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These notes are based on a Technical Report which discusses the resampling of images.
A lot of the text therefore refers to images but it can easily be generalised to all forms of
data which need to be sampled. In this text, the term “image” will usually mean “digital
image” and the the concept of a real image is captured by the phrase “intensity surface”,
i.e. a function from the 2D real plane to intensity.

1 Sampling

Sampling is the process of converting a continuous function into a discrete represen-
tation. Conventional sampling theory deals with regularly spaced point samples, with
each sample being produced by taking the value of the continuous function at a single
point.

1.1 Converting the continuous into the discrete

Sampling takes a continuous signal, one defined over all space, and produces a discrete
signal, one defined over only a discrete set of points. In practice the two signals are only
defined within a region of interest. For example, when sampling images, the continuous
signal is an intensity surface; that is: a three-dimensional function with two spatial
dimensions and one intensity dimension where each point in the spatial plane has a
single intensity. When dealing with colour, the number of dimensions increases, typically
to three colour dimensions (but still only two spatial dimensions). When dealing with
one spatial dimension (e.g. sound) or three spatial dimensions (e.g. a CAT or MRI scan
of the human body) the situation also changes but the underlying principle is the same:
at every spatial point there is either a scalar or vector value, which is the value of the
function at that point, be it intensity, colour, pressure, density or whatever.

The discrete signal has the same number of spatial and function value dimensions as the
continuous signal but is discrete in the spatial domain. Furthermore, a digital computer
cannot represent a continuous quantity and so the sampled signal will be discrete in
∗ c©2003 Neil A. Dodgson
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value as well. The process of converting a continuous value to a discrete one is called
quantisation.

1.2 Quantisation

Ideally, infinite precision in recorded value is desirable because no errors would then
arise from slightly imprecise values. In practice, the sampling device has only finite
precision and the values are recorded to only finite precision.

The important point is that sufficient quantisation levels must be used that any errors
caused by imprecision are unimportant. For example, with sound and images, the num-
ber of quantisation levels must be sufficient to fool the human observer into believing
that the signal is continuous. We considered this in the Part IB Computer Graphics
course, and the conclusions we drew there are reproduced below as an example.

1.2.1 The minium necessary number of intensity levels required to represent
images

For images, quantisation errors are most noticeable when only a few discrete intensity
levels are available, and most image processing texts include an example showing the
effect on a displayed image of allowing a larger or smaller number of intensity levels [see,
for example, Rosenfeld and Kak, 1982, pp.107–8 figs. 14 and 15; Gonzalez and Wintz,
1977, fig. 2.8]. The extreme case is where there are only two levels: black and white.
Such an image takes comparatively little storage (one bit per pixel) but has a limited
usefulness. With digital half-toning techniques it can be made to simulate a wide range
of grey shades, but, for resampling, it is preferable to have true shades of grey rather
than simulated ones.

The general case, then, is one where a significant number of discrete intensity levels are
used to represent a continuous range of intensities. But how many intensity levels are
sufficient?

The human visual system is limited in how small an intensity change it can detect. Re-
search suggests that, for two large areas of constant intensity, a two percent difference
can be just detected [Crow, 1978, p.4]. The minimum difference that can be detected
rises to a higher value for very dark or very bright areas [Pratt, 1978, pp.17–18]. It
also rises when comparing small areas of constant intensity [ibid., pp.18–19, fig. 2.5].
When dealing with colour images the minimum noticeable differences for pure colour
information (that is with no intensity component) are much larger than those for inten-
sity information, hence broadcast television has an intensity channel with high spatial
resolution and two channels carrying the colour information at low spatial resolution
[NMFPT, 1992]. Here, we shall consider only intensity. The number of intensity levels
required to produce a faithful representation of an original intensity surface depends on
the image itself [Gonzalez and Wintz, pp.27-28] and on the display device.

If we wish to display any image on a ‘reasonable’ display device then how many levels
are required? Many researchers have answered this question and their results are given
below. We are working with binary digital computers and so, sensibly, most of the an-
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swers are powers of two. Crow [1978, p.4] says that between six and eight bits (64 to 256
intensity levels) are required, depending on the quality of the display. He also calculates
that the typical display would need about 162 intensity levels. This calculation is re-
produced and explained later. Gonzalez and Wintz [1977, pp.19 and 26] suggest that 64
levels (six bits) may be sufficient in some cases but say that “to obtain displays that will
appear reasonably smooth to the eye for a large class of image types, a range of over 100
intensity levels is generally required.” Rosenfeld and Kak [1982, p.106] also suggest that
more than 100 levels may be needed for some applications. Finally, Foley and van Dan
[1982, p.594] and Pavlidis [1982, p.39] both agree that 64 levels are generally adequate
but that 256 levels may be needed for some images (Pavlidis hints that 256 levels may
not be enough for a small number of images). The consensus appears to be that many
images require only 64 intensity levels and virtually none need more than 256.

If we wish all images that we could possibly display to exhibit no artifacts due to inten-
sity quantisation then we must take into account those images with large areas of slowly
changing intensity at the dark ¡end of the intensity range. Crow [1978, p.4] performs a
‘back of the envelope’ calculation to see how many intensity levels are required, given
the two percent minimum perceivable intensity difference mentioned earlier. He notes
that the most intense spot that a typical cathode ray tube (CRT) can produce is 25 times
more intense than the dimmest. If the intensity levels are exponentially distributed
(that is, each is two percent brighter than the previous level) then about log 25

log 1.02 = 163
intensity levels are required.

However, for work in image resampling it is important that the intensities are dis-
tributed linearly. This means that the average of two intensities is a third intensity
that is perceptually halfway between the two. Thus a checkerboard of squares in any
two intensities, viewed from sufficient distance that the individual checks are impercep-
tible, will appear like a plane of constant intensity of the average of the two intensi-
ties. This property is important because virtually all resampling work involves taking
the weighted average of a number of intensities and this must produce the perceptu-
ally correct result. (An exponential distribution could be used if it were transformed to
the linear domain before any calculations and transformed back afterwards. This is a
tremendous overhead for a resampling operation and should thus be avoided.)

