UNIX AND X
by
Frank H. King

An Introduction to Unix

and X Windows using Linux

UNIVERSITY OF CAMBRIDGE JAVA EDITION
COMPUTER LABORATORY OCTOBER 2002

An Introduction to Unix and X — Part 1

At first mention, any technical term in this document is written in italics. The term

Public Workstation Facility (PWF) is used in Cambridge to refer loosely to a Personal
Computer (PC) together with its connection to a network. This document explains how
to use a variant of Unix called Linuz which may be implemented on a PC and which

has,

in particular, been implemented on PWFs in Cambridge. These PWFs also support

Windows 2000.

1.1 Assumption

It is assumed that you have a PWF account.

1.2 The Public Workstation Facility

Sit down at a PC-based workstation. The main components are a screen (or monitor),
a computer, a keyboard and a mouse. These are the most visible manifestations of
a PWF. Note that any PWF can gain access to numerous other computers via the
network and, by the same means, can make use of a variety of printers.

Certain keys on the keyboard are engraved with cryptic symbols. Note particularly:
1. The sHirT-keys, each of which is engraved with an open up-arrow,
2. The TAB-key which is engraved with a pair of arrows,
3. The RETURN-key is engraved with a bent left-arrow,
4. The BACKSPACE-key which is engraved with a straight left-arrow,

The RETURN-key is normally pressed at the end of each line. It must not be confused
with the Enter-key which is at the extreme right-hand end of the keyboard. This latter
key will never be used in this course.

The BACKSPACE-key is used for correcting mistakes; it cancels the character most
recently keyed in.

1.3 Power

It is local policy that the computers are kept permanently switched on. This saves time
when you first sit down and also means that the state of the machines can be monitored
remotely. An automatic power-save feature ensures that very little electricity is used
when the computer is left unattended.

1.4 Installing PWF Linux

Every user of the PWF has a different personal identifier and you need to be sure you
know yours, as well as your password, before continuing.

When you first sit at a free workstation the power-save feature may mean the screen is
completely blank or just displays a small rectangular window dominated by the words
Windows 2000 Professional. In either case move the mouse slightly. This should result
the PWF Login window in which there is an invitation to press:

Ctrl+Alt+Delete to Login or Shutdown

- 1-

By default, the PWFs use a Microsoft Windows operating system (Windows 2000
currently). To use PWF Linux it is necessary to shut the PC down and start it afresh
via the Shutdown facility. Begin with Ctrl4-Alt+Delete. ..

Press and hold down the Ctrl-key.
Keeping the Ctrl-key held down, press and hold down the Alt-key.
Keeping the Ctrl-key and Alt-key held down, momentarily press the Delete-key.

The result on the screen should be a message window which refers to the Computer
Misuse Act 1990 and other more recent legislation. It is important to read this notice.

Now move the mouse. An arrow, called the mouse pointer, will move on the screen.
Steer this pointer to the button marked OK and press the left-hand mouse button.

This last action is called clicking and the instruction would normally be written simply
as ‘click OK’. Always use the left-hand mouse button to click.

The screen should soon display a new window with the title Novell Login in its title
bar (the strip at the top). You must not login! Instead, click Shutdown, one of three
buttons at the bottom of the window.

A new window offers a choice of two options, Shutdown or Shutdown and Restart. Click
Shutdown and Restart and then click OK.

Be patient! It takes about a minute for the system to shut down and you then receive
a request: Please select the operating system to start. Press the | key to highlight the
second choice, PWF Linux, and then press RETURN.

Be even more patient! It takes over a minute to install PWF Linux after which you
are presented with a window headed RIPA WARNING which refers to the Regulation of
Investigatory Powers Act. This window largely obscures the PWF Linux login window.

1.5 Logging into PWF Linux

The RIPA WARNING window has a button which invites you to CLICK HERE TO PROCEED.
Click this button.

The login window should now be revealed. In it there are two obvious rectangular
boxes into which your user identifier and password must be keyed.

In the upper box, labelled Login, there should be a flashing vertical bar, a text cursor,
indicating that any text keyed in will go into that box.

Key your user identifier into this upper box and press RETURN. This should result in
the text cursor moving to the lower box labelled Password.

Key in your password. Asterisks appear instead of what you type so other people
cannot your password. Press RETURN again.

Eventually, the screen settles down to showing two windows in an otherwise featureless
root window. (This is the Unix equivalent of the desktop in Microsoft terminology.)

You have successfully logged into PWF Linux and have started an X-sesston. You are
looking at two X-windows.

One of the windows, probably at the top of the screen, has PWF Message of the Day
in its title bar. You normally don’t need to take too much notice of the messages.

-2 -

The other window, probably at the bottom of the screen, is the Window Manager
window. In particular, this incorporates a list of all the other windows in the root
window, only one at the moment, the PWF Message of the Day window.

Move the mouse around and notice how the mouse pointer takes on a variety of
different appearances. . .

When the mouse pointer is in the root window it has the form of a bold ‘X’). When
it is in the main part of the PWF Message of the Day window it takes the form of an
I-bar. It can also take on the form of an arrow or a pointing hand and many other
forms besides.

1.6 The Main Menu

Click anywhere in the root window.

This brings up the Main Menu. Notice that the first entry is Unix shell and the last
entry is Logout.

Click the Unix shell entry and a new window appears which has xterm in its title
bar. Notice that xterm also appears as a new entry in the Window Manager window.
This is the first example of an xterm window. Such windows are used for giving Unix
commands.

The writing is rather small. Bear with this for a few pages. Ways of changing the size
of the writing will be discussed later.

The window incorporates a Unix prompt which probably consists of the identifier of
your PC, a colon, and your user identifier, and the whole has a dollar-sign appended.

1.7 Focusing

Move the mouse pointer into the Message of the Day window and then into the xterm
window and back again. Notice how the title bars and window edges change colour.
The colour highlights a window to indicate that it is in focus or selected. Moreover,

the entry in the Window Manager window which relates to a selected window is also
highlighted.

When the xterm window is in focus the text cursor after the prompt is in the form of
a solid black box. When the window is out of focus, the text cursor is in the form of
a hollow rectangle.

Notice that when the mouse pointer is moved from the xterm window directly into
the root window the xterm window does not lose focus. It loses focus only when the
pointer is moved into the Message of the Day window.

1.8 Two Unix commands

After making sure that the xterm window is in focus (the text cursor a solid block),
key in the following Uniz command and press RETURN:

date

Unix is case sensitive, so it is important to type date and not DATE or Date.

. —

e Any typing mistake which is noticed immediately can be corrected using BACKSPACE.
It is almost always necessary to press RETURN after keying in a command. In the
present case, the date and time are given.

e Try another command:
who

e The result is a list of people who are using your PC at the moment. You are likely to
be the only user!

1.9 The passwd command
e To change your PWF password, begin by giving the passwd command:
passwd

e The system invites you to take part in three lines of dialogue, quoting your existing
password, your new password and your new password again.

1.10 Finishing

e The approved way of finishing is to use the Main Menu. Click anywhere in the root
window to bring up the Main Menu and click Logout.

e You will be asked Do you really want to logout? Click Logout.

e The screen goes blank briefly and then reverts to the RIPA WARNING window obscuring
the login window. It is now in order to walk away from the PC if you feel like taking
a break.

e You, or any other user, wishing to use this PC later can then click the button marked
CLICK HERE TO PROCEED to embark on another Linux session. A user who wished to

start a Windows session would need to click the Shutdown button in the login window
and then Reboot into Windows.

