Linux Network software

Acknowledgements due to Stephen Hailes,
Saleem Bhaitti, Cecilia Mascolo from

UCL CS

Page 1

Unix system introduction

» We will be dealing with the way that Unix works
(most particularly those Unixes with net code
derived from BSD e.g. SUnOS 4.x, SVR4, AlX
3.2)

» At ause leve thisisthrough the socket interface
(actually, thereis an alternative — TL| aka XTI
X/Open Transport Interface)

Page 2

Linux overview

Application

’i

Send pkt to
oCcKe

Send pkt to
Send pkt to
nenvork igye

Send pkt to
ansportiaye
Send pkt to
Put packet in app
buffe

Packet arrives at

Drops packet

Send pkt to

Forward
packet

Externally

Look up route to
des
Send pkt to
device
Transmitpacket

Internally

Drops packet

Network (IP)
layer

Page 3

Network drivers

For along time, OS have provided a standard
abstraction/interface for classes of device.

Unix traditionally divides devices into 2 classes
o Chararcter (low rate, interactive, serial line typicaly)
 Block (Disk, Display, €tc)

Its possible to squeeze network devices into the

block mode paradigm, but it’s messy

Linux adds a 3 type of device - network.

Page 4

Device AP

» Typicaly, device has name to placeit in the file
namespace, but also has identifier — unix has major/minor
numbers

* Driverisa (class?) with a set of entry points
(functiong/methods)

» At boot (or module load) time, the device isinitialised by
cdling itsinit() function — this resets the device, and
installs any relevant interrupt handlers and so on....it then
registers with the OS...

* Rest of time, we manage i/o with device with open, close,
queue_xmit, and interrupts/notifications

Device files are found in the /dev directory. Each device is
assigned a maj or and m nor device nunber. The nmjor device

nunber identifies the type of device, i.e. all SCSI devices
woul d have the same nunber as would all the keyboards. The
m nor device nunber identifies a specific device, i.e. the

keyboard attached to this workstation.
Device files are created using the nknod comrand.

Page 5

Internals

» Device driver manages specifics like
 Businterface/memory/l/o address of device registers
* DMA and timer chip use
* IRQs €tc

* Notice asymmetry of input and output — output is
requested, whereas input arrives unexpectedly

 |Input results in packets being queued, and
netif rx() called to find out which higher level
protocol function to dispatch

Page 6

Bridge, Route, Filter

» What if packet is “not for us’?

» Basically, will either bridge, route, or discard
* Bridge isintensive (requires promiscuous ether
interface — expensive in packet discard!)
* Routeispart of linux and bsd unix — requires

forwarding table, and prob. 1 routing protocol process
to build and maintain it

 Discard — most common case! Requires efficient
handling — lots of good work on efficient filtering
(berkeley packet filter — see papers!)

Page 7

Book: Network implementation
Jon Crowcroft & lain Philips

TCP/IP & Linux Protocol Implementation:
Systems Code for the Linux Internet

1st edition (October 15, 2001)
John Wiley & Sons; ISBN: 0471408824

Page 8

| ntroduction

Now we're going to look at system level details of
UNIX networking.

» Assume Net/3 — like approach e.g. BSD sockets

» However, code will be from Linux — kernel version
2.4.14) —there are some differences in implementation.

Socket data structures

sk_buf (Linux) (? mbuf (Net/3)) and a brief 1ook
at transmission.

Routing (forwarding) DS & code

Page 9

Layering

User process

System calls—socket, bind, connect et

BSD Socket

INET socket

TCP

UDP

IP

SLIP PLIP

ETH

|J__| |J__| Devices

Page 10

10

Applicationto wire (and v.v.)

Application | []

Transport (udp)| [
—
e

Wire WEECT]
Page 11

11

User levd code

Page 12

12

Overview -- output

» Send-type routines are normally blocking

» Data gets passed to the appropriate lower level transport code,
based on thefd.
e See ,
¢ Thisrunsthe state machine for that protocol and then passes code
ontolIPlevel
e Seeeg.
« Thisdealswith routing, fragementation, etc. adds appropriate |P
header and queues for output
e See
e See
o See

¢ Actually these may be deferred to allow better use of resources—
need a network scheduler (or actually several levels of scheduling)

Page 13

13

Overview -- input

* Receive involves coordinating a synchronous call and an
asynchronous packet arrival
¢ Hardware determinesif packet isfor us, and generatesinterrupt if
itis.
« ISRindevicedriveriscalled, pulls packet off device and
determines which type of packet itis.

