
1 of 19 Fib structures

Sheet 6

FIB structures and lookup code

2 of 19 Fib structures

Longest match – and how we do it in Linux. We achieve what we want using the Forwarding Information Base (FIB), which is 1
a complex structure in the kernel, containing the routing information we need indexed on its network mask. BTW all routes 2
with the same network mask are said to be in the same ‘zone’. 3
 4
First a look at some structures, then a look at the code that manipulates them. 5

struct fib_table 6
This is include/net/ip_fib.h::fib_table. It’s the starting point for FIB traversal and is instantiated with data appropriate to the 7
type of network we are using at any given point in time. 8
struct fib_table 9
{ 10
 unsigned char tb_id; 11
Timestamp 12
 unsigned tb_stamp; 13
 14
Routines for lookup. These are set in net/ipv4/fib_hash.c::fib_hash_init to be net/ipv4/fib_hash.c::[fn_hash_lookup, 15
fn_hash_insert, fn_hash_delete, etc.] 16
 int (*tb_lookup)(struct fib_table *tb, const struct rt_key *key, 17

struct fib_result *res); 18
 int (*tb_insert)(struct fib_table *table, struct rtmsg *r, 19

struct kern_rta *rta, struct nlmsghdr *n, 20
struct netlink_skb_parms *req); 21

 int (*tb_delete)(struct fib_table *table, struct rtmsg *r, 22
struct kern_rta *rta, struct nlmsghdr *n, 23

3 of 19 Fib structures

struct netlink_skb_parms *req); 24
 int (*tb_dump)(struct fib_table *table, struct sk_buff *skb, 25

struct netlink_callback *cb); 26
 int (*tb_flush)(struct fib_table *table); 27
 int (*tb_get_info)(struct fib_table *table, char *buf, int first, 28

int count); 29
 void (*tb_select_default)(struct fib_table *table, 30

const struct rt_key *key, struct fib_result *res); 31
 32
And this is set to be a net/ipv4/fib_hash.c::fn_hash, described below. 33
 unsigned char tb_data[0]; 34
}; 35

36

4 of 19 Fib structures

struct fib_hash 36
This is net/ipv4/fib_hash.c::fn_hash and is the data we’re talking about above. As you can see, we split the table into zones 37
at a very high level. There are 33 possible netmasks (0x0000 to 0xFFFF) and a zone is defined by one of these. Also, the 38
zones are all linked together, and the second field here points to the head of the list of zones. 39
struct fn_hash 40
{ 41
 struct fn_zone *fn_zones[33]; 42
 struct fn_zone *fn_zone_list; 43
}; 44
 45

46

5 of 19 Fib structures

struct fib_zone 46
This is net/ipv4/fib_hash.c::fn_zone. It defines some housekeeping things about the hash table associated with each zone. 47
struct fn_zone 48
{ 49
Pointer to next non-empty zone in the hash structure where the netmask is less restrictive (= shorter) than this 50
 struct fn_zone *fz_next; /* Next not empty zone */ 51
This is a pointer to the hash table. 52
 struct fib_node **fz_hash; /* Hash table pointer */ 53
The number of entries in this zone 54
 int fz_nent; /* Number of entries */ 55
The number of buckets in the hash table associated with this zone (initially set to 16 for all zones but zone 0 in 56
net/ipv4/fib_hash.c::fn_new_zone, but reset to 256 or 1024 in net/ipv4/fib_hash.c::fn_rehash_zone if no. entries grows) 57
 int fz_divisor; /* Hash divisor */ 58
Used so we can ensure that a hash value lies in the range [0, fz_divisor-1] – see net/ipv4/fib_hash.c::fn_hash 59
 u32 fz_hashmask; /* (1<<fz_divisor) - 1 */ 60
The index in the parent fn_hash structure (i.e. 0 to 32) 61
 int fz_order; /* Zone order */ 62
This is the netmask for fz_order = 0, fz_mask = 0x0000, for for fz_order = 1, fz_mask = 0x8000, for fz_order = 2, fz_mask = 63
0xC000, … , for fz_order = 32, fz_mask = 0xFFFF, 64
 u32 fz_mask; 65
 66
#define FZ_HASHMASK(fz) ((fz)->fz_hashmask) 67

6 of 19 Fib structures

#define FZ_MASK(fz) ((fz)->fz_mask) 68
}; 69

70

7 of 19 Fib structures

struct fib_node 70
This is net/ipv4/fib_hash.c::fib_node. It’s an entry in an open hash table that contains details about this particular route. 71
struct fib_node 72
{ 73
It’s an open hash table, so this is the link to the next item on the chain. 74
 struct fib_node *fn_next; 75
 76
Key is set to be the network part of an IP address against which addresses (masked with fz_mask from above) will be tested 77
for equality. 78
 fn_key_t fn_key; 79
 80
When we have something that matches the key, the details about this route are held in fn_info. Since many routes will have 81
the the same next hop, this is a pointer to a shared structure 82
 struct fib_info *fn_info; 83
 84
 u8 fn_tos; 85
 u8 fn_type; 86
 u8 fn_scope; 87
 u8 fn_state; 88
 89
#define FIB_INFO(f) ((f)->fn_info) 90
}; 91