An Introduction to Unix and X — Part 11

Only three Unix commands were described in Part I. Here in Part II more of the

numerous facilities available in PWF Linux will be introduced.

2.1 Logging in

If you are continuing immediately from Part I your PC should still be showing the
RIPA WARNING window and you should click the button marked CLICK HERE TO PROCEED
and then log in as before.

If you have been away some time, or have decided to use a different PC, you may be
presented with the Ctrl+Alt+Delete invitation. You will have to install PWF Linux
as described in Part I and then log in as before.

2.2 Moving a window

Any window can be manipulated in various ways. For example it is easy to use the
mouse to move a window. Move the mouse pointer to the middle of the title bar of
the Message of the Day window (the pointer turns into an arrow) and press and hold
down the left-hand mouse button.

Keeping the button held down, move the mouse a little to the right. Moving the mouse
with the button held down is known as dragging the mouse. The appearance of the
pointer changes again and, in this case, an outline of the window moves too. Move
the outline so that it is central in the root window and release the button.

The window jumps to the position the outline was dragged to just before the button
was released.

2.3 Changing a window’s size — I

The title bar of the Message of the Day window is flanked by buttons, one on the left
and three on the right. The middle button on the right [0] is used to make the window
taller. Click the [O] button now.

The window becomes much taller. Click the [d] button again and the window reverts
to its previous size.

2.4 Iconifying and deiconifying

If a window isn’t needed for a while but you don’t actually want to destroy it, you
can iconify it. The leftmost of the three buttons on the right [] is used to iconify the
window. Click the [=] button now.

Two things happen. The window disappears and a little blob appears against the
relevant entry (at the moment the only entry) in the list of windows in the Window
Manager window.

To deiconify the window, click the entry in the Window Manager window (which then
loses its blob) and the window reappears.

-5

A second way to iconify a window is to click the entry in the Window Manager
window. Click this now. The window iconifies. Click the entry again and the window
deiconifies.

2.5 The menu button

The button [=] at the left-hand end of the title bar brings up a menu. Click [=] now. A
drop-down menu appears. There are various entries including (De)lconify. Click this
entry and the window iconifies again.

Try some experiments but leave the new window deiconified.

2.6 Changing a window’s size — 11

There is a less coarse way of changing a window’s size than clicking the O] button.
Move the mouse pointer into the root window below the Message of the Day Window.
Check that the mouse pointer has the form of a bold ‘X”).

Next move the mouse pointer very slowly upwards into the window. The pointer takes
on two intermediate appearances between being a bold ‘X’ and an I-bar. In the first
of these appearances the mouse pointer takes the form of an underlined downward-
pointing arrow. This draws attention to the bottom edge of the window.

When the mouse pointer has this underlined downward-pointing arrow appearance,
press and hold down the left-hand mouse button and drag the bottom edge downwards.
When you release the button, the bottom edge of the window will have been dragged
downwards thereby enlarging the window.

The edge could equally have been dragged upwards to make the window smaller.
Moreover, any of the four edges of the window may be dragged inwards or outwards
in this way. Finally, all four corners may be dragged inwards or outwards too. Try
some experiments.

2.7 Destroying a window

The Message of the Day window is not going to be of any further use so it can be
destroyed. Click the menu button and notice but don’t use the Destroy entry. Clicking
this entry would be one way to destroy the window but there is an alternative way. ..

The rightmost button of the three buttons on the right is used to destroy the
window. Click [X] now. The window vanishes and cannot be brought back again. The
reference in the Window Manager window disappears too.

2.8 The Main Menu — an xterm window

The only obvious window now is the Window Manager window but don’t forget that
the rest of the screen is called the root window. Click, now, anywhere in the root
window.

This brings up the Main Menu whose first entry is Unix shell. Click this entry to
create a new xterm window. As expected, this has xterm in its title bar and there is a
corresponding entry in the Window Manager window.

-6 —

To check that all is well, select the new window and give the date command:
date

2.9 A second xterm window

You can have several windows open at once. It is easy to create a second xterm window
via the Main Menu but it is instructive to use an alternative approach. ..

Being very careful to note the & give the following command:
xterm &

A new window appears which is clearly another xterm window. Like the first, it has
xterm in the title bar, and there is a second xterm entry in the Window Manager
window. Ensure that the second window is clear of the first. Move the new window if
necessary.

You should notice in the first window that, following the xterm & command, there
are two numbers. The second (which probably has four or five digits) is a Unix process
number. It is usually unnecessary to take much notice of it but it is important to check
that such a number has been quoted.

Focus on the two xterm windows in turn and note how the highlighting of the title bars
and edges changes and how the highlighting of the entries in the Window Manager
window changes too. When the mouse pointer is in neither window, whichever was in
focus most recently stays in focus.

The new xterm window can, of course, be used for giving Unix commands. After
making sure that the new window is in focus, give the date command again:

date

2.10 Raising and lowering windows

It doesn’t take long for there to be so many windows that there isn’t enough space
for all of them. Move the newer window (by dragging its title bar) so that it overlaps
about half the older window.

Focus on the two windows in turn. The effects are largely as before. Any command
that is keyed in will appear in whichever window is in focus. It is perfectly possible
to give a command from a window which is partially obscured. Try giving the date
command from the partially obscured window:

date

If nothing happens you probably forgot to include the & when you gave the xterm &
command to create the new xterm window. Ignore this problem for the moment.

Next, click the title bar of the partially obscured window. This action raises the
window; it is now the turn of the other window to be partially obscured.

Next, click the title bar of the window which is now on top.

This action lowers the window; it goes behind the other xterm window. Repeatedly
clicking the title bar of a window alternately raises and lowers that window but note
that sometimes it is necessary to double-click a title bar to lower a window.

-7 -

Try some experiments but conclude with the new xterm window on top.

2.11 Removing the new xterm window

Two ways of destroying a window have already been noted. You can click [=] and
choose the Destroy command or you can click [X]. It is instructive to see a third
approach. . .

Focus on the new xterm window and key in Ctrl-d. The xterm window disappears and
the relevant entry is removed from the Window Manager window.

Focus on the original xterm window and press RETURN. A somewhat cryptic message
including the word Done appears. This is simply to note that you have abandoned the
new xterm window.

2.12 More about the & — background and foreground tasks

It is instructive to see what happens if you forget the & when giving the command
xterm & to create an xterm window. Focus on the original xterm window and, this
time, deliberately omit the & when giving the command:

Xxterm

A new xterm window is created but no Unix process number or prompt appears in the
original xterm window. Move the new window clear if necessary.

Focus on the new xterm window and give the date command:
date

There should be no problems. Now focus on the original xterm window and give the
date command again:

date

This time nothing happens. When & is used to create a new xterm window, the system
arranges for this new window to be run as a background task. This means one can
focus on the old window and give Unix commands even though the new xterm window
continues in being. Without the &, the new xterm window is a foreground task and no
useful work can be carried out in the old window.

Now remove the new xterm window by focusing on it and keying in Ctrl-d. When the
window goes, the results of the date command at last appear in the old window.

2.13 Bigger writing in xterm windows

The writing in the new xterm windows has been the same size as that in the original
window. To make the writing bigger, first focus on the original window and then
incorporate the items -fn 9x15bold between the xterm and the & when giving the
xterm command (there is a space after -fn and don’t forget the &):

xterm -fn 9x15bold &

Unix keywords are usually introduced with a ‘=’. Here -fn stands for fount (English
spelling!) and 9x15bold is the name of one of many founts which are available. The
writing in the new xterm window is somewhat easier to read.