With linearly distributed intensity levels all adjacent levels are the same distance apart,
say ∆I, in intensity space. If, as above, the brightest level is 25 times as bright as the
darkest and the total number of levels is n then ∆I will be:

∆I =
25− 1

n− 1

∆I must be such that the second darkest level is two percent brighter than the dark-
est, therefore, in the above formula, ∆I = 0.02. This means that the number of levels,
n, is around n = 1201. 1200 is considerably more than the 256 quoted earlier, and is
slightly more than 210 (1024). Ten bits should however be sufficient, because the mini-
mum perceivable intensity difference for the darkest levels is known to be higher than
two percent. With 1024 levels the difference between the darkest and second darkest
levels is 2.35%. This should be small enough provided that the darkest intensity on the
screen is dark enough to be in the area of the response curve which rises above the two
percent level. With 256 levels (eight bits) the difference is 9.41%, which may be too large.
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Observations on an eight bit, linearly distributed display show that it is too large: false
contouring can be seen in areas of slowly varying dark intensity.

Blinn [1990, p.85] notes the same effect in digital video. In his discussion of digital video
format D1 he says: “Digital video sounds like the world of the future, but I understand
there’s still a bit of a problem: 8 bits don’t really give enough resolution in the darker
areas to prevent contouring or banding.”

Murch and Weiman [1991] have performed experiments which show that ten is the max-
imum number of bits required to make intensity differences between adjacent levels
imperceptible, with the possible exceptions of CRTs with an extremely high maximum
intensity.

For any image without large areas of slowly varying dark intensities, ten bits of intensity
information is too much, and so, for many images, if the intensity values are stored to a
precision of eight bits, few visible errors will result from the quantisation of intensity. If
they are stored to a precision of ten bits or more, practically no visible errors will arise.

1.3 The sampling process

Let us now assume that our function values are quantised to sufficient precision that
the errors introduced by quantisation are neglibible. We therefore go on to consider the
process of sampling.

The aim of sampling is to generate sample values so that they “best represent” the orig-
inal continuous function. This is a good concept but what is meant by ‘best represent’?
To some it may mean that the samples obey classical sampling theory. To others it may
mean that the resulting samples, when reconstructed on a particular device (e.g. a mon-
itor or a loudspeaker), is indistinguishable from the original as far as is possible.

1.3.1 Classical sampling theory

The roots of sampling theory go back to 1915, with Whittaker’s work on interpolation
of a set of equispaced samples. However, most people attribute the sampling theorem
to Shannon [1949], who acknowledges a debt to many others in its development. At-
tribution of the theorem has been jointly given to Whittaker and Shannon [Gonzalez
and Wintz, 1977, p.72] Shannon and Nyquist [Turkowski, 1986], and to Shannon, Ko-
tel’nikof and Whittaker [Petersen and Middleton, 1962, p.279]. Shannon’s statement of
the sampling theorem is1:

If a function f(t) contains no frequencies higher thatW cps it is completely
determined by giving its ordinates at a series of points spaced 1

2W seconds
apart.
[Shannon, 1949, Theorem 1] 2.

1The theory laid out by Shannon [1949] and others is for one dimensional sampling only. Petersen and
Middleton [1962] extended Shannon’s work to many dimensions.

2cps = cycles per seconds ≡ Hertz
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Mathematically, the sampling process is described as the product of f(t) with the comb
function:

comb(t) =
∞∑

n=−∞
δ(t− nT )

where δ(t) is the Dirac delta-function3. This gives the sampled function:

f̂(t) =

( ∞∑

n=−∞
δ(t− nT )

)
f(t)

=
∞∑

n=−∞
(δ(t− nT )f(t− nT )) (1)

This is not the same as:
f̂n = f(nT ) (2)

Equation 1 is a continuous function which consists of an infinite sum of weighted, shifted
Dirac delta functions and is zero everywhere except at t = nT, n ∈ Z. Equation 2 is a
discrete function which is defined on the set n ∈ Z. The values of the discrete function
are the weights on the delta functions that make up the continuous function, that is:

f̂(t) =
∞∑

n=−∞
f̂n δ(t− nT )

In a computer we, of course, store the discrete version; but mathematically and theo-
retically we deal with the continuous one. The sampling theorem can be justified by
considering the function in the frequency domain.

The continuous spatial domain function, f(t), is bandlimited. That is it contains no
frequencies higher than νb (W in the statement of Shannon’s theorem above). Its Fourier
transform, F (ν) is thus zero outside the range (−νb, νb). Sampling involves multiplying
f(t) by comb(t). The equivalent operation in the frequency domain is to convolve F (ν)
by Comb(ν), the Fourier transform of comb(t). Comb(ν) is composed of Dirac delta-
functions at a spacing of 1

T (for a proof of this see Marion [1991, pp.31–32]). Convolving
this with F (ν) produces replicas of F (ν) at a spacing of 1

T . Figure 1 illustrates this
process.

If T < 1
2νb

then the copies of F (ν) will not overlap and the original F (ν) can be retrieved
by multiplying F̂ (ν) by a box function:

Box(ν) =

{
1, |ν| < νb
0, otherwise

This removes all the copies of the original except for the copy centred at ν = 0. As this
is the original frequency domain function, F (ν), the spatial domain function will also be
perfectly reconstructed.

3The Dirac delta function is zero everywhere except at t = 0. The area under the function is unity, that
is
∫∞
−∞ δ(t) dt = 1. One definition of the Dirac delta function is:

δ(t) = lim
a→∞

√
a e−aπx

2
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Figure 1: The sampling process: (a) the continuous spatial domain function, f(x), has a
Fourier transform, F (ν), bandlimited to below half the sampling frequency, 1

2T ; (b) when
it is sampled (f(x)×comb(x)) its Fourier transform is convolved with Comb(ν) producing
replicas of the original Fourier transform at a spacing of 1

T .
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Figure 2: An example of sampling at too low a frequency. Here we see the frequency
domain representations of the functions. The original function, (a), is not bandlimited
to within half the sampling frequency and so when it is sampled, (b), the copies overlap
and add up producing the function shown by the dark line. It is impossible to recover
the original function from this aliased version.

Multiplying by a box function in the frequency domain is equivalent to convolving in the
spatial domain by the box’s inverse Fourier transform, s(x). This can be shown to be
s(x) = 2νbsinc(2νbx), where sinc(x) = sin(πx)

πx (a proof of this can be found in appendix A).

If T ≥ 1
2νb

then the copies of F (ν) will overlap (figure 2). The overlapping parts sum
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ν1
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summed
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(b) F ( ν )^ ( ν )x Box

Figure 3: An example of aliasing. (a) is the frequency spectrum of the original image.
If the original image is sampled and then reconstructed by multiplying its frequency
spectrum by a box function then (b) is the result. The copies of the spectrum overlap and
add up, as if F (ν) in (a) had been folded back about 1

2T and summed.

to produce F̂ (ν). There is no way that this process can be reversed to retrieve F (ν) and
so f(t) cannot be perfectly reconstructed. If F̂ (ν) is multiplied by the box function (the
perfect reconstructor) then the resulting function is as if F (ν) had been folded about
the frequency 1

2T and summed (figure 3). For this reason ν = 1
2T is known as the

folding frequency. The effect of this folding is that the high frequencies in F (ν) alias into
low frequencies. This causes artifacts in the reconstructed image which are collectively
known as ‘aliasing’. In computer graphics the term aliasing is usually incorrectly used
to refer to both aliasing and rastering artifacts [Pavlidis, 1990]. This point is picked up
in section 1.5. Figure 4 gives an example of aliasing. It normally manifests as unsightly
ripples, especially near sharp changes in intensity.