92

8 of 19 Fib structures

struct fib_info 92
This is include/net/ip_fib.h::fib_info This structure contains data specific to an interface and, therefore, common to many 93
zones. 94
struct fib_info 95
{ 96
 struct fib_info *fib_next; 97
 struct fib_info *fib_prev; 98
Index to network protocol (e.g. IP) used for this route. 99
 int fib_protocol; 100
Pointer to next hop information 101
 struct fib_nh fib_nh[0]; 102
 103
Housekeeping s tuff. Since this is a shared structure, we care about reference counting carefully, amongst other things. 104
 int fib_treeref; 105
 atomic_t fib_clntref; 106
 int fib_dead; 107
 unsigned fib_flags; 108
 u32 fib_prefsrc; 109
 u32 fib_priority; 110
 unsigned fib_metrics[RTAX_MAX]; 111
 int fib_nhs; 112

<Multipath stuff deleted> 113
 <some #defines deleted> 114

9 of 19 Fib structures

}; 115
116

10 of 19 Fib structures

struct fib_nh 116
This is include/net/ip_fib.h::fib_nh Next hop structure – defined in terms of the output device or the IP address of the next 117
hop gateway. 118
struct fib_nh 119
{ 120
 struct net_device *nh_dev; 121
 unsigned nh_flags; 122
 unsigned char nh_scope; 123

<Multipath, class stuff deleted> 124
 int nh_oif; 125
 u32 nh_gw; 126
}; 127

128

11 of 19 Fib structures

fib_lookup 128
 129
This is net/ipv4/fib_rules.c::fib_lookup and was called from ip_route_input_slow 130
 131
Different rules can be applied to forwarding to different destinations. There might be a rule prohibiting output, or one saying 132
that we use NAT, but the simplest one and that with which we’re really concerned is simple unicast (RTN_UNICAST below) 133
 134
int fib_lookup(const struct rt_key *key, struct fib_result *res) 135
{ 136
 int err; 137
 struct fib_rule *r, *policy; 138
 struct fib_table *tb; 139
 140
 u32 daddr = key->dst; 141
 u32 saddr = key->src; 142
 143
FRprintk("Lookup: %u.%u.%u.%u <- %u.%u.%u.%u ", 144
 NIPQUAD(key->dst), NIPQUAD(key->src)); 145
 read_lock(&fib_rules_lock); 146
 147
Look for the relevant rule associated with this dest. By default we’ll unicast. 148
 for (r = fib_rules; r; r=r->r_next) { 149
 if (((saddr^r->r_src) & r->r_srcmask) || 150

12 of 19 Fib structures

 ((daddr^r->r_dst) & r->r_dstmask) || 151
#ifdef CONFIG_IP_ROUTE_TOS 152
 (r->r_tos && r->r_tos != key->tos) || 153
#endif 154
#ifdef CONFIG_IP_ROUTE_FWMARK 155
 (r->r_fwmark && r->r_fwmark != key->fwmark) || 156
#endif 157
 (r->r_ifindex && r->r_ifindex != key->iif)) 158
 continue; 159
 160
FRprintk("tb %d r %d ", r->r_table, r->r_action); 161
 162
This is where we decide whether we’re going to do something or return an error. 163
 switch (r->r_action) { 164
 case RTN_UNICAST: 165
 case RTN_NAT: 166
 policy = r; 167
 break; 168
 case RTN_UNREACHABLE: 169
 read_unlock(&fib_rules_lock); 170
 return -ENETUNREACH; 171

 default: 172
 case RTN_BLACKHOLE: 173
 read_unlock(&fib_rules_lock); 174
 return -EINVAL; 175
 case RTN_PROHIBIT: 176

13 of 19 Fib structures

 read_unlock(&fib_rules_lock); 177
 return -EACCES; 178

 } 179
 180
Given that we’ve decided we’re going to do something, get a handle on the correct FIB. 181
 if ((tb = fib_get_table(r->r_table)) == NULL) 182
 continue; 183
 184
And perform the lookup. In our case, this is set to be net/ipv4/fib_hash.c::fn_hash_lookup – see below. 185
 err = tb->tb_lookup(tb, key, res); 186
 187
 if (err == 0) { 188
 res->r = policy; 189
 if (policy) 190
 atomic_inc(&policy->r_clntref); 191
 read_unlock(&fib_rules_lock); 192
 return 0; 193
 } 194
 if (err < 0 && err != -EAGAIN) { 195
 read_unlock(&fib_rules_lock); 196
 return err; 197
 } 198
 } 199
FRprintk("FAILURE\n"); 200
 read_unlock(&fib_rules_lock); 201

