
Asymptotic Equipartition Property
and Data Compression Exercises

Exercise 3.3:
The AEP and source coding. A discrete memoryless source emits a sequence of statistically
independent binary digits with probabilities p(1) = 0.005 and p(0) = 0.995. The digits are taken
100 at a time and a binary codeword is provided for every sequence of 100 digits containing
three or fewer ones.

(a) Assuming that all codewords are the same length, find the minimum length required to
provide codewords for all sequences with three or fewer ones.

(b) Calculate the probability of observing a source sequence for which no codeword has been
assigned.

Solution:

(a) The number of sequences of 100 digits containing three or few ones is given by

N =

(
100
0

)
+

(
100
1

)
+

(
100
2

)
+

(
100
3

)

= 1 + 100 + 4980 + 161700

= 166751

(1)

The minimum length required to encode these sequences is given by dlog2Ne = d17.34731e =
18.

(b) The probablity of observing a sequence which has an assigned codeword is given by:

P = 1 · 0.995100 + 100 · 0.99599 · 0.005 + 4980 · 0.99598 · 0.0052 + 161700 · 0.99597 · 0.0053

= 0.9983

(2)

Hence the probability of observing a sequence which has no codeword is 0.0017.

Exercise 5.4:
Huffman Coding. Consider the random variable

X =

(
x1 x2 x3 x4 x5 x6 x7

0.49 0.26 0.12 0.04 0.04 0.03 0.02

)
(3)

(a) Find a binary Huffman code for X.

(b) Find the expected codelength for this encoding.
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(c) Find a ternary Huffman code for X (a ternary code is one which uses three symbols, e.g.
{0, 1, 2}, instead of a binary code’s two symbols {0, 1}).

Solution:

(a) Using the diagram in Figure 1, the Huffman code for X is given in Table 1.
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Figure 1: Diagram for designing the binary Huffman code for X in Exercise 5.4.

Table 1: Binary Huffman code for X in Exercise 5.4

X Code

x1 0
x2 10
x3 110
x4 11100
x5 11101
x6 11110
x7 11111

(b) The expected codelength for this encoding is:

E[Lx] = 0.49× 1 + 0.26× 2 + 0.12× 3 + (0.04 + 0.04 + 0.03 + 0.02)× 5

= 2.02
(4)

(c) Using the diagram in Figure 2, the ternary Huffman code for X is given in Table 2.

Exercise from Lectures:
Fano and Huffman codes. Construct Fano and Huffman codes for {0.2, 0.2, 0.18, 0.16, 0.14, 0.12}.
Compare the expected number of bits per symbol in the two codes with each other and with the
entropy. Which code is best?

Solution:
Using the diagram in Figure 3, the Fano code is given in Table 3. The expected codelength for
the Fano code is:

E[L] = (0.2 + 0.16)× 2 + (0.2 + 0.18 + 0.14 + 0.12))× 3

= 2.64
(5)
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Figure 2: Diagram for designing the ternary Huffman code for X in Exercise 5.4.

Table 2: Ternary Huffman code for X

X Code

x1 0
x2 1
x3 20
x4 21
x5 220
x6 221
x7 222

Using the diagram in Figure 4, the Huffman code is given in Table 4. The expected codelength
for the Huffman code is:

E[L] = (0.2 + 0.2)× 2 + (0.18 + 0.16 + 0.14 + 0.12)× 3

= 2.6
(6)

The entropy is calculate as:

H = −(0.2 log 0.2 + 0.2 log 0.2 + 0.18 log 0.18 + 0.16 log 0.16 + 0.14 log 0.14 + 0.12 log 0.12)

= 2.56
(7)

Comparing the expected codelengths with the entropy, the Huffman code is the best code and
achieves and expected codelength that is closest to the entropy.

Exercise 5.21:
Optimal codes for uniform distributions. Consider a random variable with m equiprobable
outcomes. The entropy of this information sources is obviously log2m bits.

(a) Describe the optimal instantaneous binary code for this source and compute the average
codeword length Lm.

(b) For what values of m does the average codeword length Lm equal the entropy H = log2m?

(c) We know that L < H + 1 for any probability distribution. The redundancy of a variable
length code is defined to be ρ = L −H. For what value(s) of m, where 2k ≤ m ≤ 2k+1,
is the redundancy of the code maximised? What is the limiting value of this worst case
redundancy as m→∞?
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Figure 3: Diagram for designing the Fano code in the exercise from the lectures.

