
1

Page 1

Linux Network software

Acknowledgements due to Stephen Hailes,
Saleem Bhatti, Cecilia Mascolo from

UCL CS

2

Page 2

Unix system introduction

• We will be dealing with the way that Unix works
(most particularly those Unixes with net code
derived from BSD e.g. SunOS 4.x, SVR4, AIX
3.2)

• At a user level this is through the socket interface
(actually, there is an alternative – TLI aka XTI
X/Open Transport Interface)

3

Page 3

Linux overview

Application
generates traffic

Send pkt to
socket

Send pkt to
transport layer

Send pkt to
network layer

Forward
packet

Put packet in app
buffer

Send pkt to
socket

Send pkt to
transport layer

Packet arrives at
device

Packet
for

host?

Drops packet

Send pkt to
network layer

Internally

No

No

Look up route to
dest

Transmit packet

Send pkt to
device

Externally

Drops packet

Network (IP)
layer

4

Page 4

Network drivers

• For a long time, OS have provided a standard
abstraction/interface for classes of device.

• Unix traditionally divides devices into 2 classes
• Chararcter (low rate, interactive, serial line typically)
• Block (Disk, Display, etc)

• Its possible to squeeze network devices into the
block mode paradigm, but it’s messy

• Linux adds a 3rd type of device - network.

5

Page 5

Device API

• Typically, device has name to place it in the file
namespace, but also has identifier – unix has major/minor
numbers

• Driver is a structure (class?) with a set of entry points
(functions/methods)

• At boot (or module load) time, the device is initialised by
calling its init() function – this resets the device, and
installs any relevant interrupt handlers and so on….it then
registers with the OS…

• Rest of time, we manage i/o with device with open, close,
queue_xmit, and interrupts/notifications

Device files are found in the /dev directory. Each device is
assigned a major and minor device number. The major device
number identifies the type of device, i.e. all SCSI devices
would have the same number as would all the keyboards. The
minor device number identifies a specific device, i.e. the
keyboard attached to this workstation.
Device files are created using the mknod command.

6

Page 6

Internals

• Device driver manages specifics like
• Bus interface/memory/I/o address of device registers
• DMA and timer chip use
• IRQs, etc

• Notice asymmetry of input and output – output is
requested, whereas input arrives unexpectedly

• Input results in packets being queued, and
netif_rx() called to find out which higher level
protocol function to dispatch

7

Page 7

Bridge, Route, Filter

• What if packet is “not for us”?
• Basically, will either bridge, route, or discard

• Bridge is intensive (requires promiscuous ether
interface – expensive in packet discard!)

• Route is part of linux and bsd unix – requires
forwarding table, and prob. 1 routing protocol process
to build and maintain it

• Discard – most common case! Requires efficient
handling – lots of good work on efficient filtering
(berkeley packet filter – see papers!)

8

Page 8

Network implementationBook:
Jon Crowcroft & Iain Philips
TCP/IP & Linux Protocol Implementation:
Systems Code for the Linux Internet
1st edition (October 15, 2001)
John Wiley & Sons; ISBN: 0471408824

9

Page 9

Introduction

• Now we’re going to look at system level details of
UNIX networking.
• Assume Net/3 – like approach e.g. BSD sockets
• However, code will be from Linux – kernel version

2.4.14) – there are some differences in implementation.

• Socket data structures
• sk_buf (Linux) (? mbuf (Net/3)) and a brief look

at transmission.
• Routing (forwarding) DS & code

10

Page 10

Layering

System calls – socket, bind, connect , etc.

INET socket

BSD Socket

TCP UDP

IP

ETH SLIP PLIP ARP

User process

Devices

11

Page 11

Application to wire (and v.v.)

Application Application

Transport (udp)

Network (ip)

MAC (driver)

Wire

12

Page 12

User level code

See sheet 1

13

Page 13

Overview -- output

• Send-type routines are normally blocking
• Data gets passed to the appropriate lower level transport code,

based on the fd.
• See net/socket.c::sock_sendmsg, net/ipv4/af_inet.c::inet_sendmsg

• This runs the state machine for that protocol and then passes code
on to IP level

• See e.g. net/ipv4/udp.c::udp_sendmsg

• This deals with routing, fragementation, etc. adds appropriate IP
header and queues for output

• See net/ipv4/ip_output.c:: ip_build_xmit
• See net/ipv4/ip_output.c:: ip_fragment
• See net/ipv4/ip_output.c:: ip_queue_xmit

• Actually these may be deferred to allow better use of resources –
need a network scheduler (or actually several levels of scheduling)

14

Page 14

Overview -- input

• Receive involves coordinating a synchronous call and an
asynchronous packet arrival
• Hardware determines if packet is for us, and generates interrupt if

it is.
• ISR in device driver is called, pulls packet off device and

determines which type of packet it is.
• Network level – check input, perform reassembly, determine

whether to reroute, etc.
• net/ipv4/ ip_input.c:: ip_rcv
• net/ipv4/route.c::ip_route_input
• net/ipv4/ ip_input.c:: ip_local_deliver

• Transport level – check checksums, update local state machine,
and demux to individual socket.

