
1 of 16 include/linux/skbuff.h

Sheet 4

sk_buff structure

2 of 16 include/linux/skbuff.h

struct sk_buff 1
 2
/* 3
 * Definitions for the 'struct sk_buff' memory handlers. 4
 * 5
 * Authors: 6
 * Alan Cox, <gw4pts@gw4pts.ampr.org> 7
 * Florian La Roche, <rzsfl@rz.uni-sb.de> 8
 * 9
 * This program is free software; you can redistribute it and/or 10
 * modify it under the terms of the GNU General Public License 11
 * as published by the Free Software Foundation; either version 12
 * 2 of the License, or (at your option) any later version. 13
 */ 14
 15
#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES-1)) & ~(SMP_CACHE_BYTES-1)) 16
#define SKB_MAX_ORDER(X,ORDER)(((PAGE_SIZE<<(ORDER)) - (X) - sizeof(struct 17
skb_shared_info))&~(SMP_CACHE_BYTES-1)) 18
#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X),0)) 19
#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0,2)) 20
 21
/* A. Checksumming of received packets by device. 22
 * 23
 * NONE: device failed to checksum this packet. 24
 * skb->csum is undefined. 25

3 of 16 include/linux/skbuff.h

 * 26
 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 27
 * skb->csum is undefined. 28
 * It is bad option, but, unfortunately, many of vendors do this. 29
 * Apparently with secret goal to sell you new device, when you 30
 * will add new protocol to your host. F.e. IPv6. 8) 31
 * 32
 * HW: the most generic way. Device supplied checksum of _all_ 33
 * the packet as seen by netif_rx in skb->csum. 34
 * NOTE: Even if device supports only some protocols, but 35
 * is able to produce some skb->csum, it MUST use HW, 36
 * not UNNECESSARY. 37
 * 38
 * B. Checksumming on output. 39
 * 40
 * NONE: skb is checksummed by protocol or csum is not required. 41
 * 42
 * HW: device is required to csum packet as seen by hard_start_xmit 43
 * from skb->h.raw to the end and to record the checksum 44
 * at skb->h.raw+skb->csum. 45
 * 46
 * Device must show its capabilities in dev->features, set 47
 * at device setup time. 48
 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 49
 * everything. 50
 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 51

4 of 16 include/linux/skbuff.h

 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 52
 * TCP/UDP over IPv4. Sigh. Vendors like this 53
 * way by an unknown reason. Though, see comment above 54
 * about CHECKSUM_UNNECESSARY. 8) 55
 * 56
 * Any questions? No questions, good. --ANK 57
 */ 58
 59
#ifdef __i386__ 60
#define NET_CALLER(arg) (*(((void**)&arg)-1)) 61
#else 62
#define NET_CALLER(arg) __builtin_return_address(0) 63
#endif 64
 65
struct sk_buff_head { 66
 /* These two members must be first. */ 67
 struct sk_buff *next; 68
 struct sk_buff *prev; 69
 __u32 qlen; 70
 spinlock_t lock; 71
}; 72
 73
struct sk_buff; 74
 75
#define MAX_SKB_FRAGS 6 76
 77

5 of 16 include/linux/skbuff.h

typedef struct skb_frag_struct skb_frag_t; 78
 79
struct skb_frag_struct { 80
 struct page *page; 81
 __u16 page_offset; 82
 __u16 size; 83
}; 84
 85
/* This data is invariant across clones and lives at 86
 * the end of the header data, ie. at skb->end. 87
 */ 88
struct skb_shared_info { 89
 atomic_t dataref; 90
 unsigned int nr_frags; 91
 struct sk_buff *frag_list; 92
 skb_frag_t frags[MAX_SKB_FRAGS]; 93
}; 94
 95
 96
This is a massively important structure. It is the way of representing packets within the kernel. I have deleted some stuff for 97
the purposes of clarity. 98
 99
struct sk_buff { 100
Linking these buffers together. The reason this must be first is that we can cast the packet to sk_buff_head, defined above. 101
 /* These two members must be first. */ 102

6 of 16 include/linux/skbuff.h

 struct sk_buff *next; /* Next buffer in list */ 103
 struct sk_buff *prev; /* Previous buffer in list */ 104
 struct sk_buff_head *list; /* List we are on */ 105
 106
Back pointer to the sock structure we belong to 107
 struct sock *sk; /* Socket we are owned by */ 108
 109
The stamp is the time that the last protocol touched this buffer. Actually, this is a bit more involved than I’m making out – 110
useful for scheduling. 111
 struct timeval stamp; /* Time we arrived */ 112
 113
In the administration of network buffers the identity of the device used for sending or receiving the packet must be known. 114
 struct net_device *dev; /* Device we arrived on/are leaving by */ 115
 116
Just what you’d expect from a transport layer header, but note the overlay. You’ll find the definitions in 117
include/linux/tcp.h::tcphdr, include/linux/udp.h::udphdr, include/linux/icmp.h::icmphdr, etc. So, for example, a udp header 118
is given by: 119

struct udphdr { 120
 __u16 source; 121
 __u16 dest; 122
 __u16 len; 123
 __u16 check; 124
}; 125

