∑

r=0

P(X = r) = (1 − p)0p + (1 − p)1p + · · · + (1 − p)kp

=
(

(1 − p)0 + (1 − p)1 + · · · + (1 − p)k
)

p

=
1 − (1 − p)k+1

1 − (1 − p)
p = 1 − (1 − p)k+1

The Poisson Distribution

Suppose that over a long period of time a town has recorded an average of λ murders a
year. Sometimes there is a run of good years in which there are no murders at all and then
there may be a couple of bad years with several. How does one estimate the probability
of there being exactly two murders next year?

This problem introduces the Poisson distribution. The analysis begins by taking λ as the
expectation, the expected (or average) number of murders in a year.

Divide the year into n equal intervals (365 might be a sensible value for n) and assume
that in any given interval the number of murders is zero or one. Given this assumption,
the probability of there being a murder in any given interval is λ

n
.

Having chosen n intervals in a full year, let X be the random variable which represents
the number of murders in these n intervals. Subject to the assumption, the Binomial
distribution gives the probability of there being r murders in the n intervals.

The assumption is important. If there were sometimes two murders in an interval the
Trinomial distribution would be required. To ensure that the assumption is valid, n must
be made sufficiently large that the intervals are sufficiently small for the possibility of two
or more murders to be ignored.

Noting the assumption, the probability of there being r murders in the n intervals is:

P(X = r) =

(

n

r

)(

λ

n

)r(

1 − λ

n

)n−r

=
n!

r! (n − r)!

(

λ

n

)r(

1 − λ

n

)n−r

=
n(n − 1) . . . (n − r + 1)(n − r) . . . 1

r! (n − r)!

λr

nr

(

1 − λ

n

)n−r

Rearrange the expression. First, eliminate (n−r)! from the numerator and the denominator
of the term on the left and note that this leaves exactly r terms in the numerator. Then
exchange the r! in the denominator with the nr in the denominator of the term in the
middle. Expand nr into r separate ns and expand (1 − λ/n)r as well:

(

n

n

n − 1

n
· · · n − r + 1

n

)

λr

r!

(

1 − n − r

1!

(

λ

n

)

+
(n − r)(n − r − 1)

2!

(

λ

n

)2

− · · ·
)
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Next, let n tend to infinity. This will reinforce the validity of the assumption made earlier
and lead to a simplification of the expression. Given finite r, all the terms in the left-hand
pair of brackets tend to 1. The terms in the right-hand pair of brackets can be simplified
too; thus (n − r)/n and (n − r)(n − r + 1)/n2 and so on all tend to 1. The expression
reduces to:

λr

r!

(

1 − λ

1!
+

λ2

2!
− λ3

3!
+ · · ·

)

=
λr

r!
e−λ

The conclusion of this analysis is that the probability of there being r murders is:

P(X = r) =
λr

r!
e−λ

This is an indexed set of probabilities and its sum is readily shown to be 1:

∞
∑

r=0

λr

r!
e−λ =

(

1 +
λ

1!
+

λ2

2!
+

λ3

3!
+ · · ·

)

e−λ = eλ.e−λ = 1

As with other distributions, the Poisson distribution is a family of distributions but, like
the Geometric distribution, it has only one parameter. The description:

Poisson(λ)

is used to refer to the general case.

The expectation, E(X), is readily calculated in the case of the Poisson distribution:

E(X) =
∞
∑

r=0

r.P(X = r) =
∞
∑

r=0

r.
λr

r!
e−λ =

∞
∑

r=1

r.
λr

r!
e−λ

When r = 0 the term is zero so it is in order to begin the sum from r = 1. This means
r/r! can be treated as 1/(r − 1)! and hence:

E(X) =
∞
∑

r=1

λ.λr−1

(r − 1)!
e−λ = λ

(

∞
∑

r=1

λr−1

(r − 1)!

)

e−λ = λ

(

1

0!
+

λ

1!
+

λ2

2!
+ · · ·

)

e−λ = λ.eλ.e−λ

The eλ and e−λ cancel so:

E(X) = λ

This result should have been obvious all along. The analysis of the Poisson distribution
began by taking λ as the expectation (in the illustration this was the expected number of
murders in a year). It is comforting to see that the result derived now is not in conflict
with that original assumption.
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The Prussian Cavalry Corps

An especially well-known illustration of the Poisson distribution was given by M.G. Bulmer.
This example relates to 14 corps of Prussian cavalry. Over a period of 20 years, that is
280 corps-years, the number of deaths of cavalry officers from horse kicks was monitored.
The mean number of such deaths per corps-year was 0.7 and this gives a value for λ.

