
1 of 11 include/net/sock.h

Sheet 3

sock structure

2 of 11 include/net/sock.h

/* 1
 * INET An implementation of the TCP/IP protocol suite for the LINUX 2
 * operating system. INET is implemented using the BSD Socket 3
 * interface as the means of communication with the user level. 4
 * 5
 * Definitions for the AF_INET socket handler. 6
 * 7
 * Version: @(#)sock.h 1.0.4 05/13/93 8
 * 9
 * Authors: Ross Biro, <bir7@leland.Stanford.Edu> 10
 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11
 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12
 * Florian La Roche <flla@stud.uni-sb.de> 13
 * 14
 * This program is free software; you can redistribute it and/or 15
 * modify it under the terms of the GNU General Public License 16
 * as published by the Free Software Foundation; either version 17
 * 2 of the License, or (at your option) any later version. 18
 */ 19
 20
THIS IS A COMPLEX DATA STRUCTURE, WHICH CONTAINS STUFF THAT DOESN’T REALLY BELONG HERE, BUT WHICH IS 21
HERE FOR HISTORICAL REASONS. I HAVE CHANGED THE ORDER OF THIS SLIGHTLY SO THAT IT IS MORE LOGICAL AND I 22
HAVE DELETED QUITE A LOT OF IMPORTANT STUFF (.e.g all the locking code and much of the TCP related code), TO SHOW 23
THE BASIC STRUCTURE MORE CLEARLY. 24
 25

3 of 11 include/net/sock.h

This structure is initialised in the following sequence: 26
 27
At the end of net/ipv4/af_inet.c you will see a call to module_init(inet_init). As described in the definition of 28
include/linux/init.h::module_init, this is a marker for a driver initialisation point, which is called when the kernel boots or 29
when the module is loaded. 30
 31
net/ipv4/af_inet.c::inet_init calls net/socket.c::sock_register. This latter routine is called by all protocol handlers that want to 32
advertise their address family. It creates one entry per address family in net/socket.c::net_families[family] of type 33
include/linux/net.h::net_proto_family. This has a field ‘create’ which is used to create a socket of that given family type. In 34
this case, this routine is set to point to net/ipv4/af_inet.c::inet_create 35
 36
Socket creation: net/socket.c::sock_create -> calls create on the appropriate net_proto_family. In our case, this will call 37
through to the net/ipv4/af_inet.c::inet_create , as stored above. That initialises the sock datastructure, partly directly and 38
partly by calling net/core/sock.c::sock_init_data 39
 40
struct sock { 41
 42
The following are the source and destination information that must be entered into each IP packet. There appear to be two 43
sender addresses. rcv_saddr is the one used by hash lookups, and saddr is used for transmit. In the BSD API these are 44
almost always the same. 45
 /* Socket demultiplex comparisons on incoming packets. */ 46
 __u32 daddr; /* Foreign IPv4 addr */ 47
 __u32 rcv_saddr; /* Bound local IPv4 addr */ 48

4 of 11 include/net/sock.h

 __u32 saddr; /* Sending source */ 49
 __u16 dport; /* Destination port */ 50
 __u16 sport; /* Source port */ 51
 unsigned short num; /* Local port */ 52
 53
The next and prev components link sockets with the same hash value in the various socket hash tables. So, for example, in 54
net/ipv4/udp.c you find a definition of udp_hash, which is hashed on a port number. This is an open hash table of struct 55
socks which use linked lists, linked on the next and pprev values below. 56
 /* Main hash linkage for various protocol lookup tables. */ 57
 struct sock *next; 58

struct sock **pprev; 59
 60

TCP uses both the next and pprev fields above and the bind_next and bind_pprev and prev fields below for local binding 61
TCP hash as well as for fast bind/connect. 62
 struct sock *bind_next; 63
 struct sock **bind_pprev; 64
 struct sock *prev; 65
 66
In our case this will be PF_INET 67
 unsigned short family; /* Address family */ 68
 69
type is as for socket structure i.e. SOCK_STREAM, SOCK_DGRAM, SOCK_RAW 70
 unsigned short type; 71
 72