7 of 16 include/linux/skbuff.h

 /* Transport layer header */ 126
 union 127
 { 128
 struct tcphdr *th; 129
 struct udphdr *uh; 130
 struct icmphdr *icmph; 131
 struct igmphdr *igmph; 132
 struct iphdr *ipiph; 133
 struct spxhdr *spxh; 134
 unsigned char *raw; 135
 } h; 136
 137
Again, no surprises here. E.g. from include/linux/ip.h::iphdr we see: 138

struct iphdr { 139
#if defined(__LITTLE_ENDIAN_BITFIELD) 140
 __u8 ihl:4, 141
 version:4; 142
#elif defined (__BIG_ENDIAN_BITFIELD) 143
 __u8 version:4, 144
 ihl:4; 145
#else 146
#error "Please fix <asm/byteorder.h>" 147
#endif 148
 __u8 tos; 149

8 of 16 include/linux/skbuff.h

 __u16 tot_len; 150
 __u16 id; 151
 __u16 frag_off; 152
 __u8 ttl; 153
 __u8 protocol; 154
 __u16 check; 155
 __u32 saddr; 156
 __u32 daddr; 157
 /*The options start here. */ 158
}; 159

 /* Network layer header */ 160
 union 161
 { 162
 struct iphdr *iph; 163
 struct ipv6hdr *ipv6h; 164
 struct arphdr *arph; 165
 struct ipxhdr *ipxh; 166
 unsigned char *raw; 167
 } nh; 168
 169
Still nothing unusual. So e.g. include/linux/if_ether.h::ethhdr 170

struct ethhdr 171
{ 172
 unsigned char h_dest[ETH_ALEN]; /* destination eth addr */ 173

9 of 16 include/linux/skbuff.h

 unsigned char h_source[ETH_ALEN]; /* source ether addr */ 174
 unsigned short h_proto; /* packet type ID field */ 175
}; 176

 /* Link layer header */ 177
 union 178
 { 179
 struct ethhdr *ethernet; 180
 unsigned char *raw; 181
 } mac; 182
 183
This related to destination cache information. 184
 struct dst_entry *dst; 185
 186
Private data for each layer. E.g. the ip layer keeps include/net/ip.h::inet_skb_parm (basically IP options) in there, whereas 187
TCP keeps include/net/tcp.h::tcp_skb_cb (sequence numbers, flags, etc.) in there. 188
 /* 189
 * This is the control buffer. It is free to use for every 190
 * layer. Please put your private variables there. If you 191
 * want to keep them across layers you have to do a skb_clone() 192
 * first. This is owned by whoever has the skb queued at the moment. 193
 */ 194
 char cb[48]; 195
 196
Comment notwithstanding, len holds the length of the packet (including headers), and data_len the length of the data part. 197
csum holds the checksum if it has been calculated. See comment at head of file re checksumming. 198

10 of 16 include/linux/skbuff.h

 unsigned int len; // Length of actual data 199
 unsigned int data_len; 200
 unsigned int csum; // Checksum 201
This is the length of this buffer, including the length of this struct, used for memory management purposes. 202
 unsigned int truesize; // Buffer size 203
 204
Management parameters. 205
 unsigned char cloned, // head may be cloned (check refcnt to be sure). 206
 pkt_type, // Packet class 207
 ip_summed; // Driver fed us an IP checksum 208
 __u32 priority; // Packet queueing priority 209
 unsigned short protocol; // Packet protocol from driver. 210
 unsigned short security; // Security level of packet 211
Actually, see include/linux/skbuff.h::skb_get – this is a reference count to this sk_buff 212
 atomic_t users; // User count - see datagram.c,tcp.c 213
 214
This is a really important bit – it’s where the data resides. The head pointer points to the first part of the buffer (i.e. the bit 215
containing the header), the data pointer points to the part of the buffer containing the data and the tail pointer to whatever 216
follows the data. End, naturally poin ts to the end. There are a lot of helper functions both in this file and in net/core/skbuff.c 217
to allow manipulation of these pointers, the addition of extra space and so forth. See below. 218
 unsigned char *head; /* Head of buffer */ 219
 unsigned char *data; /* Data head pointer */ 220
 unsigned char *tail; /* Tail pointer */ 221
 unsigned char *end; /* End pointer */ 222

11 of 16 include/linux/skbuff.h

 223
 void (*destructor)(struct sk_buff *); /* Destruct function */ 224
 225
}; 226

227

12 of 16 include/linux/skbuff.h

Sending UDP packets – the code 227
 228
OK, so lets take a quick look at what happens to the sk_buff when we send a UDP packet (net/ipv4/udp.c). This what gets 229
passed to net/ipv4/udp.c::udp_sendmsg: 230
int udp_sendmsg(struct sock *sk, struct msghdr *msg, int len) 231