-8 -

Give the date command in the new window:
date

2.14 Getting going — iconifying the original xterm window

Different users have different ideas about how best to set up windows at the beginning
of a session. After some experience everyone develops an individual style. For the
moment, let’s assume that you prefer the larger fount in the new window and wish to
work from that.

The original xterm window is unlikely to be used again. You could remove it but it is
better practice to iconify it. Iconify the original xterm window now.

Move the new xterm window to the top left-hand corner of the root window.

2.15 The Is command

The 1s command is used to List and Sort one’s files. After making sure that the
xterm window is in focus, give this command:

1s
At present, you have probably not set up any files explicitly but one or two files

concerned with configuration might be listed. There may be a file with the name
Xrootenv.0 and this, and other configuration files, should be firmly left alone.

2.16 Setting up a text file — Emacs

The next task is to set up a Unix file whose file name is jobletter798 and whose
contents are to be a rather silly letter!

A standard way of setting up a file is to use the Emacs text editor. The easiest way to
invoke this editor is to click the root window to bring up the Main Menu and point at
the Editors entry. This invokes a sub-menu in which you will see emacs (text editor).
Click this entry.

A new window appears which has emacs in its title bar and there is an appropriate
new entry in the Window Manager window though this may be obscured.

Move the emacs window to the top tight-hand corner of the root window.

The main part of the emacs window contains a welcome message. This contains useful
information which you can read now or another time.

Click anywhere in the main part of the window and the welcome message is replaced by
some instructions for creating a new file. In all Emacs documentation the abbreviation
C- is used for Ctrl- and so it is easy to see that the cryptic C-x C-f stands for Ctrl-x
followed by Ctrl-f. When Emacs is under consideration, the abbreviation C- will be
used for Ctrl- from now on.

Near the bottom of the emacs window is a highlighted mode line which indicates that
the editor is in Lisp Interaction mode. This may one day be of significance but
ignore it for the moment.

The mode line begins --:-- *scratch* which implies that you haven’t yet specified
a file name. Temporary arrangements have been made in consequence.

-9 —

e The word All simply indicates that the entire text fits in the window. The displayed
text isn’t very long.

e Emacs can be menu driven or command driven. Enthusiasts prefer the latter and this
document reflects that enthusiasm!

e The keystrokes C-x C-f refer to the Emacs find-file command. The x refers to an
extended list of Emacs commands and the f stands for find-file. The idea now is to
attempt to find a file called jobletter798 and hope to fail! [If you succeed in finding
the file it would be an old file but you want to create a new file. You would therefore
want to choose a different name.]

e With the emacs window still in focus, key in C-x (remember this means Ctrl-x) and
notice that after a couple of seconds C-x- appears in the echo line, the line below the
mode line. This is a reminder of what you have just keyed in.

e It is useful to know what to do if you key in C-x (or any other Emacs command)
accidentally. Simply key in C-g. Try that now. The C-x- disappears. Now key in:

C-x C-f

e A message which begins Find file appears in the echo line. The cursor jumps to

the end of that line where you should key in:

jobletter798

e Press RETURN. The *scratch* in the mode line changes to jobletter798 and the
echo line confirms that this is a New file so the file name has not already been
used. The main part of the window clears and the cursor jumps to the top left-hand
corner ready for you to key in the contents of this new file.

e Key in the following, including the two spelling mistakes, and press RETURN at the
end of every line:

Dear sir,

I am sorry I did not turn up for the job interview last
week, but there was a good horror film on the television
and I did not want to miss it.

I am willing to come for a new interview on Wednesday
afternoon next week, though I must leave by 4:30 to

go to the football game.

I am an expurt in UNIX, particularly the game playing
programs, so I would be a grate asset to your company.

yours sincerely,

e Immediately you begin typing, the --:-- at the beginning of the mode line changes
to —-:xx where the asterisks indicate that the text has changed.

— 10 -

e One imagines that this is a job application letter written by someone who wants to
work as a Unix programmer. There are two deliberate mistakes and you may have
made some yourself!

e As usual, any typing mistake which is noticed immediately can be corrected by using
BACKSPACE. To correct a typing mistake made on a previous line, use the text cursor
keys (those marked with T, <, | and —) to move the text cursor to just after the
position of the error and delete from there before retyping.

e Try some experiments with the text cursor keys. See what happens when the « or
— key is used to move the text cursor off the left- or right-hand end of a line. Notice
that if one of these keys (or indeed any key) is held down for more than a fraction of
a second its effect is repeated, a feature known as auto-repeat. Double-check the text
after finishing the experiments. Leave in the two deliberate mistakes.

e The next step is to save this letter as the contents of the file jobletter798 (this
applicant has had numerous previous unsuccessful attempts).

e Saving requires another extended Emacs command, the save-buffer command. The
associated keystrokes are C-x C-s so key in:

C-x C-s
e The echo line displays a message which begins Wrote and which ends with the file
name jobletter798 to indicate that the file has been saved.

e The --:** in the mode line changes back to -—:-- to signify that the displayed
text is the same as that in the file.

2.17 The 1s command again

e Lower the emacs window (by double-clicking the title bar) and focus on the xterm
window. List and Sort your files again:

1s
e This time the file name jobletter798 should be listed.

2.18 Aside — bigger writing in Emacs

e The default fount in the emacs window suits most users but, if you prefer larger
writing, you can always set up an emacs window from an xterm window and supply
the fount information explicitly. From the xterm window, and noting the essential &,
give the command:

emacs -fn 9x15bold &

e A new emacs window appears with the larger fount.

2.19 Leaving Emacs — 1

e There are several ways of leaving Emacs. One way is to click [X] but this is not generally
a good idea because the exit from Emacs is precipitous and you are not given a chance
to save any files that have inadvertently been left open.

e The new emacs window has not yet been used so there is no harm in clicking [X] this
time. Do that now. The new emacs window disappears.

- 11 =

2.20 Leaving Emacs — II

The approved way of leaving Emacs is to use an appropriate Emacs command. First
raise the (original) emacs window (by single-clicking its title bar).

The appropriate Emacs command is save-buffers-kill-emacs and the associated
keystrokes are C-x C-c and it is probably easiest just to think of the ¢ as meaning
cancel Emacs. Key in:

C-x C-c
A message (No files need saving) appears momentarily in the echo line and the
window disappears.

2.21 The more command

From the xterm window, give the command:
more jobletter798

The more command is used for inspecting the contents of a file. Here, the contents of
the jobletter798 file should appear.

2.22 The spell command

Focus on the xterm window and, carefully noting the < character, give the command:
spell <jobletter798

The spell command gives a list of spelling mistakes in the file heralded by < which
may be pronounced ‘from’. The list should include expurt but not grate.

2.23 Correcting the mistakes

The obvious way to correct mistakes is to use Emacs. Enter Emacs again via the
emacs entry in the Editors sub-menu of the Main Menu.

Move the emacs window to the top right-hand corner of the root window.

To open an existing file, use the Emacs find-file command exactly as it was used
previously. The difference is that you are not proposing to set up a new file this time
so you want to find the file.
Key in C-x C-f again.
The message which begins Find file appears in the echo line and the cursor jumps
to the end of that line where you should again key in:

jobletter798

Press RETURN. The letter reappears in the main part of the emacs window and the
xscratch* again changes to jobletter798 but there is no mention of New file in
the echo line.