Given Poisson(0.7), P(X = r) = 0.7r

r!
e−0.7, and a table of the probabilities for values of r

from 0 to 4 is:

r →
X 0 1 2 3 4

P(X = r) 0.496 0.348 0.122 0.028 0.005

These values turn out to be very close to those determined from the observed data.

The five values sum to 0.999, slightly less than 1. With the Poisson distribution, r runs to
infinity but probabilities for other than very small values of r are normally insignificant.
In none of the 280 corps-years were there more than 4 deaths from horse kicks.

Three Rules for Expectation

I If a is a constant E(a) = a

II If a is a constant and X is a random variable E(aX) = aE(X)

III If X and Y are random variables E(X + Y ) = E(X) + E(Y )

These rules require formal proofs. First recall the definition of the expectation of an
arbitrary function of a random variable (4.1):

E
(

f(X)
)

=
∑

r

f(r).P(X = r)

In the first rule, the function is simply f(X) = a and does not involve the random variable
at all. Accordingly:

E(a) =
∑

r

a.P(X = r) = a
∑

r

P(X = r) = a.1 = a

This proves the first rule. Note that it is assumed that the sum of the probabilities is 1.
Note also that it is in order to take a constant outside a Σ sign.

In the second rule, the function is f(X) = aX and:

E(aX) =
∑

r

ar.P(X = r) = a
∑

r

r.P(X = r) = aE(X)
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The proof of the third rule is as follows:

E(X + Y ) =
∑

r

∑

s

(r + s).P(X = r, Y = s) =
∑

r

∑

s

(r + s).pr,s

=
∑

r

r

(

∑

s

pr,s

)

+
∑

s

s

(

∑

r

pr,s

)

=
∑

r

r.P(X = r) +
∑

s

s.P(Y = s) = E(X) + E(Y )

Note that
∑

s pr,s and
∑

r pr,s are marginal sums (see page 2.3) being row and column
totals respectively in an array representation of the probabilities of the elementary events
associated with two random variables. These totals are P(X = r) and P(Y = s).

Application to Variance

The variance of a random variable X was defined in (4.2) as:

Variance = V(X) = E
(

(X − µ)2
)

The three rules for expectation can be used to derive an alternative expression for variance:

V(X) = E
(

(X − µ)2
)

= E(X2 − 2µX + µ2)

= E(X2) − E(2µX) + E(µ2)

= E(X2) − 2µE(X) + µ2

= E(X2) − 2µ2 + µ2

= E(X2) − µ2

= E(X2) −
(

E(X)
)2

(4.3)

This expression for variance will be much used. The result can be expressed in words as:

Variance is the Expectation of the Square minus the Square of the Expectation

Warning

This expression for the variance often substantially reduces the amount of algebra required
when analysing problems but there is an element of bad news. Although this expression
is mathematically identical to E

(

(X −µ)2
)

there is a practical difference which Computer
Scientists should readily appreciate. . .

The expression E(X2) −
(

E(X)
)2

may well involve taking a small difference between two
large numbers, something best avoided if you are mindful of rounding errors. If you use a
computer to process real data, stick to the expression E

(

(X − µ)2
)

.
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Three Rules for Variance

I If a is a constant V(a) = 0

II If a is a constant and X is a random variable V(aX) = a2V(X)

III If X and Y are independent random variables V(X + Y ) = V(X) + V(Y )

Using the form in (4.3), both rule I and rule II are proved trivially.

V(a) = E(a2) −
(

E(a)
)2

= a2 − a2 = 0

Likewise:

V(aX) = E(a2X2) −
(

E(aX)
)2

= a2E(X2) − a2
(

E(X)
)2

= a2V(X)

Rule III is rather more cumbersome to prove. Begin thus:

V(X + Y ) = E
(

(X + Y )2
)

−
(

E(X + Y )
)2

= E(X2) + 2E(XY ) + E(Y 2) −
(

E(X)
)2 − 2E(X) .E(Y ) −

(

E(Y )
)2

Now V(X) = E(X2) −
(

E(X)
)2

and V(Y ) = E(Y 2) −
(

E(Y )
)2

so:

V(X + Y ) = V(X) + V(Y ) + 2
[

E(XY ) − E(X) .E(Y )
]

This is the general expression for the variance of the sum of two random variables whether
or not they are independent. If they are independent, the item in square brackets, known
as the covariance of X and Y , turns out to be zero. This will be demonstrated shortly.

Covariance — I

Covariance is usually denoted by the letter W and there is an alternative expression for
W(X,Y ) which is directly analogous to that for the variance V(X) derived as (4.3):

Covariance = W(X,Y ) = E(XY ) − E(X) .E(Y ) = E
(

(X − µX).(Y − µY )
)

See exercise 11. Notice that covariance may be negative whereas variance can never be.

