
Communications Support for
Distributed Systems and Applications

component of distributed
system or application

generic support for distributed
systems and applications

OS comms
interface

e.g. sockets

OS protocol
"stacks"

e.g.TCP/UDP
 IP

The OS interface:
 sockets provide a programmer’s interface to a selection of communications protocols
sockets are created and used by system calls to send to e.g. IP-address/port-number
 - byte streams
 - packets of unstructured bytes (datagrams)

Alternatively, the OS interface may be designed to support distributed objects
and the API may be defined in terms of objects’ ports
with system-wide naming of port-IDs
e.g. Mach, Chorus,......

C-1

component of distributed
system or application

generic support for distributed
systems and applications

OS comms
interface

e.g. sockets

"generic support for distributed systems and applications"
 builds on OS-level communications services to support
 the development and execution of distributed software

As discussed in the introduction, at this level we need support for
(depending on the software model which defines the communicating entities):

- naming
- location
- name to location binding
- communication
 message transmission?
 call to server-interface.procedure (args)?
 object invocation?
- authentication
- access control

C-2

Asynchronous message passing

ref 1B concurrent systems, Dip/2G OS Foundations

Message passing maps naturally onto distributed
communication, provided the communicating entities
are named and located system-wide

SEND (B, message-ptr)

if B is a local process, deliver message
if B is not local
either - name-to-location bind
 and pass down to OS-comms
or - deliver to NetServer process
 for location etc.

OS comms
interface

OS comms
interface

OS
comms

OS
comms

RECEIVE (A, ptr-for-message)

take mesage from comms
and deliver to application

C-3

OS local
 IPC

process A process B

Message-orient(at)ed middleware (MOM)

IBM Message service: MQSeries

one-to-one reliable message-passing
used under e.g. CICS transaction processing
naming is of queues, routing is via queues

TIBCO TIB/rendezvous message passing

any process who has subscribed to a subject
receives messages on it

messages are not typed but have some structure so that
language-level type systems can be built above them

Message systems have a larger proportion of the
middleware market than O-O systems
e.g. IBM 24%, TIBCO 17% (1998?)
What has been the effect of the web services paradigm since then?

http://www.software.ibm.com/ts/mqseries

C-4

MOM: publish-subscribe systems

subscription may be subject-based or content
 (field/value)-based

Reuters news service
Stock market quotation service

(applications
 rather than middleware)

need a subject naming scheme and a yellow pages service

current interest in moving to XML
there is a JMS interface for MQ

Early middleware research

message-passing was thought to be difficult to program
- matching requests and replies
it was argued that software structure and pattern of use tends to be
based on client/server or object models i.e. synchronous invocation
language-level communication paradigm is
 procedure call
 object invocation
* multi-threaded programming became more commonplace
 at the application level

so use a thread to make a blocking remote service call or remote object
invocation and continue local work in other threads

concurrency distribution

fork

remote-call remote object
or procedure

RPC systems were developed in research projects
(e.g. Mayflower and Unison RPC, Cambridge CL, mid 80’s,
 ANSA RPC under Alvey, then APM, now Citrix Cambridge)
then became incorporated into standards such as
ISO-ODP, OSF-DCE

RPC is built above request-response message passing but message passing
may not be visible to and programmable at the application level

C-5

* BUT multi-threading also makes the programming of message passing
 more tractable

the main distinction is synchronous, closely coupled communication
 (as in RPC and O-O)
versus asynchronous, loosely coupled communication
 (as in message-passing)

Give the application the choice?

with message passing only:
 doesn’t extend language-level paradigm
 doesn’t model service invocation well

with object invocation only:
 doesn’t support large objects and streams well
 assumes components closely coupled (all up-and-running)
 difficult to get immediate response to events

suppose an object is a source of events to which an application should respond asap:
polling:
client polls server at some period
response is delayed by on average half that period
 either: overload comms with polling
 or: respond sluggishly
synchronous callback:
server calls interested clients on event occurrence
clients can delay server
need multi-threaded servers
complex to program for delayed threads

current O-O middleware platforms provide event services

Java RMI/Jini + events
 single language, proprietary

OMG-CORBA event notification service 1998
 multi-language, open interoperability

CEA (Cambridge Event Architecture)
 early 1990’s research
 extend any O-O platform

C-6

These platforms give the choice of synchronous/asynchronous communication
but they still assume closely coupled components are communicating.
General MOM is asynchronous and loosely coupled.

Cambridge Event Architecture (CEA) 1990s

- compatible with any style of middleware

- use standard data typing for named, parametrised events
 e.g. IDL -> ODL, XML?