Other things to notice are that the cursor jumps to the beginning of the letter and there
are no asterisks in the mode line. Also Lisp Interaction changes to Fundamental;
Emacs has decided that the file contains ordinary text.

- 12 —

e Correct the spelling mistakes. The asterisks reappear. You should next save the
revised version in exactly the way you saved the earlier version by using the Emacs
save-buffer command, so key in:

C-x C-s
e The echo line confirms that Emacs duly Wrote the text to the file.
e Leaving Emacs before giving the spell command and then immediately re-entering

Emacs was fairly pointless! The reason for doing so here is to show how to open an
existing file when using Emacs.

e It is much more common to set up an emacs window at the beginning of a session and
keep it until the end. If you think you are unlikely to be doing any editing for a while,
you should follow normal practice and simply iconify the emacs window. It will then
be instantly available should you wish to use it later.

e Iconify Emacs now. Click the [=] button.

2.24 Some Emacs commands

e The following summary lists the Emacs commands that have been mentioned so far:

C-g keyboard-quit Go away, I didn’t mean it
C-x C-f find-file Find (open) an existing file
C-x C-s save-buffer Save (update) an existing file
C-x C-c save-buffers-kill-emacs Cancel (leave) Emacs

[Remember that in Emacs documentation the abbreviation C- is used for Ctrl-]

e When used in a simple way, Emacs can be menu driven. With the exception of C-g,
the commands listed in the summary can be found as entries in the Files menu.
Against each entry, the associated keystrokes are shown.

e Whether to use menus or keystrokes is largely a matter of taste but note that by no
means all Emacs commands can be found as entries in menus.

2.25 The 1s command once more
e Focus on the xterm window and give the 1s command again:
1s

e A new file name is listed. In addition to jobletter798 there is jobletter798~.
This new file contains a back-up copy of the previous version of the file. Emacs
automatically backs up files in this way to protect you against possible accidents!

2.26 The Is command — dot files

e You might think that, at the moment, you have two files concerned with the job
application plus one or two configuration files and no other files at all. Actually have
a good many more configuration files which have been set up automatically. You may
eventually learn how to modify these files but don’t do this until you really understand
what you are doing!

— 13 -

e For the moment it is of interest merely to see where these files are and to discover why
the 1s command hasn’t revealed them. These files all begin with a dot and ordinarily
the 1s command doesn’t list such files. If 1s is followed by -a (a is for all) then the
dot files will be listed. Give this modified command now:

1s -a
e A fair number of dot files are now listed in addition to the jobletter files you already
know about. One dot file which doesn’t exist just yet but which you may find a need

to set up before long is .emacs which is a file for configuring Emacs to your own
requirements.

2.27 The cp command

e [t is unnecessary to know much about the dot files but there is just one of them which
is missing at the moment but will eventually be needed if you are following this course.
This is the file .bash_profile which should be copied into your file space now.

e [t is safest to copy a definitive version from a special file directory $CLTEACH/fhk1
(in which $CLTEACH is a Unix environment variable which provides a short-cut to the
special directory) and you should use the following cp command (cp is for copy):

cp $CLTEACH/fhk1/.bash_profile .

e [t is important to notice the dot and the underscore character in .bash_profile and
that the command ends with a space followed by a lone dot. This lone dot refers to
your file directory (in fact to your home directory) and the command as a whole is
copying the .bash_profile file from the special directory to your home directory.

e If there is any sign of an error message, give the command again.

2.28 Finishing
e It is essential to finish in the approved manner. ..

e Choose Logout in the Main Menu. This will clear away all your windows including any
which are iconified. When the RIPA WARNING window appears it is safe to walk away
from the PC. Do not switch off the PC or the monitor.

— 14 —

An Introduction to Unix and X — Part 111

Here in Part III, further features of PWF Linux will be presented and a couple of very

simple Java applications will be introduced.

3.1 Getting going

Assuming a cold start, begin this and subsequent sessions by undertaking the following
steps, which may be freely adapted as you develop your own style of working:

1. Key in Ctrl+Alt+Delete.

Click OK in the advisory message window.

Click Shutdown in the Novell Login window.

Select Shutdown and Restart and click OK in the Shutdown Computer window.

Wait for the choice of operating systems, select PWF Linux, and press RETURN.

Wait for the RIPA WARNING window and click the button marked CLICK HERE TO

PROCEED. Then log in and destroy the PWF Message of the Day window.

7. Bring up an xterm window and move it to the top left-hand corner of the root
window if it does not appear there by default.

8. Bring up an emacs window and move it to the top right-hand corner of the root
window.

AR ANl

If there is no immediate intention to use Emacs, the emacs window should be iconified.
This is the present case, so iconify the emacs window.

The only window of consequence should be the xterm window. Check that this and
the iconified emacs window are recorded as entries in the Window Manager window.

3.2 The cat command, standard input, standard output

The cat command (short for ‘concatenate’) has many uses. In particular, there is a
way of using it to copy the contents of one file to another file. Focus on the xterm
window then, carefully noting the < character and the > character, give the command:

cat <jobletter798 >jobletter799
Like many commands, the cat command requires input which comes from somewhere
and produces output which goes to somewhere else. The characters < and > may be
pronounced ‘from’ and ‘to’ respectively. In the present cat command:

input is taken from the file jobletter798 and

output is sent to the file jobletter799
Both input and output have been specified explicitly. If no explicit output is specified
for a command which produces output then results are sent to the standard output
which simply means they appear in the xterm window immediately after the command.
Give the command:

cat <jobletter799
Here, input is from the file jobletter799 but output is to the standard output. The

contents of the new file jobletter799 appear in the xterm window and are a direct
copy of the contents of jobletter798.

— 15—

If no explicit input is specified for a command which requires input then input is taken
from the standard input, meaning input from the keyboard. Give the command:

cat >jobletter800

This time the system does not respond with a prompt; it is waiting for you to type
the contents of the file. Key in:

Dear sir,
Blah! Blah! Blah!

Using the cat command in this way is an alternative to using Emacs for setting up a
text file. It is normally better to use Emacs because mistakes can be corrected more
easily. With the cat command, the cursor keys cannot be used.

Key in Ctrl-d to terminate standard input. [You are not in Emacs so the abbreviation
C-d is inappropriate but you may sometimes see ~d used for Ctrl-d.] The Ctrl-d must
be at the beginning of a line (just following RETURN). The system should reply with
a prompt.

It is here that a minor embarrassment could occur. If Ctrl-d is accidentally keyed in
a second time, the window disappears. It can readily be recreated so no real harm is
done but, on some versions of Unix, closing the principal xterm window precipitously
logs you out. Accordingly, you should learn to take great care when keying in Ctrl-d
and make sure that you key it in just once!

Having noted that, by default, standard input is used for input and standard output
is used for output, what happens if neither input nor output is specified? Give the
cat command without any arguments (items following the command name):

cat
The system is again expecting standard input (from the keyboard) so type some text:
The quick brown fox

When RETURN is pressed, the system sends the line to the standard output (the
window):

The quick brown fox

The system doesn’t give a prompt; it is waiting for more standard input. Type another
line:

jumps over the lazy dog.
The system sends the line to the standard output as before:
jumps over the lazy dog.

Although it illustrates standard input and standard output, this exercise is not very
useful! Key in Ctrl-d to quit from the cat command.

So far, < has been used to indicate input from a file. This < can often be left out.
Give the command:

cat jobletter799
This works just as well as cat <jobletter799 did earlier.