To avoid aliasing we must ensure that the sampled intensity surface is bandlimited to
below the folding frequency. If it is not then it can be prefiltered to remove all infor-
mation above this frequency. The procedure here is to multiply the intensity surface’s
Fourier transform by a box function, a process known as bandlimiting the intensity sur-
face. Foley et al [1990, fig. 14.29] give an example of this procedure. This prefiltering
followed by point sampling is equivalent to an area sampling process, as is explained
later.

These procedures are mathematically correct and produce an image free of aliasing.
However they have their drawbacks. Firstly, if an intensity surface has to be prefiltered
then the image does not represent the original intensity surface but rather the filtered
one. For certain applications this may be undesirable. To represent an intensity sur-
face with flat or linearly sloped areas, infinite frequencies are required. Bandlimiting
prevents such surfaces from being perfectly represented, and so any ‘flat’ part of a band-
limited image will be ripply. An example of this effect is that any sharp edge in a band-
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Figure 4: An example of a reconstructed intensity surface which contains aliases. These
manifest themselves as ripples around the sharp edges in the image. The small image
of the letter ‘P’ is the original. The large is an intensity surface reconstructed from this
small original using an approximation to sinc reconstruction.

unlimited intensity surface will have a 9% overshoot either side if it is bandlimited, no
matter what the bandlimit is [Lynn and Fuerst, 1989, p.145]; ripples will also propa-
gate out from the discontinuity, reducing in magnitude as they get farther away. Thus
a bandlimited intensity surface is, by its very nature, ripply. This can be seen in fig-
ure 8(a); there is no aliasing in this figure, the intensity surface is inherently ripply due
to being bandlimited. The human visual system abhors ripples, they seriously degrade
an image. If however, the ripples in the reconstructed intensity surface are undetectable
by the human eye then the surface looks very good.

More importantly, it is practically impossible to achieve perfect prefiltering and so some
aliasing will creep in. In an image capture device, some (imperfect) prefiltering will
occur; that is: the image capture device does not perform perfect prefiltering. Fraser
[1987] asserts that most people depend on this prefiltering to bandlimit the intensity
surface enough that little aliasing occurs. In the digital operations of rendering and
resampling, perfect prefiltering is simply impossible, ensuring that some aliasing al-
ways occurs. This is because perfect prefiltering involves either continuous convolution
by an infinite sinc function or multiplication of the continuous Fourier transform by a
bandlimiting function. Both of these operations are impossible in a discrete computer.
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(a) (b) (c)

Figure 5: Three common assumptions about pixel shape: (a) abutting squares, (b) abut-
ting circles, and (c) overlapping circles.

Finally, perfect reconstruction is also practically impossible because it requires an infi-
nite image. Thus, whilst it would be theoretically possible to exactly recreate a band-
limited intensity surface from its samples, in practice it is impossible. In fact, most
display devices reconstruct so badly that correct sampling can produce visually worse
results than the optimal incorrect sampling method.

Before discussing this, however, we need to examine the various types of sampling.
These fall into two broad categories: area samplers and point samplers.

1.4 Area vs point sampling

Any sampling method will fall into one of these two categories. Area sampling pro-
duces a sample value by taking into account the values of the intensity surface over an
area. These values are weighted somehow to produce a single sample value. Point sam-
pling takes into account the values of the intensity surface only at a finite set of distinct
points4. If the set contains more than one point then these values must be combined in
some way to produce a single sample value. This is not the usual description of point
sampling, because ‘point sampling’ is usually used in its narrow sense: to refer to single
point sampling. Fiume [1989, section 3.2.4] studied the various sampling techniques,
the following sections draw partly on his work.

1.4.1 Area sampling

Exact-area sampling The assumptions behind exact-area sampling are that each
pixel has a certain area, that every part of the intensity surface within that area should
contribute equally to the pixel’s sample value, and that any part of the intensity surface
outside that area should contribute nothing. Hence, if we make the common assumption
that pixels are abutting squares then for a given pixel the sample value produced by
the exact area sampler will be the average intensity of the intensity surface within that
pixel’s square (figure 5(a)) Alternately, we could assume that pixels are abutting circles
[Durand, 1989] or overlapping circles [Crow, 1978] and produce the average value of the
intensity surface over the relevant circular area (figure 5(b) and (c)). Obviously other
assumptions about pixel shape are possible.

4Fiume [1989, p.82] states that the set of point samples should be countable, or more generally, a set of
measure zero.
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General area sampling The general case for area sampling is that some area is cho-
sen, inside which intensity surface values will contribute to the pixel’s sample value.
This area is usually centred on the pixel’s centre. Some weighting function is applied
to this area and the pixel’s value is the weighted average over the area. Exact-area
sampling is obviously a special case of this.

Equivalence to prefiltering Area sampling is equivalent to prefiltering followed by
single point sampling. In area sampling, a weighted average is taken over an area of
the intensity surface. With prefiltering a filter is convolved with the intensity surface
and a single point sample is taken for each pixel off this filtered intensity surface. To be
equivalent the prefilter will be the same function as the area sample weighting function.
The two concepts are different ways of thinking about the same process. Heckbert [1989]
proposed that sampling could be decomposed into prefiltering and single point sampling.
Whilst this is entirely appropriate for all area samplers, not all point samplers can be
represented in this way, because some point samplers cannot be represented by filters.
Specific examples are adaptive super-samplers and stochastic point samplers, discussed
below.

1.4.2 Point sampling

Unlike an area-sampling process, a point-sampler ignores all but a countable set of dis-
crete points to define the intensity value of a pixel. Point sampling comes in two flavours:
regular and irregular (or stochastic) point sampling. Wolberg [1990, sections 6.2 and 6.3]
summarises the various types of point sampling; here we only outline them.

Single point sampling In single point sampling, the samples are regularly spaced
and each pixel’s sample value is produced by a single point. In fact this is exactly the
method of sampling described in classical sampling theory (section 1.3.1). All other point
sampling methods are attempts to approximate area sampling methods or attempts to
reduce artifacts in the reconstructed intensity surface (often they attempt to be both).