Lemma

The determination of covariance requires some further consideration of the double-sigma
notation. Suppose you wish to sum some function of r and s over r and s. If the function
can be reduced to the product of two functions f(r) and g(s) such that f does not depend
on s and g does not depend on r then:

∑

r

∑

s

f(r).g(s) =

(

∑

r

f(r)

)(

∑

s

g(s)

)
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An informal proof can be derived by consideration of the left-hand side:

∑

r

∑

s

f(r).g(s) = f(0).g(0) + f(0).g(1) + f(0).g(2) · · ·
+ f(1).g(0) + f(1).g(1) + f(1).g(2) · · ·
+ f(2).g(0) + f(2).g(1) + f(2).g(2) · · ·
...

= f(0).[g(0) + g(1) + g(2) + · · ·]
+ f(1).[g(0) + g(1) + g(2) + · · ·]
+ f(2).[g(0) + g(1) + g(2) + · · ·]
...

= [f(0) + f(1) + f(2) + · · ·] [g(0) + g(1) + g(2) + · · ·]

=

(

∑

r

f(r)

)(

∑

s

g(s)

)

This is the right-hand side and the informal proof is concluded.

Covariance — II

The determination of covariance requires the evaluation of E(XY ):

E(XY ) =
∑

r

∑

s

r.sP(X = r, Y = s)

Now if X and Y are independent, P(X = r, Y = s) = P(X = r) .P(Y = s), when:

∑

r

∑

s

r.sP(X = r, Y = s) =
∑

r

∑

s

r.sP(X = r) .P(Y = s)

The function after the double-sigma sign can be separated into the product of two terms,
the first of which does not depend on s and the second of which does not depend on r.
Hence, by the lemma:

E(XY ) =

(

∑

r

r.P(X = r)

)(

∑

s

s.P(Y = s)

)

= E(X) .E(Y )

Accordingly, if X and Y are independent, the covariance of X and Y :

W(X,Y ) = E(XY ) − E(X) .E(Y ) = 0

and the variance of the sum of X and Y :

V(X + Y ) = V(X) + V(Y )
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Illustration

Various formulae for the expectation, variance and covariance have been presented and
these formulae can now be applied to an illustrative case.

Recall the class of children who were classified boy-girl and fair-dark. Suppose that the
information supplied consists only of a 2 × 2 table of the four elementary events:

fair dark

boy 1

3

1

3

girl 1

4

1

12

A full analysis is presented on the following page. This takes the form of a completed and
annotated proforma which can be used for analysing the data in any two-dimensional table
of elementary events.

There are five exercises later which should all be carried out using this proforma as a guide.
Note the following steps:

• First choose X and Y as the names of the two random variables. Let these have values
r and s which can each be 0, 1, . . . Appropriate, and obvious, mappings have to be
made to convert non-numerical events such as fair and dark into integers.

• Copy the table of elementary events and ornament it with X, Y , r and s and the
chosen mappings. Compute the marginal sums and check that the row sums and
column sums each total 1.

• Tabulate the probabilities P(X = r) and P(Y = s) separately and, using the values in
the tables, compute the expectation, the expectation of the square, and the variance
of X and Y .

• Set up the big table in the middle of the page. There will be one line of entries for
each elementary event. The third column is simply a transcription of the probabilities
of the elementary events and their sum should be 1. The totals of the fourth, fifth
and sixth columns should give E(X + Y ), E

(

(X + Y )2
)

and E(XY ). Check that
E(X + Y ) = E(X) + E(Y ) (these latter values being computed in the previous step).

• Compute the variance of the sum V(X + Y ) and check whether or not the result is
the same as V(X) + V(Y ).

• Compute the covariance and add twice this to V(X)+V(Y ) and check that the result
is the same as the value of V(X + Y ) computed in the previous step.

• Finally check each probability in the original table against the product of the two
relevant marginal sums. If any probability is different from the relevant product, the
two random variables are not independent.
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A Full Analysis of a Pair of Random Variables

First copy the table of elementary events and compute the marginal sums. . .

Y

s →
0 1

r 0 1

3

1

3

2

3
X

↓ 1 1

4

1

12

1

3

7

12

5

12

Tabulate the probabilities P(X = r) and P(Y = s) separately and for each variable
compute the expectation, the expectation of the square, and the variance. . .

r P(X = r) E(X) = 1

3

0 2

3
E(X2) = 1

3

1 1

3
V(X) = 2

9

s P(Y = s) E(Y ) = 5

12

0 7

12
E(Y 2) = 5

12

1 5

12
V(Y ) = 35

144

For each elementary event tabulate r, s, pr,s, (r + s) pr,s, (r + s)2 pr,s and (r.s) pr,s and
then determine the sums of the four rightmost columns. . .

r s pr,s (r + s) pr,s (r + s)2 pr,s (r.s) pr,s

0 0 1

3
0 0 0

0 1 1

3

1

3

1

3
0

1 0 1

4

1

4

1

4
0

1 1 1

12

1

6

1

3

1

12

1 3

4

11

12

1

12

∑

r

∑

s pr,s E(X + Y ) E
(

(X + Y )2
)

E(XY )

Now compute various values related to the pair X and Y . . .