—16 —

3.3

3.4

Local line editing

If after a prompt in an xterm window you press the T key then, instead of the text
cursor moving up a line, the result is that the most recent command is reproduced.
Try pressing the T key now; the result is:

cat jobletter799

The text cursor hovers at the end of the line. Use BACKSPACE to delete just the 799
and then key in 800 as a substitute. Now press RETURN, thereby giving the command:

cat jobletter800
It is easy to make a more substantial change to the most recent command. First, press
the T key again, resulting in:

cat jobletter800

Now use the < key and BACKSPACE (these are two different keys) to delete cat and
then key in spell and < to give the command:

spell <jobletter800

Using the cursor keys and BACKSPACE to make changes to the line being typed is
sometimes called local line editing.

History

It is not just the most recent command which can be retrieved for editing. Try pressing
the T key six times slowly, pausing after each press to see the result. The six most
recently given commands appear. Any of these could be edited if desired.

Now press the | key six times slowly. This brings you back to the present in stages.
Using the T and | keys in this way is said to reveal history.

Geometry

Give the following variant of the xterm command:
xterm -fn 9x15bold -geometry 80x28-0-0 &

The -geometry item specifies four aspects of the new window:
80 is the width of the window measured in characters.
28 is the height of the window in lines.

-0 places the window on the right-hand side of the root window.
-0 places the window at the bottom of the root window.

In summary, the 80x28 specifies the width and height of the window and the -0-0
causes the window to be placed in the bottom right-hand corner of the root window.

Note that +0+0 would place the window in the top left-hand corner; -0+0 would place
the window in the top right-hand corner and +0-0 would place the window in the
bottom left-hand corner.

There are other variations on the xterm command which are worth exploring so this
first attempt will be abandoned. Ensure that the latest window is in focus and key in
Ctrl-d to remove it.

— 17 -

3.6 Colours

Focus on the xterm window and, using local line editing, give the command:

xterm -fn 9x15bold -geometry 80x28-0-0 -fg white -bg blue &
The -fg item specifies a foreground colour and the -bg item specifies a background
colour. The result will soon be clear. Most of the common colours are available. Try

some further experiments. Conclude by leaving one xterm window in the top left-hand
corner.

3.7 Java Programs — Introduction

Java is an important programming language which is commonly used in Computer
Science projects. Java is designed to be used across the Internet and is also designed
for industrial-scale software projects.

Java programs come in two forms, applications and applets. The latter are accessed via
Web browsers or the appletviewer command and will not be discussed here. The two
programs introduced in this document are both simple examples of Java applications.

3.8 A Java application — the source code

The file name for any Java source code must be in two parts separated by a dot. In
the first illustration, the name ComeIn.java will be used. Unix and Java are both
case sensitive so it will be important to key in ComeIn. java and not comein.java
or Comein.Java and so on.

The part of the file name before the dot can be fairly freely chosen by the programmer
but the remainder must be .java which is known as a file name eztension.

Before going any further, deiconify the emacs window. Next, focus on the main part
of the emacs window and embark on a new file by keying in:

C-x C-£
The cursor jumps to the end of the echo line where (paying attention to the upper
and lower cases of the letters) you should key in:

Comeln. java

Press RETURN. Check that the mode line confirms ComeIn.java and, also in the
mode line, note that Lisp Interaction changes to Java.

Now key in the following source code of a frivolous Java application:

public class Comeln
{ public static void main(String[] args)
{ System.out.println("Come in number 57 please");
}
}

Be careful to write public and not PUBLIC or Public which won’t work. Again,
write ComeIn and not comein or Comein and, most important, write String and not
string. Notice the semi-colon, the pair of square brackets, the two pairs of round
brackets and the two pairs of vertically aligned curly brackets.

— 18 —

3.9 Java Programs — Outline syntax

e Java programs can be thought of as being arranged in various levels of wrapping. A
big program will be divided into several packages and in each package there will be
several classes and each class will consist of several members.

e To get some idea of the shape or syntaz of a big Java program consider a diagrammatic
representation of a program which is divided into two packages, one of which contains
three classes and the other two classes:

package jack; package jill;
public class Tom public class Sharon
member member
member member
member member
public class Dick public class Tracy
member member
member member
member member
public class Harry
member
member
member

e The diagram follows a Java convention that package names are normally written in
lower-case letters but class names begin with an upper-case letter. The diagram loosely
corresponds to the associated file structure. Every class is in a separate file and the
class files in any particular package are in the same directory.

e A class may contain several different kinds of member and two of particular importance
are data fields and methods. The introductory application is very short and consists
of only a single class, ComeIn, which itself contains just one member, the method main
which will be discussed shortly. The second application will include a data field.

e [t is of minor note that the introductory application is not headed by a package
statement. In consequence, the application will be regarded as belonging to some
anonymous package. (In the present context, the anonymous package is, in effect, your
home directory and the collection of class files that will accumulate in this directory.)

- 19 —

3.10 Java Programs — Syntax of a class definition

e A Java class definition consists of a class heading (conventionally written on a line by
itself) followed by a class body which is enclosed in curly brackets.

e In a simple case the outline syntax of a class definition is:

public class class-name
{ member
member

}

e The keyword class in the class heading is preceded by the public modifier and this
particular modifier ensures that the class is wvisible from other packages.

3.11 Java Programs — Syntax of a method definition

e A method in a Java class consists of a method heading (also conventionally written on
a line by itself) followed by a method body which is enclosed in curly brackets:

modifiers method-type method-name (arguments)
{ statement
statement

by

e The word method stems from the terminology of object-oriented programming, Java
being an object-oriented programming language. Close parallels of methods are found
in almost all programming languages where equivalent entities may be referred to as
functions, procedures or subroutines.

e There is a requirement that exactly one class in any Java application includes the
method main and, moreover, the main method must always be heralded by the two
modifiers public and static.

e A full understanding of these two modifiers will come with experience but, roughly
speaking, the public modifier makes the method visible from outside the class (in
particular by the run-time system which supervises the running of the program) and
the static modifier ensures that the method is available for immediate execution.

e A typical method concludes execution by delivering some value as a result, perhaps
an integer number. The type of the result determines the type of the method itself.
Some methods do not deliver a result and in such cases the type of the method is
deemed void. This is the case with the main method.

e The arguments of a method are enclosed in round brackets. The method main has a
single argument whose type is a String array (written String[]). The name of the
argument is args. When a Java application is run, the method main is handed any
items such as file names which may appear on the command line. Each such item has
type String (a sequence of characters) and each will be assigned to an element of the
args array.

— 920 —

3.12 Printing a String

In general, a method body incorporates a sequence of statements enclosed in curly
brackets. In the introductory application, there is only one statement in the body and
this prints out the String constant "Come in number 57 please".

Printing is achieved via the somewhat ponderous syntax:
System.out.println(string-to-be-printed) ;

Once again, a full understanding of this will come with experience and only a brief
explanation is worthwhile now. There are numerous built-in packages in Java which
contain facilities for standard operations like input—output. One such package is
java.lang which includes the System class. This class has a data field out which, in
turn, has access to the method println.

The three items System, out and println are written as a continuous sequence with
dots as separators. A String constant is enclosed between double-quotes and is
handed to the println method as an argument (which is why it is in round brackets).
The statement as a whole must be terminated with a semi-colon.

When the application is run, println causes the String to be terminated with an
end-of-line character. An alternative, print (without 1n), is available if no end-of-line
character is required.