• net/ipv4/udp.c::udp_recvmsg

15

Page 15

Important files – so far

• There are lots and lots of important ones, but for now….
• .h files

• include/linux/[net.h, udp.h, tcp.h]
• include/net/[socket.h, sock.h, udp.h, tcp.h]

• .c files
• net/socket.c
• net/ipv4/[af_inet.c, udp.c tcp.c tcp_output.c tcp_input.c, tcp_ipv4.c

tcp_timer.h]
• net/core/sock.c

16

Page 16

struct socket

See sheet 2

17

Page 17

sock structure include/net/sock.h

• struct sock is messy:
• Bits of it are to do with TCP – in fact the whole of the

networking code is a bit of a jumble, with TCP data
appearing at the network layer.

• Since we don’t have time to look at TCP, figuring this
part of it out is an exercise for the reader.

• It is likely to be tidied up in future versions of Linux
(and is now a lot better than it was in earlier versions)

See sheet 3

18

Page 18

struct sk_buff

• The task of the sk_buff is to manage individual packets,
their payloads and their headers. You must understand it to
understand the networking code.
• (actually it does more than this, but we’ll ignore that for now)

• They have an equivalent in Net/3 code, the mbuf, which is
described in Stevens, but they are different.

• There is a producer-consumer chain where the buffer is
allocated by the producer (be this the driver for input or the
transport for output) and freed by the consumer.

• There is only one copy of the buffer ever in existence

See sheet 4

19

Page 19

Routing

• Two main functions:
• Forwarding

• Carried out on every packet – look in forwarding table to
determine destination and output interface.

• Routing
• Build and maintain forwarding table. Done asynchronously,

usually by a user space process.

20

Page 20

Forwarding block structure

See sheet 5

Packet arrives on
medium

Device checks &
stores pkt

Pkt goes on
backlog queue

Scheduler runs
BH

Net_bh pops
packet queue

Net_bh matches
protocol (IP)

IP checks for
errors

Transport layer,
sends to socket

Route to different
host

Copy and update
packet

Packet goes on
send queue

Scheduler runs
device driver

Device prepares,
sends packet

Packet goes out
on the medium

21

Page 21

Forwarding in Linux

• There are 3 structures of interest:
• The neighbour table

• include/net/neighbour.h::neigh_table
• In effect, this is an ARP cache:

– It only contains information for machines that are physically
connected to ours

– That info eventually vanishes, unless hardwired by an admin.

• The FIB table
• This is the main routing table, which contains details of how we

forward packets to any address. More later.

• The routing cache – smaller and faster.
• Caches info obtained from recently routed packets.
• The info times out if not used.

22

Page 22

Class based addresses

• Before we look at routing in detail, we need to
understand something about addressing,
subnetting and aggregation.

• Back to basics:
• Class A 0NNN NNNN HHHH HHHH HHHH HHHH HHHH HHHH

0.0.0.0 to 127.255.255.255
• Class B 10NN NNNN NNNN NNNN HHHH HHHH HHHH HHHH

128.0.0.0 to 191.255.255.255
• Class C 110N NNNN NNNN NNNN NNNN NNNN HHHH HHHH

192.0.0.0 to 223.255.255.255
• Class D 1110 MMMM MMMM MMMM MMMM MMMM MMMM MMMM

224.0.0.0 to 239.255.255.255
• Class E 1111 0XXX XXXX XXXX XXXX XXXX XXXX XXXX

240.0.0.0 to 247.255.255.255

23

Page 23

…and their problems

• network.host form is
• too inflexible
• Wasteful – e.g. class A addresses have 224 hosts on a

single network!

• We want multiple levels of hierarchy

24

Page 24

Subnetting

• All very well, but what happens when you want to split up
your address allocation amongst smaller administrative
components.
• E.g Take a Class B address 128.16.0.0
• We could split this up into a number of class C networks
• We would have, in effect, addresses of the form:

• NB the first subnet address is the net identifier, the last is for
broadcast. First usable address is normally router.