Super-sampling As in single point sampling, the samples are arranged in a regu-
lar fashion, but more that one sample is used per pixel. The pixel’s intensity value is
produced by taking a weighted average of the sample values taken for that pixel. This
can be seen as a direct approximation to area sampling. Fiume [1989, p.96, theorem 6]
proves that, given a weighting function, a super-sampling method using this weighting
function for its samples converges, as the number of samples increases, toward an area
sampling method using the same weighting function.

Such a super-sampling technique can be represented as a prefilter followed by single
point sampling; on the other hand, the adaptive super-sampling method cannot.

Adaptive super-sampling Adaptive super-sampling is an attempt to reduce the amount
of work required to produce the samples. In order to produce a good quality image, many
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super-samples need to be taken in areas of high intensity variance but a few samples
would give good results in areas of low intensity variance. Ordinary super-sampling
would need to take many samples in all areas to produce a good quality image, because
it applies the same sampling process for every pixel. Adaptive super-sampling takes
a small number of point samples for a pixel and, from these sample values, ascertains
whether more samples need to be taken to produce a good intensity value for that pixel.
In this way fewer samples need to be taken in areas of lower intensity variance and so
less work needs to be done.

Stochastic sampling Stochastic, or irregular, sampling produces a sample value for
each pixel based on one or more randomly placed samples. There are obviously some
bounds within which each randomly placed sample can lie. For example it may be con-
strained to lie somewhere within the pixel’s area, or within a third of a pixel width from
the pixel’s centre. The possible locations may also be constrained by some probability
distribution so that, say, a sample point has a greater chance of lying near the pixel cen-
tre than near its edge. Stochastic methods cannot be represented as a prefilter followed
by single point sampling, because of this random nature of the sample location.

Stochastic sampling is in favour amongst the rendering community because it replaces
the regular artifacts which result from regular sampling with irregular artifacts. The
human visual system finds these irregular artifacts far less objectionable than the regu-
lar ones and so an image of equal quality can be achieved with fewer stochastic samples
than with regularly spaced samples (see Cook [1986] but also see Pavlidis’ [1990] com-
ments on Cook’s work).

Fiume [1989, p.98, theorem 7] proves that the choice of point-samples stochastically
distributed according to a given probability distribution will converge to the analagous
area-sampling process as the number of points taken increases, a result similar to that
for super-sampling.

1.4.3 Summary

Area sampling yields mathematically precise results, if we are attempting to implement
some prefilter (section 1.3.1). However, in digital computations it may be impossible,
or difficult to perform area sampling because it involves continuous convolution. The
point sampling techniques have been shown to be capable of approximating the area
sampling methods. Such approximations are necessary in cases where area sampling is
impracticable [Fiume, 1989, p.102].

1.5 Anti-aliasing

The purpose of all sampling, other than single-point sampling, is ostensibly to prevent
any artifacts from occuring in the image. In fact it is usually used to prevent any arti-
facts from occuring in the intensity surface reconstructed from the image by the display
device. This prevention is generally known in computer graphics as anti-aliasing. This
is something of a misnomer as many of the artifacts do not arise from aliases. The
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Figure 6: Two very similar images: (a) on the left, was generated by summing the first
twenty-nine terms of the Fourier series representation of the appropriate square wave;
(b) on the right, was generated by super-sampling a perfect representation of the stripes.

Figure 7: The Fourier transforms of the images in figure 6. (a) on the left and (b) on the
right. The Fourier transforms are shown on a logarithmic scale.
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Figure 8: The two images of figure 6 reconstructed using as near perfect reconstruction
as possible. (a) on the left and (b) on the right. This figure shows part of the recon-
structed intensity surface. Aliasing artifacts occur in (b) only

Figure 9: The two images of figure 6 reconstructed using as nearest-neighbour recon-
struction. (a) on the left and (b) on the right. This figure shows part of the reconstructed
intensity surface. (a) contains only rastering atifacts, while (b) contains a combination
of rastering and aliasing artifacts.
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perpetuation of the incorrect terminology is possibly due to the fact that the common
solution to cure aliasing also alleviates rastering, the other main source of artifacts in
images [Pavlidis, 1990, p.234].

Crow [1977] was the first to show that aliasing (sampling a signal at too low a rate) was
the cause of some of the artifacts in digital imagery. He also notes [ibid., p. 800] that
some artifacts are due to failing to reconstruct the signal properly. This latter problem
he termed ‘rastering’. ‘Aliasing’, however, became the common term for both of these
effects, with some subsequent confusion, and it is only occassionaly that one sees the
term ‘rastering’ [Foley et al, 1990, p.641]. Mitchell and Netravali [1988], for example,
discuss the two types of artifact as distinct effects but perpetuate the terminology by
naming aliasing and rastering, pre-aliasing and post-aliasing respectively.

Sampling has thus been used to alleviate both types of artifact. This has an inbuilt
problem that, to correct for reconstruction artifacts (rastering), one needs to know the
type of reconstruction that will be performed on the image. Most images are displayed
on a CRT, and all CRTs have a similar reconstruction method, so this is not too big a
problem. However, when displayed on a different device (for example a film recorder) ar-
tifacts may appear which were not visible on the CRT because the reconstruction method
is different.

Figures 6 through 9 illustrate the distinction between aliasing artifacts and reconstruc-
tion artifacts. Two images are shown of alternate dark and bright stripes. These images
were specially designed so that no spurious information due to edge effects would ap-
pear in their discrete Fourier transforms (that is: the Fourier transforms shown here
are those of these simple patterns copied off to infinity so as to fill the whole plane).

Figure 6(a) was generated by summing the first twenty-nine terms of the Fourier series
representation of the appropriate square wave as can be seen by its Fourier transform
(figure 7(a)). Figure 6(b) was generated by one of the common anti-aliasing techniques.
It was rendered using a 16×16 super-sampling grid on each pixel with the average value
of all 256 super-samples being assigned to the pixel. Figure 7(b) shows its Fourier trans-
form. It is similar in form to figure 7(a) but the aliasing can be clearly seen in the wrap
around effect of the line of major components, and also in that the other components are
not zero, as they are in the unaliased case.

When these are reconstructed using as near-perfect reconstruction as possible we get
the intensity surfaces shown in figure 8. The ripples in figure 8(a) are not an aliasing
artifact but the correct reconstruction of the function; it is, after all, a sum of sine waves.
The ripply effect in figure 8(b)is due to aliasing. The intensity surface that was sampled
had constant shaded stripes with infinitely sharp transitions between the dark and light
stripes. The perfectly reconstructed intensity surface shown here perfectly reconstructs
all of the aliases caused by sampling the original intensity surface.