3.13 Saving the Java application

The rules for the file name the source code can now be clarified. The first part of
the file name must exactly match the class-name and .java must be used as the file
name extension. Clearly ComeIn.java is the appropriate file name here.

The quickest way to give the Emacs save-buffer command is to use the keystrokes
C-x C-s but it is instructive to give an Emacs command the slow way. ..

In Emacs documentation C-something stands for Ctrl-something. Additionally there
is M-something which stands for Meta-something. Few keyboards have a key which is
actually marked Meta and on a PWF you should use Esc. [On some other workstations
Alt may be the appropriate key.]

Where Esc is used to key in M-x, you must press and release Esc before pressing x; thus
Esc and x are pressed in turn and not together. [At terminals where Alt is appropriate,
use Alt rather like Ctrl: hold the key down and then tap x.]

Key in M-x by whichever means is appropriate. Note that M-x appears in the echo line.
Strictly, this is the Emacs execute-extended-command command. It means that you
can now key in the full name of any Emacs command. Key in:

save-buffer
Emacs is another system which is case sensitive so be careful what you key in.
Focus on the xterm window and give the command:

1s
You should see the file ComelIn.java listed alongside the jobletter files.

- 21 —

3.14 Compiling the Java application

To be useful, a Java application must be compiled and then run.
Focus on the xterm window, and give the command:
javac Comeln.java
Notice that the . java file name extension must be quoted.
The javac command invokes the Java compiler.

If you made any mistakes when keying in the application the compiler will complain!
With luck any complaint will be helpful. If there are any complaints the source code
must be corrected, saved again, and the javac command repeated. Keep going until
there are no complaints!

The compiled code of any Java class goes to a file whose name consists of the class
name followed by a .class extension. Give the command:

1s
Check that the file ComeIn.class is listed.

3.15 Running the Java application

The Java compiler does not generate code which is ready for immediate linking, loading
and running. Instead, the compiler generates bytecode for the Java Virtual Machine
(JVM). The JVM can be regarded as an interpreter with a run-time system.

It is the java command which invokes the Java interpreter. Key in:
java ComeIn
Notice that the .class file name extension must not be quoted.

The bytecode is duly interpreted and this will involve, at run-time, the dynamic
loading of input—output facilities (and, in general, other facilities besides). Ordinary
linking does not occur in Java.

The output should be Come in number 57 please and this should be followed by
a Unix prompt.

3.16 A second application

The second illustration will be sufficiently like the first that the easiest way to proceed
is to edit the source code of ComeIn. java in Emacs.

Focus on the emacs window and modify the source code to the following:

public class ComeAgain
{ private static int n;

public static void main(String[] args)
{n=57;
System.out.println("Come in number " + n + " please");

3

— 922 —

e The application again consists of a single class, this time called ComeAgain so the first
line will need changing. The new class incorporates a data field as well as a method.
e The private static int n; declares a data field whose name is n and whose type
is int (a whole number). The private modifier is at the other extreme from public
and restricts the visibility of the data field to within the class only. This is fine given
that the only reference to n is from the method main. The static modifier is essential
and ensures that the data field is accessible. The semi-colon terminator is mandatory.

e The main method includes the assignment statement n = 57; which gives a value to
the data field. An assignment statement must also be terminated with a semi-colon.

e The argument of the println statement has been split into three separate strings
which are joined into a single string by the use of +, the Java string concatenation
operator. The middle item of the three, n, is of course of type int but when an int
is seen in a String context it is automatically converted to String type. Thus the
value of the int n, 57, is changed to the String "57".

e Notice that the first of the three strings ends with a space (after number) and the last
of the three begins with a space (before please). These spaces ensure that there is a
space either side of the "57" in the output.

e You should not use the Emacs save-buffer command to save this source code because
that will overwrite the ComeIn.java file. You should use the Emacs write-file
command instead. Its associated keystrokes are C-x C-w so key in:

C-x C-w
e The message in the echo line begins Write file and, at the end of this line, key in:
ComeAgain. java
e Focus on the xterm window and compile the new application:
javac ComeAgain. java
e Assuming there are no complaints, run the compiled code:
java ComeAgain
e The output should be Come in number 57 please as before.

e This second application is somewhat contrived. Its principal purpose is to present a
class which contains a data field and a method, the two most important kinds of class
member. Typically, classes contain several data fields and several methods.

3.17 Layout

e Readers who have studied Java before, however cursorily, will have noticed that the
layout used in the two examples is somewhat idiosyncratic.

e The layout employed in most text books follows a style adopted in the early days of
C when only primitive editors were available, a poor precedent! Source code is much
easier to understand if matching curly brackets are vertically aligned.

e In the illustrations above, each level of indentation involves shifting the code an extra
three spaces to the right. Every curly bracket is centred with respect to a three-space
gap. Whatever style you choose, note that good layout greatly improves readability.

— 923 —

3.18 Emacs buffers

Focus again on the emacs window.

At the moment Emacs is displaying the new source code. The source code of the first
application has not been lost because it was saved in a different file. To retrieve the
earlier code, key in:

C-x C-f
Then key in the file name ComelIn.java and press RETURN.
The previous source code should appear.

Although Emacs is now displaying just the old version, both files are open. The two
lots of source code are in separate Emacs buffers. To see what buffers exist, give the
list-buffers command. Key in:

C-x C-b

The emacs window splits into two half-size windows. The old source code is in the
upper and a list of buffers is in the lower. The list includes ComeIn.java and
ComeAgain.java amongst other entries.

Note that the text cursor is in the upper of the two windows. To get rid of the lower
window, give the delete-other-windows command. This uses the digit-1 key without
Ctrl. Key in:

C-x 1
To bring the ComeAgain. java buffer back as the displayed buffer, give the switch-
to-buffer command. This uses the b key, again without Ctrl. Key in:

C-x b

The message in the echo line should indicate that Emacs will, by default, switch to
the ComeAgain. java buffer. If this ¢sn’t the default, you can key in ComeAgain. java
explicitly. Press RETURN.

The new source code should reappear in the emacs window and ComeAgain.java
should appear in the mode line.

3.19 The cal command

No use will be made of Emacs for a while so iconify the emacs window.

Almost all commands that have appeared so far have produced results which have been
sent to the standard output. The java command is no exception. Here is another
example. From the xterm window give the command:

cal 1900

The calendar for all 12 months of 1900 is displayed but there is a snag. The xterm
window is probably too small to accommodate the whole of the standard output and
the first part of the calendar runs off the top of the window. There are various ways
of dealing with this problem ...

— 24 —

3.20 The scroll bar

e Along the left-hand edge of the xterm window, there is a narrow column, the lower
part of which is highlighted by a vertical stripe. This stripe is called the scroll bar
and the height of the scroll bar relative to the height of the column indicates the
proportion of the text which is in the window compared with the amount which has
run off the top but is still accessible.

e Move the mouse pointer to somewhere a little below the top of the scroll bar and
press and hold down the middle mouse button. Keeping the middle button held down,
move the mouse pointer slowly upwards. Notice that the text in the window moves
downwards; this is called scrolling the window. All the earlier months of 1900 can be
brought back. Release the middle button.

e Pressing RETURN results in an abrupt jump to the end of the text. Try this.

e Each of the mouse buttons has a different effect on the scroll bar. Experimentation is
advised.