Table 3: Fano code for exercise from the lectures

X Code

x1 00
x2 010
x3 011
x4 10
x5 110
x6 111

Solution:

(a) The optimal instantaneous binary code has codewords that differ by at most one bit. If d
is difference between the number of outcomes m and the smallest power of 2,

d = m− 2blogmc (8)

then there will be 2d codewords of length dlogme and m−2d codewords of length blogmc.
Let b = blog2mc. When m = 2b, every code is b bits long. For each new code required
(i.e. for each increment in m) one b bit code has to be extended by one bit to make
two b + 1 bit codes, one for the old symbol coded by that b bit code and one for newly
introduced symbol. Thus every increment in m leads to the removal of one b bit code and
the introduction of two b+1 bit codes. If d = m−2b then there will thus be 2d code words
of length b+ 1 and m− 2d code words of length b.

The average codeword length is given by:

Lm =
1

m
(2ddlogme+ (m− 2d)blogmc)

=
1

m
(mblogmc+ 2d)

= blogmc+
2d

m

(9)

(b) The average codeword equals the entropy when m is a power of 2.
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Figure 4: Diagram for designing the Huffman code in the exercise from the lectures.

Table 4: Binary Huffman code for X

X Code

x1 00
x2 01
x3 100
x4 101
x5 110
x6 111

(c) When m = 2n + d, the redundancy ρ = L−H is given by

ρ = L− logm

= blogmc+
2d

m
− logm

= n+
2d

2n + d
− log(2n + d)

= n+
2d

2n + d
− ln(2n + d)

ln 2

(10)

Differentiating with respect to d, we have

∂ρ

∂d
=

(2n + 2d) · 2− 2d

(2n + d)2
− 1

ln 2
· 1

2n + d
(11)

and setting this to zero, means that d∗ = 2n(2 ln 2 − 1). Substituting this back into the
equation for the redundancy, means that we have

ρ∗ = n+
2d

2n + d
− ln(2n + d)

ln 2

= n+
2 · 2n(2 ln 2− 1)

2n + 2n(2 ln 2− 1)
− ln(2n + 2n(2 ln 2− 1))

ln 2

= 0.0861

(12)

Exercise 5.25:
Shannon code. Consider the following method for generating a code for a random variable

5



X which takes on m values {1, 2, . . . ,m} with probabilities p1, p2, . . . , pm. Assume that the
probabilities are ordered so that p1 ≥ p2 ≥ · · · ≥ pm. Define

Fi =
i−1∑

k=1

pk, (13)

the sum of the probabilities of all symbols less than i. Then the codeword for i is the number
Fi ∈ [0, 1] rounded off to li bits, where li = dlog 1

pi
e.

(a) Show that the code constructed by this process is prefix-free and the average length satisfies

H(X) ≤ L < H(X) + 1 (14)

(b) Construct the code for the probability distribution (0.5, 0.25, 0.125, 0.125).

Solution:

(a) We look at the size of the increments to Fi. Since li = dlog 1
pi
e, this means that

li − 1 < log
1

pi
≤ li

2li−1 <
1

pi
≤ 2li

2−li ≤ pi < 2−li+1

(15)

Since li = dlog 1
pi
e,

log
1

pi
≤ li < log

1

pi
+ 1

pi log
1

pi
≤ pili < pi log

1

pi
+ pi

∑

i

pi log
1

pi
≤
∑

i

pili <
∑

i

pi log
1

pi
+
∑

i

pi

H(X) ≤ L(X) < H(X) + 1

(16)

Let xk be the code word for symbol k.

xk cannot be a prefix for xi, i < k because li ≤ lk (N.B. if li = lk then there is the
possibility that xi and xk could be identical, but this is covered by the following case by
swapping the roles of i and k).

Let us now do a proof by contradication that xk cannot be a prefix for xk+j .

Assume xk is a prefix of xk+j .

Then xk and xk+j must agree in their first lk bits.

Therefore Fk+j − Fk < 2−lk .
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Fk+j − Fk < 2−lk

⇒
k+j−1∑

i=1

pi −
k−1∑

i=1

pi < 2−lk

⇒
k+j−1∑

i=k

pi < 2−lk

⇒ pk < 2−lk

But we know:

lk =

⌈
log2

1

pk

⌉

⇒ lk ≥ log2

1

pk

⇒ 2lk ≥ 1

pk

⇒ 2−lk ≤ pk

This is a contradiction, therefore xk cannot be a prefix for xk+j , therefore the Shannon
code is a prefix code.

(b) The code is designed as in Table 5:

Table 5: Shannon code for X

i pi dlog 1
pi
e Fi Codeword

1 0.5 1 010 = 0.02 0
2 0.25 2 0.510 = 0.12 10
3 0.125 3 0.7510 = 0.112 110
4 0.125 3 0.87510 = 0.1112 111
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