By contrast, figure 9 shows the intensity surfaces which result from an imperfect recon-
structor: the nearest-neighbour interpolant. The artifacts in figure 9(a) are entirely due
to rastering (the image contains no aliasing). This is the familiar blocky artifact so often
attributed, incorrectly, to aliasing. The artifacts in figure 9(b) are due to a combination
of aliasing and rastering. Oddly, it is this latter intensity surface which we tend to find
intuitively preferable. This is probably due to the areas perceived as having constant
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intensity in figure 6(b) retaining this constant intensity in figure 9(b).

How these intensity surfaces are perceived does depend on the scale to which they are
reconstructed. The ‘images’ in figure 6 are of course intensity surfaces but are recon-
structed to one eighth the scale of those in figure 8 and figure 9. If one stands far enough
back from these larger-scale figures then they all look identical.

It is fascinating that the intensity surface with both types of artifact in it appears to be
the prefered one. This is possibly due to the facts that (a) the human visual system is
good at detecting intensity changes, hence rippling is extremely obvious; and (b) most
scenes consist of areas of constant intensity or slowly varying intensity separated by
fairly sharp edges, hence representing them as a bandlimited sum of sinusoids will pro-
duce what we perceive as an incorrect result: most visual scenes simply do not contain
areas of sinsoidally varying intensity.

Thus there is a tension between the sampling theory and the visual effect of the physical
reconstruction on the display device. Indeed many researchers, instead of turning to
the perfect sampling theory method of sampling, turn instead to methods which take
the human observer into account. The main point to take home here is that, in order
to make truly successful compression algorithms, we need an understanding of both
sampling theory and of how human beings perceive the world. Thus we get to Markus
Kuhn’s part of the course, where he discusses practical algorithms which are used for
compressing data intended for human perception, i.e. images and sound.
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2 Fast Fourier Transform Scaling of Sampled Data

This section is included to give further insight into how the frequency and spatial do-
mains relate to one another through the Fourier transform. It is not intended to be exam-
inable.

The theoretically perfect reconstructed function is generated by convolving the sample
data with a sinc function. Whatever the advantages and disadvantages of this recon-
struction method, it is sometimes necessary to implement it. Sinc reconstruction is,
however, extremely expensive to implement. The sinc function cannot be truncated to
produce a local reconstructor without severe artifacts; windowing gives better results
but is still not ideal. To implement ideal sinc reconstruction will be an O(N 2) process for
every sample point for an N × N image. Thus resampling an N × N image to another
N ×N image with single point sampling will be an O(N 4) process.

Fraser [1987, 1989a, 1989b] presents a method which uses the fast Fourier transform
(FFT) to produce practically identical results to sinc reconstruction in O(N 2 logN) time.
This section discusses his method and presents two variations on it: one to improve
its accuracy near image edges; the other to increase its speed and reduce its memory
requirements.

2.1 The reconstructed intensity surface

The fast Fourier transform techniques are fast ways of implementing the discrete Fourier
transform (DFT). The DFT transforms a finite-length discrete image into a finite-length
discrete frequency spectrum. The intensity surface generated by DFT reconstruction
is the periodic function described by a Fourier series consisting of the DFT coefficients
below the Nyquist frequency and zeros above it [Fraser, 1987]. No doubt this statement
requires some explanation.

Given a one-dimensional sequence of N samples, fj , the DFT produces N frequency
values, Fk [Lynn and Fuerst, 1989, p.212]:

Fk =
N−1∑

j=0

fj e
−i2πjk/N , k ∈ {0, 1, . . . , N − 1}

These two discrete series, fj and Fk, each form the weights of periodic weighted comb
functions:

ι(x) =
∞∑

j=−∞
fj δ(x−

j

N
), fj = fj−N

I(ν) =
∞∑

k=−∞
Fk δ(ν − k), Fk = Fk−N

Watson [1986] shows that these two comb functions are Fourier transforms of one an-
other. The relationship is illustrated in figure 10.
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Figure 10: The relationship between the discrete and continuous representations of a
sampled function. (a) shows the discrete samples, which can be discrete Fourier trans-
formed to give (b) the DFT of (a). (c) shows ι(x), the continuous version of (a), it consists
of an infinite periodic set of Dirac delta functions. Its Fourier transform, (d), is also an
infinite periodic set of Dirac delta functions and is the continuous representation of (b).

(a) (b) (c)

Figure 11: The three possible forms of the box function:

(a) b1(x) =

{
1, |x| < m

2

0, |x| ≥ m
2

(b) b2(x) =





1, |x| < m
2

1
2 , |x| = m

2

0, |x| > m
2

(c) b3(x) =

{
1, |x| ≤ m

2

0, |x| > m
2

Now, to perfectly reconstruct f(x) from ι(x) we convolve it with Nsinc(Nx). This is
equivalent to multiplying I(ν) in the frequency domain by a box function, suppressing
all periods except the central one between ν = −N/2 and ν = N/2.

An important question here is what happens at the discontinuities of the box function?
Figure 11 gives the three plausible answers to this: the value at the discontinuity can
be zero, a half, or one. In continuous work it does not matter particularly which version
is used. Here, however, we are dealing with a weighted comb function. If this comb has
a tooth at the same place as the box function’s discontinuity then it makes a good deal of
difference which version of the box function is used. Fraser [1987, p.122] suggests that
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the central version be used (where b2(N2 ) = 1
2 ). His reasoning is that all components of

the Fourier sequence appear once in the box windowed function but the component at
the Nyquist frequency occurs twice (once at each end) and so must be given a weight of
one half relative to the other components.

A more rigorous reason can be found from taking the Fourier transform of the spatial
domain sinc function:

B(ν) =

∫ ∞

−∞
Nsinc(Nx)e−i2πνx dx, N > 0

This can be shown (appendix B) to be:

B(ν) =





1, |ν| < N
2

1
2 , |ν| = N

2

0, |ν| > N
2

(3)

Thus we see that the middle version of the box function is the mathematically correct
one to use5.

Applying the box function (equation 3) to the function I(ν) gives a non-periodic weighted
comb function, V (ν):

V (ν) = I(ν) ∗B(ν)

=
∞∑

k=−∞
Vk δ(ν − k)

Vk =





Fk, 0 ≤ k < N
2

FN−k, −N
2 < k < 0

1
2FN/2, |k| = N

2

0, |k| > N
2

Note that there will only be coefficients at |k| = N
2 when N is even.