* Network level — check input, perform reassembly, determine
whether to reroute, etc.

¢ Transport level — check checksums, update local state machine,
and demux to individual socket.

Page 14

14

|mportant files— so far

» There are lots and lots of important ones, but for now....
e .hfiles

« include/linux[net.h, udp.h, tcp.h]
« include/net/[socket.h, sock.h, udp.h, tcp.h]

o cfiles

net/socket.c

net/ipv4/[af_inet.c, udp.c tcp.c tcp_output.c tcp_input.c, tcp_ipv4.c
tcp_timer.h]

net/core/sock.c

Page 15

15

struct socket

Page 16

16

sock structure include/net/sock.h

* struct sock is messy:

* Bitsof it areto do with TCP —in fact the whole of the
networking code is a bit of ajumble, with TCP data
appearing at the network layer.

» Since we don't have time to look at TCP, figuring this
part of it out is an exercise for the reader.

* Itislikdy to betidied up in future versons of Linux
(and is now alot better than it was in earlier versions)

Page 17

17

struct sk_buff

The task of the sk_buff isto manage individual packets,
their payloads and their headers. Y ou must understand it to
understand the networking code.

¢ (actually it does morethan this, but we'll ignore that for now)
They have an equivalent in Net/3 code, the mbuf, which is
described in Stevens, but they are different.
There is a producer-consumer chain where the buffer is
allocated by the producer (be this the driver for input or the
transport for output) and freed by the consumer.

There is only one copy of the buffer ever in existence

Page 18

18

Routing

e Two main functions;

» Forwarding

» Carried out on every packet— look in forwarding table to
determine destination and output interface.

* Routing
 Build and maintain forwarding table. Done asynchronously,
usually by auser space process.

Page 19

19

Forwarding block structure

Transport layer,
sends to socket

f

IP checks for [| Route to different | | Copy and update
errors host packet
Scheduler runs Net_bh pops Net_bh matches Packet goes on
|]
packet queue protocol (IP) send queue
1 ;

Pkt goes on Scheduler runs
backlog queue device driver

Device prepares,
sends packet
Packet goes out
on the medium

Page 20

Forwarding in Linux

There are 3 structures of interest:
¢ The neighbour table

* |n effect, thisisan ARP cache:

— It only contains information for machines that are physically
connected to ours

— That info eventually vanishes, unless hardwired by an admin.

e TheFIB table
« Thisisthe main routing table, which contains details of how we
forward packetsto any address. More later.
e Therouting cache —smaller and faster.
» Cachesinfo obtained from recently routed packets.
e Theinfotimesout if not used.

Page 21

21

Class based addresses

Before we look at routing in detail, we need to
understand something about addressing,
subnetting and aggregation.

Back to basics:

ClassA ONNN NNNN HHHH HHHH HHHH HHHH HHHH HHHH
0.0.0.0 to 127.255. 255. 255

ClassB ZONN NNAN NNNN NNNN- HHHH - HHHH - HHHH - HHHH
128.0.0.0 to 191.255. 255. 255

ClassC 110N NNNN NNNN NNNN NNNNONNNN- HHHH - HHAH
192.0.0.0 to 223.255. 255. 255

ClassD 1110 MVWM MMM MM MVVM MMV MVVM MVVM
224.0.0.0 to 239.255. 255. 255

ClassE 1111 0XXX XXX XOOK XK XXX XKXK XXKX

240.0.0.0 to 247.255. 255. 255

Page 22

22

...and their problems

e networ k. host formis
* tooinflexible

o Wadteful —e.g. class A addresses have 22* hosts on a
single network!