- event sources publish the events they will notify

- clients register interest in events with sources
 indicating parameter values or wildcards

- sources notify clients with the stream of matching events

- event stores can be clients e.g. to log events
 note compatible transmission and storage technology

C-7

event client
object which is
an event source

asynchronous notification(s)
of matching event(s)

SYNCHRONOUS
INTERFACE

REGISTRATION
INTERFACE

synchronous method
invocation

register interest
in event

NOTIFICATION
INTERFACE

NOTIFYACTION

Cambridge Event Architecture (CEA)

paradigmpublish-register-notifyCEA 1. The

C-8

CEA 2. Direct and mediated notification

distributed
event sources

distributed
event clients

notify
event

mediator

register

notify

register

notify
notify

notify

register

register

register
register

notify

C-9

* decouple event source and client

* avoid overload on primitive event sources

* one-to-many and many-to-many communication

 - multicast protocol may be exploited
 at event source or mediator

CEA 2

distributed
event sources

e.g. active badge detectors

notify

event
mediator

register

notify
notify

notify

register

register

register

SEEN (person, room)

SEEN (badge-id, sensor-id)

event client

* mediated communication can be used to provide
 a higher-level interface

C-10

distributed
event sources

composite event
service

streams of
event notifications

= composition operator

client

ACTION
(composite

event
fires)

notification

CEA 3. Event Composition - Composite event detection

C-11

(prior registrations not shown)

Without A - B

Sequence A ; B

Or A | B

And A&B

First First(A)

yields stream matching A until B occurs

A followed by B

yields stream matched by A or B

yields stream matched by both A and B

yields the first event that matches A

CEA3 event composition operators

C-12

- need to be tested in practical applications

- precise meaning? consumption policy?

distributed
event sources

e.g. active badge detectors

notify

event
mediator

register

notify
notify

notify

register

register

register

SEEN (person, room)

SEEN (badge-id, sensor-id)

event client

receive event

test condition

do action

event notification
(primitive

or composite)

(E)

(C)

(A)

(Component composition)

CEA 4. Active programming: event-condition-action

event composition
embodies some conditions

the receiver may also
impose conditions

C-13

* events are the glue for composing distributed software components
- active office, home, airport, city (sensor-rich environments)

- virtual reality, augmented reality

ScarletClick

ScarletAppears ScarletDisappears

Film Video Data

 Application
(Active Context)

 Event
Notifications

Time

 Event
Notification

C-14

V
R

 H
ea

ds
et

an
d

Su
it

P
ro

je
ct

or
Sp

ec
s

M
ap

M
ob

ile
W

or
ki

ng
D

ev
ic

e

M
ap

R
ea

l-
W

or
ld

 V
ie

w
w

ith
 O

ve
rl

ay
s

A
ug

m
en

te
d

V
ir

tu
al

C
on

ve
nt

io
na

l

G
PS

E
C

A
 R

ul
es

L
o
c
a
t
i
o
n
(
’
D
r
.
B
u
s
y
’
,

.
.
.
c
o
o
r
d
s
.
.
.
) U
p
d
a
t
e
P
o
s
i
t
i
o
n

(
’
D
r
.
B
u
s
y
’
,

.
.
.
c
o
o
r
d
s
.
.
.
)

U
p
d
a
t
e
P
o
s
i
t
i
o
n

(
’
D
r
.
B
u
s
y
’
,

.
.
.
c
o
o
r
d
s
.
.
.
)

C-15

Active Badge (electronic tag) Technology, Sensor-rich Environments

the nearest computer will fetch your environment,
 video streams, email, news, buffered events

locked doors will open

equipment can be tagged for security - movement raises an alarm

people can be tracked, meetings can be detected

-> access control needed on registration and notification
?

e.g. active house, office, hotel, airport, city

mobile objects can be tracked (buses, cars, taxis, ambulances)

C-16

?

C-17An Active Home

access network
HiFi

Computer

TV
telephone

baby

music roombedroom

lounge
study

speakers

HiFi

speakers

keyboard

......but we can be monitored

Saatchi & SaatchiCIA

C-18

Remote Procedure Call (RPC)

component of distributed application

RPC service:
 routines which "marshal" (flatten) data
 naming and name-to-location binding
 request-response protocol

OS comms
interface

ISO levels

Application

Presentation

Session

Transport
Network
Datalink
Physical

examples: Mayflower/CCLU RPC, SUN RPC, ANSA RPC, MSRPC
 Xerox Courier over XNS (SPP, Ethernet)
 ISO-ODP, OSF DCE

C-19

RPC Request-Reply Acknowledge (RRA) protocol

S

C client timer

server times

RPC SERVICE

marshall arguments
generate RPC-ID
set timer for reply
send message

unmarshall arguments
send ACK
return to CALLER

OS
COMMS

C

CALLER

call(..)

RPC SERVICE

unmarshall arguments
note RPC-ID
call procedure

marshall results
set timer for ACK
send REPLY

OS
COMMS

S

CALLED
PROCEDURE

return

NETWORK

client server

C-20

RPC semantics

recall that client, server and network may be congested or may fail independently of each other
 (fundamental property of Distributed Systems)

RPC systems may offer AT MOST ONCE or EXACTLY ONCE semantics

if the client timer expires:

 exception return to the application
 it is likely to repeat the call but this is not detectable
 i.e. it will have a new RPC-ID

EXACTLY ONCE semantics:
retry a few times
RPC-ID means that the server can detect repeats
if no reply, exeption return to client

AT MOST ONCE semantics:

if the server timer expires:

resend results
RPC-ID means that the client can detect repeats

S

C

C-21

RPC SERVICE

marshall arguments
generate RPC-ID
set timer for reply
send message

unmarshall arguments
send ACK
return to CALLER

OS
COMMS

C

CALLER

call(..)