The coefficients of V (ν) form a Fourier series which describes a continuous function in
the spatial domain [Lynn and Fuerst, 1989, p.338]:

f(x) =
∞∑

k=−∞
Vk e

i2πkx (4)

This is the intensity surface reconstructed by DFT reconstruction. The whole process is
illustrated in figures 12 and 13.

This same sequence of events can be seen in Watson [1986, figs 2 and 4] except that
Watson uses the third version of the box function (b3(N2 ) = 1) rather than the second.

The reconstructed intensity surface is thus perfectly reconstructed from the samples by
theoretically convolving it with a sinc function and, in practice, using the DFT method.

5Any of the versions, when Fourier transformed, gives the sinc function, but the inverse transform gives
the middle version of the box function.
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x
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f( x)
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8

(a)

(b)

(c)

sinc(8 x)8

Figure 12: The spatial domain representation of FFT reconstruction. The sampled func-
tion, ι(x) is shown in (a). It is Fourier transformed to give figure 13(a). This Fourier
transform is multiplied by a box function (figure 13(b)) to give a finite extent function
(figure 13(c)) in the frequency domain. This is inverse Fourier transformed to give the
continuous function (c) here. Multiplication by a box in the frequency domain is equiva-
lent to convolving by a sinc function, (b), in the spatial domain.

The significant fact about this surface is that it is periodic. Edge extension has been done
by replication and thus the infinite convolution of ι(x) by Nsinc(Nx) can be performed
in finite time: the value at any point on the surface can be found by evaluating the sum
of N or N + 1 terms in equation 4, although this method of evaluation is as expensive as
sinc convolution of the spatial domain samples.

The edge extension implicit in the DFT method is different from that which must be
used for sinc interpolation. There we saw that all pixels beyond the image edges must
be given the value zero (or somehow be faded off to zero). Here edge extension is by
copying, which means that edge effects will be visible in the intensity surface unless we
get a fortuitous case where the edges match [Fraser, 1989a, pp.667–668].

2.2 DFT sample rate changing

The DFT can be used to change the sample rate of the image, that is: to scale the image.
The seed of this idea can be found in Schafer and Rabiner [1973]. The idea itself was
developed by Prasad and Satyanarayana [1986] and modified slightly by Fraser [1989a]
to use the correct box function. Their implementation only allows for magnification by an
integer power of two. Watson [1986] independently developed the idea, though he does
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1

Figure 13: The frequency domain representation of FFT reconstruction. See the caption
of figure 12.

not use the correct box function in part of his implementation. His algorithm allows
for scaling by a rational factor such that, if the original sequence is N samples and the
final L samples, then scaling is by a factor L/N . Watsons’ algorithm can thus be used to
scale from any whole number of samples to any other whole number of samples whilst
Fraser’s can only scale from N to 2nN, n ∈ N .

2.2.1 How it works

The following explanation is based on Watson’s [1986] work, with the modification that
the correct box function is used in the first multiplication (Watson already uses it in the
second stage so it is surprising that he is inconsistent). We first present the algorithm
in the continuous domain, then explain how it can be implemented digitally. Again the
one-dimensional case is used for clarity.

The continuous version of the DFT sample rate changing process is illustrated in fig-
ure 15 (minification) and figure 16 (magnification). Our image sample values represent
the weights on one period of a periodic, weighted comb function (figure 15(a)). This is
Fourier transformed to give another periodic weighted comb function (figure 15(b)). The
Fourier transform is then correctly box filtered (figure 15(d)) which gives a continuous
intensity surface in the spatial domain (figure 15(c)). To resample this intensity sur-
face at a different frequency (equivalent to scaling it and then sampling it at the same
frequency) we first perfectly prefilter it, using another correct box function in the fre-
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 14: Critical sampling. The sine waves in (a), (c), and (e) are sampled at exactly
twice their frequencies. The perfectly reconstructed versions are shown in (b), (d), and
(f) respectively. The function is only correctly reconstructed when the samples are in
exactly the right place.
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Figure 15: An example of ‘perfect’ minification. The sampled spatial function (a) is
transformed to give (b), this is multiplied by a box function producing (d) [and thus gen-
erating a continuous function (c) in the spatial domain]. (d) is multiplied by another box
function to band-limit it [filtering the spatial domain function (e)], and then sampling is
performed to replicate the frequency spectrum (h) and produce a minified image in the
spatial domain (g).
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Figure 16: An example of ‘perfect’ magnification. See the caption of figure 15 for a
description of the processes. Note that multiplying (d) by the appropriate box function
to give (f) has no effect on the function in this magnification case.

quency domain. If we are enlarging the image this makes no difference to the image
(figure 16(f)), if reducing it then the higher frequency teeth in the comb function are set
to zero and any component at the new Nyquist frequency is halved (figure 15(f)). We can
then point sample at the new frequency, which produces periodic replication in the fre-
quency domain. Figure 15(h) shows this for reduction and figure 16(h) for enlargement.

Notice that the first multiplication with a box is redundant for reduction and the second
is redundant for enlargement. So, in either case only one multiplication by a box function
is required. Note also that the periodic copies move farther apart in enlargement, as if
they had been pushed apart at the Nyquist frequency (and its copies); and they have
been pushed closer together in reduction, hence the need to prefilter to prevent overlap
and thus aliasing. The overlap at the Nyquist frequency (and its copies at (2N + 1)νN ,
N ∈ Z) appears to be acceptable [Watson, 1986]. Here the negative and positive Nyquist
frequencies add together (hence, again, the need for the box function to have half values
at the Nyquist frequencies). With a real spatial domain function this will mean that
the even component at this frequency will be doubled and the odd component will cancel
itself. So, if the original spectrum is non-zero at the Nyquist frequency then samples at
the sampling frequency preserve only the even portion of this component. This is known
as critical sampling [Watson, 1986, p.4]. Figure 14 shows three sine waves sampled at
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Figure 17: An example of DFT minification. The image, (a), is discrete Fourier trans-
formed, giving (b), which is multiplied by a box function to give (c). The two Nyquist
components are collapsed into one, producing (d), which is inverse discrete Fourier trans-
formed, thus generating (e), a minified version of (a).

twice their own frequency, and the perfectly reconstructed version of these: only the
even component survives.

Whilst this theoretical explanation clearly shows that a continuous intensity surface is
generated and resampled, as a practical reconstruction method a super-skeleton surface
is generated, because samples can only be produced at regularly spaced points, not at
any arbitrary point. To be able to sample at any point there would need to be an in-
finite number of points generated in each period, and hence an infinite length of time
to evaluate all the points (they must all be evaluated in a single operation using this
method).