• Could do others, e.g. /20 gives subnets of 4094 machines

NETWORK......HOST....... CLASS B ADDRESS
1000 0000 0001 0000 SSSS SSSS HHHH HHHH BUT WE USE SUBNETS
NNNN NNNN NNNN NNNN NNNN NNNN HHHH HHHH IN EFFECT
 255 . 255 . 255 . 0 SUBNET MASK OR /24

25

Page 25

Aggregation

• We do not have to advertise each subnet
individually: B and C only need one route.

128.16.1.0/24

128.16.2.0/24

128.16.13.0/24

Router A
128.16.0.0/16

128.16.24.0/24

Router C Router B

26

Page 26

…cont

• In older routing protocols e.g. RIPv1, routing updates do
not include subnet masks.
• Thus a router must assume that the subnet mask it has been

configured with is valid for all subnets. i.e. a single mask must be
used for all subnets within a network.

• No longer true – since mid 1993 we’ve had Classless
Interdomain Routing (CIDR).
• Newer routing protocols (e.g. RIPv2, OSPFv2, BGPv4, etc) can

deal with this.
• FORGET EVERYTHING I JUST SAID ABOUT THE (CLASS-

BASED) ‘NETWORK’ AND ‘HOST’ SEPARATION
• a routing table entry is indexed on a combination of address and

mask
• Not only can we break networks into subnets, but we can combine

networks into supernets, so long as they have a common network
prefix.

27

Page 27

CIDR
(RFCs 1518, 1519, 1466, 1447)

• If you summarise any block of routes with a subnet mask
smaller than the matching class of the address, you are
supernetting.

192.168.1.0/24 192.168.2.0/24 192.168.3.0/24

192.168.0.0/16

192.0.0.0/8

192.169.0.0/16

192.169.1.0/24

28

Page 28

Variable Length Subnet Masks

• This goes hand-in-hand with variable length submasks
(actually VLSM preceeded CIDR).

• Assume we have a class C address: 192.168.1.x and we
want to subnet it amongst 200 hosts in the following way:

Subnet A
100 hosts

192.168.1.0/24

Subnet B
50 hosts

Subnet C
50 hosts

29

Page 29

VLSM cont

• Our problem is that our possible masks are:
• /25 giving 2 subnets with 126 hosts in each
• /26 giving 4 subnets with 62 hosts in each

• Neither is any good.
• We need to use different masks for each subnet

• Use /25 for subnet A
• Use /26 for subnets B and C

• A = 192.168.1.0/25
• B = 192.168.1.128/26
• C = 192.168.1.192/26

30

Page 30

CIDR vs VLSM

• CIDR and VLSM are essentially the same thing, since each
is about allowing a portion of the IP address space to be
repeatedly divided into smaller and smaller pieces (aka
recursion).
• Both approaches require that the extended network prefix

information be provided with each route advertisement.
• The key difference between VLSM and CIDR is a matter of where

recursion is performed:
• In VLSM the subdivision of addresses is done after the address range

is given to the user.
• In CIDR the subdivision of addresses is done by the Internet

authorities and ISP before the user receives the addresses.

• Both approaches use longest matching for addresses

31

Page 31

Longest match

• We have a situation in which we have variable length
masks in a routing table.

• Pick the routing table entry that is closest to the address we
want => need a longest match algorithm

• e.g.
• 128.0.0.0/8 via route A
• 128.1.0.0/16 via route B
• 128.1.1.0/24 via route C

• Where do we send
• 128.1.0.1
• 128.1.1.1
• 128.2.1.1

• Note that e.g. 128.1.1.1 matches all three rules but it
MUST be accessible via route C, else it will never get any
packets => need to assign addresses with care.

32

Page 32

Alternatives for IP lookups

• Hardware – Content Addressable Memory (CAM)
• Present e.g. IP destination and get back next hop
• Like a TLB. Expensive.

• Protocol-based approaches
• IP and tag/layer 3 switching (e.g. MPLS)
• Similar to VCID in circuit switched nets (and may use it!)
• Requires separate label distribution protocol to specify address/tag

mapping
• Basically, use IP pkts and IP routing as signalling for circuit set-up
• Faster algorithms call this into question.