« We want multiple levels of hierarchy

Page 23

23

Subnetting

« All very well, but what happens when you want to split up
your address allocation amongst smaller administrative

components.
* E.gTakeaClassB address 128.16.0.0

« Wecould split this up into anumber of class C networks

« Wewould have, in effect, addresses of the form:

1000 0000 0001 0000 SSSS SSSS HHHH HHHH
NNNN NNNN NNNNCNNNNCNNNNCNNNN- HHHH - HHHH
255 . 255 . 255 . 0

CLASS B ADDRESS
BUT WE USE SUBNETS
I N EFFECT

SUBNET MASK OR /24

* NB thefirst subnet addressisthe net identifier, the last isfor

broadcast. First usable address is normally router.

e Could do others, e.g. /20 gives subnets of 4094 machines

Page 24

24

Aggregation

* We do not have to advertise each subnet
individually: B and C only need one route.

Router B

Router C

Page 25

25

...cont

In older routing protocols e.g. RIPv1, routing updates do

not include subnet masks.

e Thusarouter must assume that the subnet mask it has been
configured with isvalid for all subnets. i.e. asingle mask must be
used for all subnets within a network.

No longer true — since mid 1993 we' ve had Classdess
Interdomain Routing (CIDR).

* Newer routing protocols (e.g. RIPv2, OSPFv2, BGPv4, etc) can
deal with this.

e FORGET EVERYTHING | JUST SAID ABOUT THE (CLASS
BASED) ‘NETWORK'’ AND ‘HOST’ SEPARATION
e arouting table entry isindexed on a combination of address and
mask
« Not only can we break networks into subnets, but we can combine
networks into supernets, so long as they have a common network
prefix.

Page 26

26

CIDR
(RFCs 1518, 1519, 1466, 1447)

 |If you summarise any block of routes with a subnet mask
smaller than the matching class of the address, you are
super netting.

192.0.0.0/8

192.168.1.0/24 192.168.2.0/24 192.168.3.0/24 192.169.1.0/24

Page 27

27

Variable Length Subnet Masks

 This goes hand-in-hand with variable length submasks
(actually VLSM preceeded CIDR).

* Assume we have aclass C address: 192.168.1.x and we
want to subnet it amongst 2Q0 hosts in the following way:
192.168.1.0/24

Subnet A Subnet B Subnet C
100 hosts 50 hosts 50 hosts
Page 28

28

VLSM cont

» Our problem isthat our possible masks are:
e /25 giving 2 subnets with 126 hostsin each
« /26 giving 4 subnets with 62 hostsin each
* Naeither is any good.
» \We need to use different masks for each subnet
e Use/25for subnet A
» Use/26 for subnets B and C

A =192.168.1.0/25
B =192.168.1.128/26
C=192.168.1.192/26

Page 29

29

CIDR vsVLSM

» CIDR and VLSM are essentially the same thing, since each
is about alowing a portion of the IP address space to be
repeatedly divided into smaller and smaller pieces (aka
recursion).

< Both approaches require that the extended network prefix
information be provided with each route advertisement.

* Thekey difference between VLSM and CIDR isamatter of where
recursion is performed:

e InVLSM the subdivision of addresses is done after the address range
isgiven to the user.

 In CIDR the subdivision of addresses is done by the Internet
authorities and | SP before the user receives the addresses.

» Both approaches use longest matching for addresses

Page 30

30

L ongest match

We have a situation in which we have variable length
masks in arouting table.

Pick the routing table entry that is closest to the address we

want => need a longest match algorithm
eg.

e 128.0.0.0/8 viaroute A

e 128.1.0.0/16 viaroute B

e 128.1.1.0/24 viarouteC
Where do we send

+ 1281.0.1

+ 1281.1.1

« 128211
Note that e.g. 128.1.1.1 matches all three rules but it
MUST be accessible viaroute C, elseit will never get any
packets => need to assian addresses with care

Page 31

31

Alternatives for IP lookups

» Hardware — Content Addressable Memory (CAM)

» Present e.g. IP destination and get back next hop
e LikeaTLB. Expensive.

Protocol based approaches
IP and tag/layer 3 switching (e.g. MPLS)
* Similar to VCID in circuit switched nets (and may useit!)
* Requires separate label distribution protocol to specify address/tag
mapping
« Basicaly, uselP pktsand IP routing assignalling for circuit set-up
» Faster algorithms call thisinto question.

Software...