2.2.2 Practical implementation

This algorithm is implemented using the discrete Fourier transform (normally its fast
version: the fast Fourier transform (section 2.2.4)). The process mirrors that shown in
figure 15 and figure 16. In this section we consider first the case of discrete reduction and
then that of enlargement. In both cases we use even length sequences in our examples.
We consider the differences between even and odd length sequences in the next section.

For reduction, the image (figure 17(a)) is discrete Fourier transformed (figure 17(b)).
Notice that this transform has only one Nyquist component (here shown at the negative
end of the spectrum). The periodic nature of the continuous equivalent means that the
other Nyquist component, and all the other copies of this component, have the same
value. The transformed data are then multiplied by a box function the same width as
the new sample sequence. For an even length sequence, this creates a sequence of length
one more that the new sample sequence, with a Nyquist frequency component at each
end (figure 17(c)). These two components are added together to give a single Nyquist
component, here shown at the negative end of the period (figure 17(d)). Compare this
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Figure 18: An example of DFT magnification. The image, (a), is discrete Fourier trans-
formed, giving (b). The Nyquist component is split into two halves, producing (c). This
is padded with zeros at either end to give (d), which is inverse discrete Fourier trans-
formed, thus generating (e), a magnified version of (a).

with figure 15(f) and (h) where sampling in the spatial domain causes the copies of the
spectrum to overlap at the Nyquist frequency and its copies, and hence add up at these
points. The modified sequence can now be inverse transformed to give the resampled
image (figure 17(e)).

Enlargement is a similar process. The image (figure 18(a)) is discrete Fourier trans-
formed to give its frequency domain representation (figure 18(b)). The Nyquist frequency
component is split into two halves, one at each end of the sequence (figure 18(c)). The
sequence is now one sample longer. Compare this step with figure 16(b) and (d) where
the positive and negative Nyquist components are both halved leaving a sequence with
one tooth more in figure 16(d) that the number of teeth in each period in figure 16(b).
The altered transformed sequence in figure 18(c) is now padded with zeroes at each end
to give a sequence of the desired length (figure 18(d)). Note, in this example, that one
more zero is added at the negative end than at the positive end because we are assum-
ing that the Nyquist component is at the negative end of the spectrum. The discrete
spectrum is finally inverse discrete Fourier transformed to produce the desired enlarged
image (figure 18(e)).

2.2.3 Odd vs even length sequences

All of the examples, up to this point, have used even length sequences. The processing
required for an odd length sequence is slightly different and slightly easier. This is due
to the fact that there is no frequency component at the Nyquist limit in an odd length
sequence. Refer back to the continuous case in figure 15(a) and (b). In general, for
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Figure 19: Comparison of the usual FFT output order and the DFT output order used in
figure 17 and figure 18. At the top is the usual FFT output order. The Nyquist component
is number 5. This can be easily converted to our DFT output order, shown at the bottom.
The Nyquist component here is −5.

a sequence of length L, there are L samples (teeth) in a unit distance in the spatial
domain. Each period in the frequency domain is L units long, with the teeth of the
comb function at integer locations. The Nyquist frequency is at ±L

2 . For an even length
sequence there are components (teeth) at these frequencies; for an odd length sequence
there are no components at these frequencies because they are not at integer locations.
There are therefore no special case frequencies to consider when dealing with an odd-
length sequence, because there is no Nyquist component.

2.2.4 Implementation using the FFT

Implementing this algorithm using a fast Fourier transform is straightforward. Two
transforms are required, one of the original length and one of the final length. Pro-
vided an FFT algorithm can be implemented for both lengths the whole algorithm can
be implemented. All FFT algorithms decompose the DFT into a number of successively
shorter, and simpler DFTs [Lynn and Fuerst, 1989, p.221]. Thus an FFT of length
2n, n ∈ N is well known and widely used. Decomposition of other, non-prime length
DFTs is less widely used. Finally, FFTs for prime length DFTs or lengths with large
prime factors are most difficult, because the DFT has to be split into pieces of unequal
length.

One important implementation issue is that most FFT algorithms produceN coefficients
in the frequency domain ranging from ν = 0 to ν = 2νN − 1. The examples shown here in
figures 17 and 18 show them ranging from ν = −bνNc to ν =

⌊
νN − 1

2

⌋
. This is no great

problem as the values generated are exactly the same because the sequence is periodic
with period 2νN (see figure 10). Figure 19 shows the equivalence. So long as this is
borne in mind in implementation, no problems will arise.
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A The inverse Fourier transform of a box function

s(x) =

∫ ∞

−∞
Box(ν)ei2πνx dν

=

∫ νb

−νb
ei2πνx dν

=
1

i2π x
ei2πνx

∣∣∣∣
νb

−νb

=
1

i2π x

(
ei2πνbx − e−i2πνbx

)

=
1

i2π x
(cos(2πνbx) + i sin(2πνbx)− (cos(2πνbx)− i sin(2πνbx)))

=
1

i2π x
(2i sin(2πνbx))

=
sin(2πνbx)

πx
= 2νbsinc(2νbx)

sinc(x) is defined in the literature as either sinc(x) = sin(x)
x or as sinc(x) = sin(πx)

πx . In
this thesis we will stick with the latter.

B The Fourier transform of the sinc function

The sinc function is defined as:

h(x) = N
sinπNx

πNx
, N > 0

It’s Fourier transform is:

H(ν) =

∫ ∞

−∞
h(x)e−i2πνx dx

=

∫ ∞

−∞
N

sin(πNx)

πNx
[cos(2πνx)− i sin(2πνx)]

=
1

π

∫ ∞

−∞

sin(πNx) cos(2πνx)

x
dx− i

π

∫ ∞

−∞

sin(πNx) sin(2πνx)

x
dx

=
1

π
A(x, ν)− i

π
B(x, ν)

Let y = πNx. Thus: x = y
πN and dy

dx = 1
πN .

A(x, ν) =

∫ ∞

−∞

sin(πNx) cos(2πνx)

x
dx

=

∫ ∞

−∞

sin(y) cos(2y/N)

y
dy
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sin is an odd function, 1
y is an odd function, and cos is an even function, therefore the

function that is being integrated is even, and so:

A(x, ν) = 2

∫ ∞

0

sin(y) cos(2y/N)

y
dy

=





0,
∣∣∣2νN
∣∣∣ > 1

π
2 ,

∣∣∣2νN
∣∣∣ = 1

π,
∣∣∣2νN
∣∣∣ < 1

[Dwight, 1934, 858.9]

B(x, ν) =

∫ ∞

−∞

sin(πNx) sin(2πνx)

x
dx

=
1

2

∫ ∞

−∞

cos(π(N − 2ν)x)

x
dx− 1

2

∫ ∞

−∞

cos(π(N + 2ν)x)

x
dx

[Dwight, 1934, 401.07]

Now, cos is an even function and 1
x is an odd function, so the equation inside each

of the integrals is odd, meaning that each integral equates to zero (
∫ 0
−∞

cos kx
x dx =

− ∫∞0 cos kx
x dx).