5 of 11 include/net/sock.h

Operation vector for the protocol with which this socket is associated. In this case, can be net/ipv4/tcp_ipv4.c::tcp_prot, 73
net/ipv4/udp.c::udp_prot, or net/ipv4/raw.c::raw_prot 74
 struct proto *prot; 75
 76
In our case include/linux/in,.h::IPPROTO_TCP, include/linux/in,.h::IPPROTO_UDP, or include/linux/in,.h::IPPROTO_IP 77
 unsigned char protocol; 78
 79
State is dependent on protocol – main use is to drive TCP protocol state machine e.g. look for the enum with 80
TCP_ESTABLISHED in it in include/linux/tcp.h 81
 volatile unsigned char state; /* Connection state */ 82
 83
Used when waiting for something to happen with this socket, e.g. waiting for connect in 84
net/ipv4/af_inet.c::inet_wait_for_connect, net/ipv4/tcp.c::wait_for_tcp_connect and waiting for memory as in 85
net/ipv4/tcp.c::wait_for_tcp_memory 86
 wait_queue_head_t *sleep; /* Sock wait queue */ 87
 88
 struct dst_entry *dst_cache; /* Destination cache */ 89
 90
Packet queues. Note that there is also an error_queue, which I removed, but it’s rarely used. See, for example, 91
net/ipv4/udp.c::udp_queue_rcv_skb in which a call is made to include/net/sock.h::sock_queue_rcv_skb. You can see the 92
write queue in use in net/ipv4/tcp_output.c::tcp_send_skb 93
 struct sk_buff_head receive_queue; /* Incoming packets */ 94
 struct sk_buff_head write_queue; /* Packet sending queue */ 95
 96

6 of 11 include/net/sock.h

Space allocation variables. 97
 atomic_t rmem_alloc; /* Receive queue bytes committed */ 98
 atomic_t wmem_alloc; /* Transmit queue bytes committed */ 99
 atomic_t omem_alloc; /* "o" is "option" or "other" */ 100
 int wmem_queued; /* Persistent queue size */ 101
 int forward_alloc; /* Space allocated forward. */ 102
Allocation is the priority with which memory is requested for this socket 103
 unsigned int allocation; /* Allocation mode */ 104
 105
Maximum amount of memory that can be requested for this socket when sending or receiving packets 106
 int rcvbuf; /* Size of receive buffer in bytes */ 107
 int sndbuf; /* Size of send buffer in bytes */ 108
 109
 110
A non zero value means that we are allowed to reuse port numbers for ports that are in the TIME_WAIT state. 111
 unsigned char reuse; /* SO_REUSEADDR setting */ 112
 113
This says something about the way we are shutting down. 114
 unsigned char shutdown; 115
 116
The volatile keyword is used when we have something that might change as a result of an external event, and where the 117
compiler will reuse the physical address rather than optimising access. E.g. if my code looks like 118

A = sk->dead; 119
B = sk->dead; 120

7 of 11 include/net/sock.h

then the compiler will do both dereferences. If dead was not volatile, the compiler would normally optimise this to 121
A = B = sk->dead i.e. it would only do one dereference of sk. This is not helpful if its value is changes by an external agency 122
in between A’s access and B’s. In any case, these are various options that can be set for a socket. 123
 volatile char dead, done, urginline, keepopen, linger, destroy, 124

no_check, broadcast, bsdism; 125
 unsigned long lingertime; 126
 127
SO_TIMESTAMP option – if enabled then recvmsg returns a timestamp corresponding to when datagram was received. 128
 unsigned char rcvtstamp; 129
 130
Says something about the features of the network device, like whether it can do the checksumming of TCP/UDP packets, 131
and whether it can DMA. Look for NETIF_F_* in include/linux/netdevice.h:net_device 132
 int route_caps; 133
 134
The proc variable is used to contain a process or process group which will be sent a signal on receipt of out-of-band data 135
 int proc; 136
 137
Used when we have peered sockets, such as with unix (local) sockets. See e.g. net/unix/af_unix.c 138
 struct sock *pair; 139
 140
A process may ‘lock’ socket state so that it can’t be changed. In particular this means that it can’t be changed by bottom 141
half (interrupt driven) handlers i.e. arriving packets are blocked so we don’t get any new data or changes to the state here. 142
Whilst locked, bottom half processing can add packets to the backlog queue. 143