 232
The msghdr here is defined in include/linux/socket.h as: 233
struct msghdr { 234
 void *msg_name; /* Socket name */ 235
 int msg_namelen; /* Length of name */ 236
 struct iovec *msg_iov; /* Data blocks */ 237
 __kernel_size_t msg_iovlen; /* Number of blocks */ 238
 void *msg_control; /* Per protocol magic */ 239

/* (eg BSD file descriptor passing) */ 240
 __kernel_size_t msg_controllen; /* Length of cmsg list */ 241
 unsigned msg_flags; 242
}; 243
 244
The data blocks are in an array of iovecs (defined in include/linux/uio.h), each of which is a structure with two fields 245
of interest: 246
struct iovec { 247
 void *iov_base; /* BSD uses caddr_t, 1003.1g void *) */ 248
 __kernel_size_t iov_len; /* Must be size_t (1003.1g) */ 249
}; 250

13 of 16 include/linux/skbuff.h

 251
So, we’re being passed an array of pointers to odd bits of data of interest rather than a contiguous area of memory. This is 252
pretty standard within unix. Now, let’s go back to the code of net/ipv4/udp.c::udp_sendmsg. The next thing of interest is the 253
declaration: 254
struct udpfakehdr ufh; 255
 256
 For this, we need to look earlier in the file – we see that the first part of this is reserved for a real udp header followed 257
by some other info. 258

struct udpfakehdr { 259
 struct udphdr uh; 260
 u32 saddr; 261
 u32 daddr; 262
 struct iovec *iov; 263
 u32 wcheck; 264
}; 265

 266
The fields of this header are filled in (with the exception of the checksum, which is set to zero) and iov is made to point to 267
the iov we were passed. We then call net/ipv4/ip_output.c::ip_build_xmit thus: 268
err = ip_build_xmit(sk, 269
 (sk->no_check == UDP_CSUM_NOXMIT ? udp_getfrag_nosum : udp_getfrag), 270
 &ufh, ulen, &ipc, rt, msg->msg_flags); 271
 272
The definition of this routine is below and we care about the first four fields in this context. 273
int ip_build_xmit(struct sock *sk, 274

14 of 16 include/linux/skbuff.h

 int getfrag(const void *, char *, unsigned int, unsigned int), 275
 const void *frag, 276
 unsigned length, 277
 struct ipcm_cookie *ipc, 278
 struct rtable *rt, 279
 int flags) 280
 281
Within this, we have the definition: 282
struct sk_buff *skb; 283
 284
This next call itself calls net/core/skbuff.c::alloc_skb. This allocates a sk_buff from a central store, and initialises it with 285
head=tail=data all pointing to the same allocated block of memory. hh_len essentially respresents the MAC header length, 286
rounded up to the next multiple of 16bytes. 287
int hh_len = (rt->u.dst.dev->hard_header_len + 15)&~15; 288
skb = sock_alloc_send_skb(sk, length+hh_len+15, flags&MSG_DONTWAIT, &err); 289
 290
The first call moves the data and tail pointers forward by hh_len, to give us some header room and the second moves the 291
tail pointer forward to give us more data room. When we’re done, iph points to the data part of the structure. 292
skb_reserve(skb, hh_len); 293
iph = (struct iphdr *)skb_put(skb, length); 294
 295
We use our callback to get the data out of the fake header we were passed and to stick it in the data part, possibly after an 296
ip header. This is either net/ipv4/udp.c::udp_getfrag or net/ipv4/udp.c::udp_getfrag_nosum, depending on whether we 297
need to do checksumming or not. 298

15 of 16 include/linux/skbuff.h

if(!sk->protinfo.af_inet.hdrincl) { 299
 <fill in IP header details> 300
 err = getfrag(frag, ((char *)iph)+iph->ihl*4, 0, length-iph->ihl*4); 301
} 302
else 303

err = getfrag(frag, (void *)iph, 0, length); 304
 305
Ok, so let’s take net/ipv4/udp.c::udp_getfrag_nosum. The code we care about is: 306
static intudp_getfrag_nosum(const void *p, char *to, unsigned int offset, 307

unsigned int fraglen) 308
{ 309
 struct udpfakehdr *ufh = (struct udpfakehdr *)p; 310
 311
 Copy the header part of the fake header 312

memcpy(to, ufh, sizeof(struct udphdr)); 313
Now copy the data from the iovec into our buffer. See net/core/iovec.c::memcpy_fromiovecend 314

 return memcpy_fromiovecend(to+sizeof(struct udphdr), ufh->iov, offset, 315
fraglen-sizeof(struct udphdr)); 316

} 317
 318
Jumping back to net/ipv4/ip_output.c::ip_build_xmit, we see the following. This does network filtering, then jumps to the 319
routine named as the last parameter. 320
err = NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev, 321
output_maybe_reroute); 322

16 of 16 include/linux/skbuff.h

 323
Then we come here to send the packet. 324
output_maybe_reroute(struct sk_buff *skb) 325
{ 326
 return skb->dst->output(skb); 327
} 328
 329