3.21 Sending output to a file

e From the xterm window, press RETURN and then give the following version of the cal
command:

cal 1900 >then
e The calendar for 1900 goes to the file then.

e This may not immediately seem to be helpful since if you inspect the contents of the
file then using the cat command the calendar still won’t fit:

cat then

e Resorting to the scroll bar is unnecessary because the more command (this was first
used in section 2.21) can be exploited. Using the more command, a file can be looked
at one windowful at a time. Try:

more then

e Only as many lines appear as will fit and there is a note of what percentage of the text
this is. Press RETURN repeatedly to advance through the text one line at a time. To
advance through the text one windowful at a time, repeatedly press the SPACE-BAR.

3.22 Pipes

e A pipe is a sequence of commands which are strung together so that the output of one
command becomes the input of the next. The commands are separated by vertical
bars (note that the vertical bar key is next to the Z key). An example of a pipe is:

cal 1900 | more

e The output from the command to the left of the | becomes the input of the command
to the right of the |. This example of a pipe is quicker than typing cal 1900 >then
followed by more then which not only involves keying in two lines but introduces
the file then which isn’t needed when a pipe is used.

— 925 —

The more command again causes the display to pause after a windowful but notice
that no percentage is quoted because more doesn’t know how much more there is to
come. As before, press the SPACE-BAR to see the rest of the text.

A second example of a pipe is:
cal 1900 | cat >then

The output of the cal command is piped to the input of the cat command. The
output of the cat command goes a new file then. Note that this is a silly example
because it would have been better to use cal 1900 >then alone!

3.23 Highlighting and copying text

Suppose you wish to set up a file containing just the first three months of 1900. Clearly
you could use Emacs to edit the file then but it is quicker to use the highlighting feature
of X.

Give the more command again:
more then

Just the first part of the file appears in the window. Now quit from the more command
without inspecting the whole file: simply press q (for quit).

Next use the cat command to embark on keying in a new file jfm (for January,
February and March):

cat >jfm

Press RETURN. Notice that the text cursor is in position ready for you to key in the
first line of the required text but don’t do that. Instead proceed as follows. ..

Move the mouse pointer to the beginning of the line on which January is written.
Press the left-hand button. Then, move the mouse pointer to the beginning of the
line on which April is written and press the right-hand button.

The use of the left- and right-hand buttons in this way highlights a region of text.
Highlighted regions of text can be copied to the place marked by the text cursor and
just now the text cursor is at the bottom of the window.

To copy the highlighted text, simply press the middle button. The copy appears at
the bottom of the window as standard input for the cat command. Key in Ctrl-d to
terminate the input.

To turn the highlighting off, click the mouse anywhere in the xterm window.

To check the effect of what you have just done, clear the window and inspect the
contents of the new file:

clear
cat jfm

Note that highlighted regions do not have to be large chunks of text. Single sentences
or even single words can be highlighted and copied. Note, further, that text which is
highlighted in one window can be copied to another window.

— 926 —

3.24 Highlighting rules

To highlight a region of text:

Press the Left mouse button at the beginning of the region
Press the Right mouse button at the end of the region

To copy a highlighted region of text to the position marked by the text cursor:
Press the Middle mouse button

3.25 Completion in Emacs

Emacs has many hundreds of features and it is worth trying out just a few more in
this introductory document.

First, deiconify Emacs. The Java source code is still in the window. Bring back the
jobletter798 file instead. Begin with:

C-x C-f
This invokes the find-file command. The cursor jumps to the end of the echo line

where you could key in jobletter798 but it is unnecessary to key this in in full.
Without pressing RETURN just key in the first letter:

J
Now press the sPACE-BAR. The window splits and all files which begin with j are
listed in the bottom half; these are the possible completions. As well as jfm there are

four file names which begin jobletter. Now just key in the single letter o and press
the SPACE-BAR again:

0 SPACE-BAR

Emacs now knows enough to complete as far as jobletter but it still doesn’t know
exactly what you want. You have to key in:

798

Press RETURN and the file’s contents duly appear.

3.26 Clicking the mouse in Emacs

Click the first y of yours sincerely. The text cursor jumps to the position of the
mouse pointer. This is an alternative to using the cursor keys.

If you press BACKSPACE you will, of course, delete the character to the left of the y,
probably a space. To delete the y without first moving the cursor, key in:

C-d
This is the delete-char command and deletes the character the cursor is on rather
than the one to its left. Now key in an upper-case Y instead:

Y

In a similar way change the s of sir to an upper-case S (or make it lower case if it
already is upper case!).

— 27 —

3.27 The Emacs undo command

e A mistake can be undone using the Emacs undo command. Emacs documentation
gives C-_ for this but notice that as well as the usual use of Ctrl you will probably
need to use sHIFT for the underscore character. That said, key in C-_ four times very
slowly to see the effect:

C-_ C-_- C-_ C—_
e Not only does this negate the earlier changes but, assuming those were the only

changes, the two asterisks in the mode line disappear to indicate that the text has not
been changed since the file was opened.

3.28 Emacs kill and yank
e Click the D of Dear and key in:
C-k
e This is the kill-1ine command. The Dear sir, goes blank. To get rid of this blank
line, give another:
C-k
e Killed text goes to the kill-buffer and can be brought back. Try:
C-y
e This is the yank command. Anything in the kill-buffer is yanked back.

e Kill and yank can be used as cut and paste in a word processor. Click the I at the
beginning of the final paragraph and then give the kill-1line command five times:

C-k C-k C-k C-k C-k
e The first four kill the two lines of the paragraph and the last kills the blank line before

yours sincerely. Next click the I at the beginning of what has just become the final
paragraph and then yank back the killed text:

C-y

3.29 Filling
e Click the c of company. Then, including the spelling mistakes and without pressing
RETURN, key in:
spendid, manificent and most whizzo

e [After whizzo there should be a space.] When a line gets to the edge of the window
a backstroke character appears and the text carries onto the next line down. Clearly
this is all a bit of a mess so, remembering that M means Meta (and on a PWF this
means using Esc), key in:

M-q

e This is the fill-paragraph command. It tidies up the paragraph so that each line

runs up as close to column 70 as possible without going beyond column 70.

e Click somewhere in each of the other two paragraphs in turn and key M-q in each. All
three paragraphs should now be filled to 70 characters.

— 928 —

3.30 Key bindings in Emacs

e Most commonly-used Emacs commands can be given in a slow way and in a quick
way. The slow way involves keying in the command name as was demonstrated for
save-buffer in section 3.13. It is much quicker to key in C-x C-s. This short version
is called a key binding.

3.31 Commands without key bindings

e A good way to check spelling is to give the Emacs ispell-buffer command. This is
the first Emacs command for which there is no key binding. It has to be given the
long way. To give a command by keying in its full name you always begin by:

M-x
e In principle you now key in ispell-buffer but fortunately the Emacs completion
facility can again save you effort. Key in as far as the p of ispell:
isp SPACE-BAR SPACE-BAR
e The first SPACE-BAR supplies ell and the second supplies a hyphen. You now continue:
b SPACE-BAR

e This time Emacs supplies uffer. Press RETURN to invoke the command and the
Emacs spell-checker sets to work. Very likely the first word to be queried will be
spendid. This word is highlighted and suggested correct versions appear at the top
of the window. A message in the echo line explains how to get further information.

e The suggestions at the top are numbered (0), (1), etc. and, assuming one of these
suggestions is acceptable, you key in the appropriate number. Very likely you key in:

2

e The spell-checker then notes the next error, probably manificent, and again there
are numbered suggestions. This time you probably need to key in:

1

e The spell-checker probably queries whizzo next and is again likely to suggest some
alternatives. If you want to change the word but are not happy with any of the
suggestions key in:

r

e Note that r stands for replace. The offending word appears in the echo line. Edit
whizzo in the echo line (use the BACKsPACE-key) so that it is replaced by:

wizard

e Press RETURN and the replacement takes effect. If you are happy with the spelling of a
word that has been queried simply press the SPACE-BAR to leave the word unchanged.