Thus:
B(x, ν) = 0

and therefore:

H(ν) =





1, |ν| < N
2

1
2 , |ν| = N

2

0, |ν| > N
2

C Proof that a signal cannot be simultaneously of finite ex-
tent in both the frequency domain and the spatial do-
main

Assume that f(x) and F (ν) are a Fourier transform pair. Further assume that f(x) is
real, of finite extent, and infinitely piecewise differentiable:

f(x) ∈ R

f(x) = 0, |x| > xK

and that F (ν) is bandlimited:
F (ν) = 0, |ν| > νN
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F (ν) =

∫ ∞

−∞
f(x)e−i2πνx dx

=

∫ xK

−xK
f(x)e−i2πνx dx

=
f(x)e−i2πνx

−i2πν

∣∣∣∣∣

+xK

−xK
− 1

(−i2πν)

∫ xK

−xK
f ′(x)e−i2πνx dx

[Dwight, 1934, 79]

=
f(x)e−i2πνx

−i2πν

∣∣∣∣∣

+xK

−xK
− f ′(x)e−i2πνx

(−i2πν)2

∣∣∣∣∣

+xK

−xK
+

1

(−i2πν)2

∫ xK

−xK
f ′′(x)e−i2πνx dx

= eiax
(
f(x)

ia
− f ′(x)

(ia)2
+
f ′′(x)

(ia)3
− f ′′′(x)

(ia)4
+ · · ·

)∣∣∣∣
xK

−xK
, a = −2πν

= (cos(ax) + i sin(ax))

(
f(x)

(ia)
− f ′(x)

(ia)2
+
f ′′(x)

(ia)3
− f ′′′(x)

(ia)4
+ · · ·

)∣∣∣∣
xK

−xK

= cos(ax)
(
f ′(x)
a2 − f ′′′(x)

a4 + · · ·
)∣∣∣
xK

−xK
+ sin(ax)

(
f(x)
a −

f ′′(x)
a3 + · · ·

)∣∣∣
xK

−xK
+ i cos(ax)

(
−f(x)

a + f ′′(x)
a3 − · · ·

)∣∣∣
xK

−xK
+ i sin(ax)

(
f ′(x)
a2 − f ′′′(x)

a4 + · · ·
)∣∣∣
xK

−xK
= cos(ax)φ(a, x)|xK−xK

+ sin(ax)χ(a, x)|xK−xK
+ i cos(ax)(−χ(a, x))|xK−xK
+ i sin(ax)φ(a, x)|xK−xK

= cos(axK)(φ(a, xK)− φ(a,−xK))
+ sin(axK)(χ(a, xK) + χ(a,−xK))
+ i cos(axK)(−χ(a, xK) + χ(a,−xK))
+ i sin(axK)(φ(a, xK) + φ(a,−xK))

(5)

Where:
φ(a, x) =

(
f ′(x)

a2
− f ′′′(x)

a4
+ · · ·

)

and:
χ(a, x) =

(
f(x)

a
− f ′′(x)

a3
+ · · ·

)

Now, if we set equation 5 to be zero outside the bandlimit of F (ν) (as we assumed) and
remember that f(x) is a real function, then we find that:

φ(a, xK) = −φ(a,−xK), |a| > νN/2π

φ(a, xK) = φ(a,−xK), |a| > νN/2π

χ(a, xK) = −χ(a,−xK), |a| > νN/2π

χ(a, xK) = χ(a,−xK), |a| > νN/2π
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These four equations show that:

φ(a, xK) = 0, |a| > νN/2π (6)
φ(a,−xK) = 0, |a| > νN/2π

χ(a, xK) = 0, |a| > νN/2π

χ(a,−xK) = 0, |a| > νN/2π

Taking equation 6 as an example:

φ(a, xK) =

(
f ′(xK)

a2
− f ′′′(xK)

a4
+
f (V )(xK)

a6
− · · ·

)

= 0, |a| > νN/2π

which gives the following equalities:

f ′(xK) = 0,

f ′′′(xK) = 0,

f (V )(xK) = 0

...

This gives us the result:
φ(a, xK) = 0, ∀a

A similar argument holds for φ(a,−xK), χ(a, xK) and χ(a,−xK). From these and equa-
tion 5 it can be seen that:

F (ν) = 0, ∀ν
which implies that:

f(x) = 0, ∀x

So there exists only one trivial case in which the original assumption holds, that is f(x) =
0 and F (ν) = 0. Therefore the Fourier transform of a real, finite-extent function, f(x)
cannot be bandlimited, unless f(x) = 0. Further, the Fourier transform of a bandlimited
function, F (ν) cannot be a real, finite-extent function, unless F (ν) = 0.

D The Fourier transform of a finite-extent comb

Let the finite extent, one-dimensional comb function, d(x), be defined as:

d(x) =
b∑

j=−b
δ(x− j∆x)

Its Fourier transform is:

D(ν) =

∫ ∞

−∞

b∑

j=−b
δ(x− j∆x)e−i2πνx dx
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=
b∑

j=−b
e−i2πνj∆x

=
b∑

j=−b
cos 2πνj∆x− i sin 2πνj∆x

= cos 0 + 2
b∑

j=1

cos 2πνj∆x [sin odd, cos even]

= 1 + 2
b∑

j=1

cos 2πνj∆x

= 1 + 2
cos(b+ 1)πν∆x sin bπν∆x

sinπν∆x
[Dwight, 1934, 420.2]

= 1 +
sin((2b+ 1)πν∆x)

sinπν∆x
+

sin(−πν∆x)

sinπν∆x
[Dwight, 1934, 401.05]

= 1 +
sin((2b+ 1)πν∆x)

sinπν∆x
− 1

=
sin((2b+ 1)πν∆x)

sinπν∆x

In two-dimensions:

d(x, y) = d(x) ∗ d(y)

=
bx∑

j=−bx

by∑

k=−by
δ(x− j∆x, y − k∆y)

Implying that the two-dimensional Fourier transform is:

D(νx, νy) = D(νx)×D(νy)

=
sin((2bx + 1)πνx∆x)

sinπνx∆x
× sin((2by + 1)πνy∆y)

sinπνy∆y
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