RPC SERVICE

unmarshall arguments
note RPC-ID
call procedure

marshall results
set timer for ACK
send REPLY

OS
COMMS

S

CALLED
PROCEDURE

return

NETWORK

client server

RPC client crash

results are sent to crashed machine, are not acknowledged, and server timer S expires repeatedly on resend

persistent state may have been changed by the procedure call - should this be handled by RPC service?

NO - application-level transaction semantics (commit/abort) should be used.

C-22

RPC SERVICE

marshall arguments
generate RPC-ID
set timer for reply
send message

unmarshall arguments
send ACK
return to CALLER

OS
COMMS

C

CALLER

call(..)

RPC SERVICE

unmarshall arguments
note RPC-ID
call procedure

marshall results
set timer for ACK
send REPLY

OS
COMMS

S

CALLED
PROCEDURE

return

NETWORK

client server

RPC server crash

The server fails at some stage during the call. Results are not sent and the client timer C expires repeatedly

persistent state may or may not have been changed by the procedure call - should this be handled by RPC service?

NO - application-level transaction semantics (commit/abort) should be used.

C-23

?

Integration of Programming Languages and RPC (1)

* some early RPC systems aimed for complete distribution transparency
e.g. Xeroc PARC, Mesa language, Courier RPC
a preprocessor detects which calls are not to local procedures
and replaces them by calls to RPC support

problem of incorrect procedure names that don’t exist anywhere
problem of call semantics for some arguments

* Cambridge Mayflower system, CCLU RPC - made distribution explicit
the compiler was changed
different syntax for definition and call of procedures that can be called remotely
BUT - this was still for a single language, CCLU

C-24

some RPC systems restricted the argument types
 e.g. SUN RPC: C base-types only

CCLU RPC: most types including procedure names defined since developer supplies
 marshalling and unmarshalling routines for constructed types (recursive descent)

* ANSA RPC, was initially developed for C
 but later also supported C++ and Modula3 - a very early heterogeneous system

- defined a Distributed Programming Language (DPL)
- DPL statements are embedded in the programming language, and tagged
- a preprocessor detects these statement, replaces them with calls to RPC service

All RPC systems automatically generate marshalling and unmarshalling routines to flatten
call and return arguments into packet format suitable for transmission, and unpack them on receipt.
These routines are programming-language-specific.

Integration of Programming Languages and RPC (2)
C-25

* the standard approach (ANSA, ISO-ODP, OSF-DCE), O-O platforms

- define an Interface Definition Language (IDL)
- provide mappings for programming language’s type systems onto IDL

Now assume that we wish to support a number of different programming languages,
i.e. components written in different languages can interoperate

- (internally) define the transfer syntax for IDL types

- IDL compilers generate marshalling and unmarshalling routines
 appropriate for the programming languages involved.

 (CORBA calls the invoker’s marshalling routine a STUB
 and the invoked object’s unmarshalling routine a SKELETON)

Integration of Programming Languages and Middleware

* how do platforms that support objects and object invocation differ from the RPC schemes described above?

Externally invocable objects must be registered with the platform,
an object-ID is returned (and may be recorded in a name service)
The object becomes known globally and may be invoked remotely
Object-IDs are first-class values which may be passed as arguments

C-26

(as above for IDL and STUB/SKELETON generation)

RPC systems name and identify interfaces and procedures

e.g. ANSA IDL has base and constructed data types and the InterfaceRef type,
 an instance of which is a reference to a loaded and running instance of a service’s interface

O-O systems name and invoke objects

example: CORBA IDL

object type members are object references

base types 16, 32, 64 bit signed and iunsigned 2’s complement integers
single (32), double and double-extended floating point
fixed-point decimal
characters
boolean
8-bit opaque, NOT converted on transfer between systems
enumerated types
string
any (container)
wide characters and wide character strings

constructed types record (struct) ordered set of (name,value) pairs
discriminated union
sequence
array
interface type - specifies the set of operations which
 an instance of that type must support

Value

Object reference

Basic Value

Constructed Value

Struct
Sequence
Union
Array

Short
Long
LongLong
Ushort
ULong
UlongLong
Float
Double
LongDouble
Fixed

Char
Wchar
String
Wstring
Boolean
Octet
Enum
Any

legal values
in a request

C-27

Where does XML fit in? http://www.w3.org/XML

SGML - standard generalised markup language
 1985 document standard
XML - document standard (W3 consortium) compatible with SGML
DTD - document type description
 - tag types - graph-structured document
XSL - style sheets indicate how to display the document e.g. in HTML
HTML - hypertext markup language
 embedded tags are about how to display
XML is becoming widely used as a transfer syntax
 - for documents - as expected
 - for general typed messages (all types reduced to strings - external form)

SOAP - simple object access protocol
 object invocation defined with call and return arguments as XML types

wide interest in XML for use in message oriented and database access middleware

C-28