Variance of the sum (i): V(X + Y ) = E
(

(X + Y )2
)

−
(

E(X + Y )
)2

= 11

12
− 9

16
= 17

48

Covariance: W(X,Y ) = E(XY ) − E(X) .E(Y ) = 1

12
− 1

3
× 5

12
= − 1

18

Variance of the sum (ii): V(X + Y ) = V(X) + V(Y ) + 2W(X,Y ) = 2

9
+ 35

144
− 1

9
= 17

48

Finally check for independence; P(X = r, Y = s) versus P(X = r) .P(Y = s) . . .

1

3
6= 2

3
× 7

12

1

3
6= 2

3
× 5

12

1

4
6= 1

3
× 7

12

1

12
6= 1

3
× 5

12
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Glossary

The following technical terms have been introduced:

variance
derived random variable

standard deviation
Geometric distribution

Poisson distribution
covariance

Exercises — IV

Work in fractions.

1. Determine the variance of the Triangular distribution:

P(X = r) =

{ r

21
, if r ∈ N ∧ 1 6 r 6 6

0, otherwise

2. A random variable X is distributed Geometric(p) so P(X = r) = (1 − p)rp. Show
that P(X > m + n

∣

∣ X > m) = P(X > n) for m,n = 0, 1, 2, . . . [Thus X has the ‘lack
of memory property’ since, given that X − m > 0, the distribution of X − m is the
same as the original distribution of X.]

3. As r takes the values 0, 1, 2, . . . show that the probabilities of the Poisson distribution
P(X = r) = λre−λ/r! initially increase monotonically then decrease monotonically.
Additionally show that they reach their greatest value when r is the largest integer
not exceeding λ.

4. A computer printout of n pages contains on average λ misprints per page. Estimate
the probability that at least one page will contain more than k misprints.

5. Two random variables X and Y are independently distributed with means µx and µy

and variances σ2
x and σ2

y respectively. Derive expressions for the mean and variance
of XY .

6. Suppose that the data given in the 2 × 2 table on page 4.10 were replaced by the
following values for the probabilities of the elementary events:

fair dark

boy 4

15

2

15

girl 2

5

1

5

Complete a proforma like that shown on page 4.11 but based on these new values.

– 4.12 –



7. Suppose the hair colour is now classified in three ways and the results for a rather
extraordinary class are recorded in the following 2 × 3 table:

fair red dark

boy 1

3
0 1

3

girl 0 1

3
0

Again complete a proforma. Note that s will now range 0, 1 and 2 and there will be
an extra line of entries in the table headed s and P(Y = s). There will be two extra
lines in the main table.

8. Suppose that the data are now as in the following 7 × 7 table which is appropriate
for two fair dice. Both r and s will now range from 0 to 6 and there will be seven
lines of entries in the two short tables. In principle there will be 49 lines of entries in
the main table but it is not necessary to fill this in. Only the four totals beneath the
table are required and it will not be hard to see how to derive these by some obvious
short cuts:

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1

36

1

36

1

36

1

36

1

36

1

36

2 0 1

36

1

36

1

36

1

36

1

36

1

36

3 0 1

36

1

36

1

36

1

36

1

36

1

36

4 0 1

36

1

36

1

36

1

36

1

36

1

36

5 0 1

36

1

36

1

36

1

36

1

36

1

36

6 0 1

36

1

36

1

36

1

36

1

36

1

36

9. Complete a similar analysis using the data in the following table where the two dice
always show the same value:

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1

6
0 0 0 0 0

2 0 0 1

6
0 0 0 0

3 0 0 0 1

6
0 0 0

4 0 0 0 0 1

6
0 0

5 0 0 0 0 0 1

6
0

6 0 0 0 0 0 0 1

6
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10. To conclude this series of dice questions, use the data in the following table where the
sum of the values shown by the two dice is always seven:

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1

6

2 0 0 0 0 0 1

6
0

3 0 0 0 0 1

6
0 0

4 0 0 0 1

6
0 0 0

5 0 0 1

6
0 0 0 0

6 0 1

6
0 0 0 0 0

11. By analogy with the method used to demonstrate that E
(

(X−µ)2
)

= E(X2)−
(

E(X)
)2

(see (4.3) above) show that:

E
(

(X − µX).(Y − µY )
)

= E(XY ) − E(X) .E(Y )

where µX = E(X) and µY = E(Y ).
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