• Software…

33

Page 33

Data structures -- tries

• Tries: an m-ary tree structure. e.g. 26 chars + ‘end of word’

• Very heavy on space for sparse keyspace where most nodes have only
1 descendant

g

a

t

o

$t

e

= gate

= go = got

This has
only 1
child

34

Page 34

Patricia trees (4.3 Berkeley Reno)

• Binary trie, but with ‘path compression’

• See http://www.cs.berkeley.edu/~sklower/routing.ps

1

2

5

10

000110

01010 01011

01$

35

Page 35

LC tries

• LC tries are really Patricia trees with ‘level
compression’
• Path compression helps compress parts of the tree

which are sparsely populated.
• Level compression helps with parts of the tree that are

densely populated. It’s a bit like going back to standard
m-ary tries for parts of the structure.

• Instead of having a binary tree, make it a m-ary
tree (m is a power of 2) for some levels in the true,
where this helps.

• http://citeseer.nj.nec.com/nilsson98fast.html

36

Page 36

Example

• So, imagine we have the following strings to
enter:

? 10111? 101000? 010
? 11101001? 10110? 100? 00101
? 11101000? 10101? 0111? 0001
? 110?101001? 0110? 0000

37

Page 37

e.g. Patricia trie

Skip 4
Skip 2

? ?

? ?

? ?

?

? ?

?

? ? ?

? ?

We do 3
comparisons

to get
anywhere

38

Page 38

e.g. LC trie

Skip 4 Skip 2

? ?

? ?

? ?

?

? ?

?

? ? ?

? ?

Compress top
level into 8-
way (3 bit)

branch

This could be
compressed

too

39

Page 39

So, we get to…

Skip 4 Skip 2

? ?

? ?

? ?

?

? ?

?

? ? ?

? ?

40

Page 40

In table form:
branch = 5 bits, skip = 7 bits, ptr =20 bits – 1 word per entry.

• Start at 0, start input at skip bits, take branch bits of it, and add these to ptr. If
we get to an entry with a branch of 0, then it’s a leaf.

• Stop & do full comparison

PtrSkipBranch

0009
17418
12007
13026
6005
11014
3003
2202
9011
1030

10010

80020
70019
140018
130017
110016
100015
90014
190113
50012
40011

41

Page 41

Other tree based algs

• Generalised level-compressed tree.
• See e.g. ‘Optimal Routing Table Design for IP Address

Lookups Under Memory Constraints’ -- Gene Cheung
and Steve McCanne.

• http://citeseer.nj.nec.com/267395.html

42

Page 42

Hashing

• See ‘Scalable High Speed IP Routing Lookups’ by Marcel
Waldvogel et al.
• http://citeseer.nj.nec.com/waldvogel97scalable.html

• It is possible to find hash functions whose computation is
lower cost than a memory access – can we exploit this?
• Note that access to a trie requires a number of accesses, depending

on the amount of level and path compression.

• We’ll increase complexity gradually.

43

Page 43

Linear search of hash tables

• First, examine linear search of hashing tables:
• Have a series of hash tables, one for each network prefix length we

know about.
• In the worse case for IPv4 this will be 32, for IPv6 it’ll be 128.

• Lookup in longest length prefix table (i.e. 12) on a key that’s the
first 12 bits of the address. If a match, OK.

• If not, pick next longest (i.e. 7) and try again with a 7-bit key

12
7
5

HTLength
01010

0110110

0101011

011011010101

44

Page 44

Binary search of hash tables

• General idea:
• Start somewhere in the middle of the table (or, perhaps, with the

most popular prefix length)
• If we match, search longer prefixes. If we fail, search shorter ones

in a binary search fashion.

• Naïve impl.

• Search for 111. Problem – no match.
• We don’t know that we should search bottom half of table, so…

3
2
1

HTLength
1
0

00

111

Start here

45

Page 45

Binary search of hash tables

• Need to add a marker…

• Searching for 111, we find the marker, which tells us to
search bottom half of table, then we find what we want.

• But what if we’re searching for 110x xxxx xxxx xxxx etc.?
• We find the marker and search bottom half, which is wrong.
• Our match is 1
• Need to backtrack – messy

3
2
1

HTLength

M11

00

111

Start here

1
0

46

Page 46

Binary searching of hash tables:
precomputation

• When marker is inserted into table, tag it with the value of
the best matching prefix of marker M already in the table.

• Remember best matching prefix so far – when we search
for 110x, find marker and remember pointer to HT for ‘1’.

• Search lower half and don’t find 110 ? return stored
value.

3
2
1

HTLength

M 11

00

111

Start here

1
0