8 of 11 include/net/sock.h

 /* The backlog queue is special, it is always used with 144
 * the per-socket spinlock held and requires low latency 145
 * access. Therefore we special case its implementation. 146
 */ 147
 struct { 148
 struct sk_buff *head; 149
 struct sk_buff *tail; 150
 } backlog; 151
 152
tcp stuff – there’s more stuff that I’ve deleted and some of the options described above only really apply to TCP 153
 union { 154
 struct tcp_opt af_tcp; 155
#if defined(CONFIG_INET) || defined (CONFIG_INET_MODULE) 156
 struct raw_opt tp_raw4; 157
#endif 158
 } tp_pinfo; 159
 160
 int hashent; 161
 162
Error conditions 163
 int err, err_soft; /* Soft holds errors that don't 164
 cause failure but are the cause 165
 of a persistent failure not just 166
 'timed out' */ 167
 168

9 of 11 include/net/sock.h

backlog is the second parameter to the listen routine. It represents the maximum number of pending connections there can 169
be. Here, max_ack_backlog is this number and ack_backlog is a count of the number of connections pending at any given 170
time. The latter is manipulated using helper routines in include/net/tcp.h 171
 unsigned short max_ack_backlog; 172
 unsigned short ack_backlog; 173
 174
Used to set the TOS field. Packets with a higher priority may be processed first, depending on the device’s queueing 175
discipline. See SO_PRIORITY 176
 __u32 priority; 177
Route locally only if set – set by SO_DONTROUTE option. 178
 unsigned char localroute; /* Route locally only */ 179
From SO_PEERCRED option 180
 struct ucred peercred; 181
From SO_RCVLOWAT 182
 int rcvlowat; 183
From SO_RCVTIMEO 184
 long rcvtimeo; 185
From SO_SNDTIMEO 186
 long sndtimeo; 187
 188
Private data for each address family (truncated) 189
 /* This is where all the private (optional) areas that don't 190
 * overlap will eventually live. 191

10 of 11 include/net/sock.h

 */ 192
 union { 193
 void *destruct_hook; 194
 struct unix_opt af_unix; 195
#if defined(CONFIG_INET) || defined (CONFIG_INET_MODULE) 196
 struct inet_opt af_inet; 197
#endif 198
 } protinfo; 199
 200
Timer functions. You’ll find a lot of useful timer stuff in include/linux/timer.h and kernel/timer.c In this case, the timer is used 201
for SO_KEEPALIVE (i.e. sending occasional keepalive probes to a remote site – by default, set to 2 hours in 202
include/net/tcp.h). stamp is simply the time that the last packet was received. 203
 /* This part is used for the timeout functions. */ 204
 struct timer_list timer; /* This is the sock cleanup timer. */ 205
 struct timeval stamp; 206
 207
A backpointer to the enclosing include/linux/net.h::socket structure. 208
 /* Identd and reporting IO signals */ 209
 struct socket *socket; 210
 211
The state_change operation is called whenever the status of the socket is changed. Similarly, data_ready is called 212
when data have been received, write_space when free memory available for writing has increased and 213
error_report when an error occurs. 214
 /* Callbacks */ 215

11 of 11 include/net/sock.h

 void (*state_change)(struct sock *sk); 216
 void (*data_ready)(struct sock *sk,int bytes); 217
 void (*write_space)(struct sock *sk); 218
 void (*error_report)(struct sock *sk); 219
 220
 int (*backlog_rcv) (struct sock *sk, struct sk_buff *skb); 221
 222
Get rid of the socket. 223
 void (*destruct)(struct sock *sk); 224
}; 225