14 of 19 Fib structures

 return -ENETUNREACH; 202
} 203

204

15 of 19 Fib structures

fn_hash_lookup 204
 205
This is net/ipv4/fib_hash.c::fn_hash_lookup and, actually, relatively straightforward. There are a number of static inline 206
functions used (all in net/ipv4/fib_hash.c) 207

fn_key_t fz_key(u32 dst, struct fn_zone *fz) returns an address that has been masked by the 208
netmask for a given zone 209

 struct fib_node * fz_chain(fn_key_t key, struct fn_zone *fz) hashes the key and returns the head of the chain of 210
node structures that match for this zone 211

 int fn_key_eq(fn_key_t a, fn_key_t b) Compare keys and say if they’re equal 212
 int fn_key_leq(fn_key_t a, fn_key_t b) Same but for leq 213
 214
As a matter of interest, the top two routines are defined thus: 215

fn_key_t fz_key(u32 dst, struct fn_zone *fz) { 216
 fn_key_t k; k.datum = dst & FZ_MASK(fz); return k; } 217

 218
fz_chain(fn_key_t key, struct fn_zone *fz) { 219

return fz->fz_hash[fn_hash(key, fz).datum]; } 220
 221

222

16 of 19 Fib structures

And the all important hash function is defined thus: N.B. in C, ̂is XOR 222
fn_hash(fn_key_t key, struct fn_zone *fz) { 223

u32 h = ntohl(key.datum)>>(32 - fz->fz_order); 224
 h ^= (h>>20); 225
 h ^= (h>>10); 226
 h ^= (h>>5); 227
 h &= FZ_HASHMASK(fz); 228
 return *(fn_hash_idx_t*)&h; 229
} 230

 231
The algorithm used for lookup is a simple linear search on a series of open hash tables, rather than anything massively 232
sophisticated. Note that the elements of each chain in a hash table entry are held ordered by key value. 233
 234
static int 235
fn_hash_lookup(struct fib_table *tb, const struct rt_key *key, struct fib_result 236
*res) 237
{ 238
 int err; 239
 struct fn_zone *fz; 240
 struct fn_hash *t = (struct fn_hash*)tb->tb_data; 241
 242
 read_lock(&fib_hash_lock); 243
 244

17 of 19 Fib structures

Start with the most restrictive zone and interate over zones with smaller and smaller netmasks 245
 for (fz = t->fn_zone_list; fz; fz = fz->fz_next) { 246
 struct fib_node *f; 247
 248
Mask the destination appropriately to produce the lookup key for this zone 249
 fn_key_t k = fz_key(key->dst, fz); 250
 251
Now, do a hash (implicit in fz_chain) and walk down the open hash table chain returned looking for a match. As a matter of 252
interest, the hash is defined as: 253
 for (f = fz_chain(k, fz); f; f = f->fn_next) { 254
 255
Did we find it, or did we go past it? If neither, then keep chaining down. 256
 if (!fn_key_eq(k, f->fn_key)) { 257
 if (fn_key_leq(k, f->fn_key)) 258
 break; 259
 else 260
 continue; 261
 } 262
 263
If we come here, we’ve found something where the keys match. However, we have to be careful, make sure that it’s a proper 264
match 265
#ifdef CONFIG_IP_ROUTE_TOS 266
 if (f->fn_tos && f->fn_tos != key->tos) 267
 continue; 268

18 of 19 Fib structures

#endif 269
 f->fn_state |= FN_S_ACCESSED; 270
 271
 if (f->fn_state&FN_S_ZOMBIE) 272
 continue; 273
 if (f->fn_scope < key->scope) 274
 continue; 275
 276
net/ipv4/fib_semantics.c::fib_semantic_match is a routine to make really sure we’re allowed to use this interface for this 277
packet; it also fills in some fields in res, notably res->fi which points to the fib_info structure passed as the second arg. If we 278
are allowed to proceed, then fill in a result structure with info about this node and return. 279
 err = fib_semantic_match(f->fn_type, FIB_INFO(f), key, res); 280
 if (err == 0) { 281
 res->type = f->fn_type; 282
 res->scope = f->fn_scope; 283
 res->prefixlen = fz->fz_order; 284
 285
 goto out; 286
 } 287
 if (err < 0) 288
 goto out; 289
 } 290
 } 291
 err = 1; 292
out: 293

19 of 19 Fib structures

 read_unlock(&fib_hash_lock); 294
 return err; 295
} 296
 297
 298