Page 32

32

Data structures -- tries

» Tries. an mary tree structure. e.g. 26 chars + ‘end of word’

L o] |
N

=gate

* Very heavy on space for sparse keyspace where most nodes have only
1 descendant

Page 33

33

Patriciatrees (4.3 Berkeley Reno)

* Binary trie, but with ‘ path compression’

000110

01010 01011

Page 34

34

LCtries

» LCtriesarereally Patriciatrees with ‘level
compression’

 Path compression helps compress parts of the tree
which are sparsely populated.

» Level compression helps with parts of the tree that are
densaly populated. It's a bit like going back to standard
m-ary tries for parts of the structure.

 Instead of having a binary tree, make it a m-ary
tree (m is a power of 2) for some levelsin the true,
where this helps.

Page 35

35

Example

» S0, imagine we have the following strings to

enter:
? 0000 ? 0110 2101001 ? 110
? 0001 7?0111 710101 ? 11101000
? 00101 ? 100 ? 10110 ? 11101001
? 010 ? 101000 ? 10111

Page 36

36

e.g. Patriciatrie

Page 37

37

e.g. LCtrie

Page 38

38

S0, we get to...

Page 39

39

In table form:

branch = 5 bits, skip = 7 bits, ptr =20 bits —1 word per entry.

Branch | Skip Ptr 10 0 0 1
0 3 0 1 11 0 0 4
1 1 0 9 12 0 0 5
2 0 2 2 13 1 0 19
3 0] 0 3 14 0 0 9
4 1 0 11 15 0 0 10
5 0 0 6 16 0 0 11
6 2 0 13 17 0 0 13
7 0] 0 12 18 0 0 14
8 1 4 17 19 0 0 7
9 0 0 0 20 0 0 8

Start at 0, start input at skip bits, take branch bits of it, and add these toptr. If

we get to an entry with abranch of O, thenit'saleaf.
Ston & dn fiill ecamnarienn

Page 40

40

Other tree based dgs

» Generalised level-compressed tree.

» Seeeg. ‘Optimal Routing Table Design for IP Address
Lookups Under Memory Constraints -- Gene Cheung
and Steve McCanne.

Page 41

41

Hashing

See * Scalable High Speed | P Routing Lookups by Marcel
Waldvogd et d.

It is possible to find hash functions whose computation is
lower cost than a memory access — can we exploit this?

* Notethat accessto atrie requires anumber of accesses, depending
on the amount of level and path compression.

We |l increase complexity gradualy.

Page 42

42

Linear search of hash tables

» Firgt, examine linear search of hashing tables:
» Have aseries of hash tables, one for each network prefix length we

know about.

* Intheworse casefor |Pv4 thiswill be 32, for IPv6it'll be 128.

Length

)

7

12

— 0110110 Hig

o0 [

»(011011010101 |

» Lookupinlongest length prefix table (i.e. 12) on akey that’ sthe

first 12 bits of the address. If amatch, OK.

« If not, pick next longest (i.e. 7) and try again with a 7-bit key

Page 43

43

Binary search of hash tables

Generd idea:

« Start somewhere in the middle of the table (or, perhaps, with the
most popular prefix length)

« If we match, search longer prefixes. If wefail, search shorter ones

in abinary search fashion.

Naive impl. /' 2 :—.
Length| HT

starthere L1 e [

3 e [

Search for 111. Problem — no match.
We don’t know that we should search bottom half of table, so...

Page 44

44

Binary search of hash tables

Need to add amarker ...
Length
Start here 1
2
3

HT

S

A FTR

Searching for 111, we find the marker, which tells usto
search bottom half of table, then we find what we want.
But what if we're searching for 110X XXXX XXXX XXXX €fC.?
» Wefind the marker and search bottom half, which iswrong.
e Our matchis1
* Need to backtrack — messy

Page 45

45

Binary searching of hash tables:
precomputation

* When marker isinserted into table, tag it with the vaue of
the best matching prefix of marker M aready in the table.

Length

Start here 1
— 2

—
HT
S —y

3

e

» Remember best matching prefix so far —when we search
for 110x, find marker and remember pointer to HT for ‘1.

Search lower half and don’t find 110 ? return stored

valia

Page 46

46