3.32 Automatic filling of paragraphs

e The Emacs auto-fill-mode command saves you from having to key M-q in every
paragraph. There is no key binding for this command so, using completion, go:

M-x au SPACE-BAR SPACE-BAR f SPACE-BAR m SPACE-BAR

— 929 —

e Press RETURN and, from now on, paragraph filling will be automatic. Note Fill
appears in the mode line. To see what this means, first:

Click the . at the end of football game.

e Move the cursor one place right and continue, on the same line, by keying in a new
sentence:

It"s a needle match that day and I simply must watch it.

e The line now splits at a sensible place and there is no backstroke character.

3.33 Emacs conclusion

e This is sufficient Emacs for one session. Follow usual practice: don’t leave Emacs,
simply save the latest version of the file and iconify the window. First save the file:

C-x C-s
e Now iconify Emacs. Note that there is a summary of the Emacs commands used in
this document on page 32.

3.34 Checking the files

e Focus on the xterm window and check the entries in your home directory alone:
1s

e There should now be about a dozen entries, about half of which relate to your Java
programs. These include the source files (which have the .java extension), possible
back-up files (which end .java™) and also the class files (which have the .class
extension).

e To delete a file, use the rm command (standing for remove). For example, to delete
the file jobletter798~ give the command:

rm jobletter798~

e Give the 1s command to check that the file has been removed.

3.35 The xlsfonts and xfd commands

e To see what founts are available, give the x1sfonts command. (The absence of the
letter ‘u’ is a consequence of American spelling!) Since there are several hundred
founts, the output should be piped to the more command:

xlsfonts | more

e There really are hundreds! To see them all keep pressing the SPACE-BAR. If you get
tired, you can quit from the more command by pressing q.

e To gain a quick impression of what a given fount looks like, use the xfd command.
For example, to look at the r24 fount give the command:

xfd -fn r24 &

e A table showing the characters in the r24 fount appears. This is a fized-pitch fount
(all the characters are the same width) and fairly large. When finished, click Quit
near the top-left hand corner of the xfd window.

— 30 —

e Two other founts are worth a brief look, 5x8 (very small) and 9x15 (the unbold version
of 9x15bold).

3.36 The Window Ops menu

e Suppose you want to move the Window Manager window. It has no title bar and so
the usual approach is not available. To move this window you first have to invoke
the Window Ops menu by clicking with the middle mouse button anywhere in the root
window. Choose the Move entry from the Window Ops menu.

e Move the mouse pointer into the Window Manager window and then, using the usual
left-hand button, drag the window to a new position.

e Focus on the xterm window and give the xterm & command to create a new xterm
window:

xterm &

e Middle-click again anywhere in the root window to invoke the Window Ops menu.
Choose the Destroy option and then click anywhere in the new xterm window.

e A somewhat incomprehensible note appears in the old xterm window. This is a cryptic
explanation of what has just happened to the new window.

e Press RETURN in the surviving xterm window to produce a prompt.

3.37 Destroying windows

e The Destroy option can be used to destroy almost any window in an emergency. It
won’t often be necessary to use this facility but if a window appears to be stuck in
some way or perhaps you have got into a mess in Emacs then this facility can be used
as a last resort.

3.38 Driving Test

e On the last page of this document there is a driving test in which you have to exercise
some of the facilities that have been introduced. If you have worked through this far
the driving test should not be much of a challenge. Complete this test before finishing.

3.39 Finishing

e End the session in the approved manner. Chose Logout from the Main Menu and wait
for the RIPA WARNING window to appear before leaving the PC. Do not switch off the
PC or the monitor.

3.40 Postscript A — HWM and Motif

e Throughout this document a standard Window Manager has been assumed. There
are other window managers available, each with numerous facilities for configuring to
suit individual taste. Popular alternative window managers include the Hummingbird
Window Manager (HWM) and Motif.

— 31 -

3.41 Postscript B — Emacs commands

e In the following summary, the Emacs commands which have been mentioned in this
document are shown in what is likely to be, very roughly, decreasing order of frequency
of use. Since you are advised not to leave Emacs, C-x C-c is last in the list.

e The three columns show key bindings (where available), the full formal names of the
commands and an informal description:

OC?O
Mo M

Q
| |
MMM K OS<S K’ a0 |

o = Q

OOOZ?OOOO

C-x

O(;)O
s 0 Hh

C-c

find-file

save-buffer

write—-file

undo

keyboard-quit
delete-char

kill-line

yank

fill-paragraph
execute-extended-command
list-buffers
delete-other-windows
switch-to-buffer
ispell-buffer
auto-fill-mode
save-buffers-kill-emacs

Find (open) an existing file

Save (update) an existing file

Write a new file

Undo a command

Go away, I didn’t mean it

Delete a character

Delete from the cursor rightwards
Bring back killed text

Tidy up a paragraph

For giving a command the long way
List the buffers

Get rid of other Emacs windows
Change to another buffer
Invoke the spell-checker

For automatic tidying of paragraphs
Cancel (leave) Emacs

3.42 Postscript C — Remote use of PWF Linux

e As most readers will know, a considerable amount of information relevant to teaching is
available via the Computer Laboratory web site http://www.cl.cam.ac.uk/. Select
the link Taught courses and scroll down to Resource material where you will
find further links about PWF Linux.

e The link Information about accessing the PWF remotely advises that if you
have access to a PWF Workstation running PWF Linux then use that, but. ..

e [t is further explained that if you don’t have access to a PWF Workstation running
Linux then remote access to a shared facility is available. There are various ways of
achieving this access and you should have no trouble understanding the explanation

given.

F.H. King 24 January 2002

— 32 —

An Introduction to Unix and X — Driving Test

To acquire a ‘tick’ for the above, work through the following steps to produce a printout
whose appearance is like the lower half of this page:

e Edit your ComeAgain.java file so as to incorporate two Java comment lines at the
beginning as in the version of ComeAgain.java shown below. Use your name and
suitable times.

Save the amended source code and check that it compiles by using the javac command.

Give the three commands shown below after pccl1520:C299$ prompts: these are the
more command, the javac command and the java command.

Next (and not shown on the lower half of this page) give the cat command to embark
on a new file:

cat >tick

Highlight and copy the mini-session (as described in section 3.23) so that it forms the
contents of the file tick. Terminate cat with Ctrl-d. Use Emacs to edit the file tick
so that there is one blank line before each line which begins with a prompt.

Print the file by giving the following 1pr command:
lpr -Pcl_co4_1j tick

The output should appear on a printer in Cockcroft 4 whose name is cs_co4_1j. Apart
from the prompts and your name and timings, the output should appear exactly as
that below. Take it to Miss Northeast who may award a tick.

pcclb520:C299% more ComeAgain.java
// JAVA ASSESSED EXERCISES. SUBMISSION 1 FROM F.H. KING.
// Estimated time to complete: 30 mins. Actual time: 1 hour.

public class ComeAgain
{ private static int n;

public static void main(String[] args)
{n=57;
System.out.println("Come in number " + n + " please");
b

pccl520:C299% javac ComeAgain. java

pcclb20:C299$ java ComeAgain
Come in number 57 please

— 33 -

