
A Note Concerning the

Closest Point Pair Algorithm

Martin Richards a

a University Computer Laboratory
New Museums Site, Pembroke St., Cambridge CB2 3QG, UK

mr@cl.cam.ac.uk

Abstract

An algorithm, described by Sedgewick, finds the distance between the closest pair of
n given points in a plane using a variant of mergesort. This takes O(n logn) time. To
prove this it is necessary to show that, in the merge phase of the algorithm, no more
than a constant number of distances need to be checked for each point considered.
Cormen, Leiserson and Rivest show that checking seven distances is sufficient while
Sedgewick suggests that this should be four. This paper shows that checking three
distances is sufficient and that a slight modification of the algorithm reduces the
number to two.

Key words: closest point pair algorithm; mergesort; analysis of algorithms

1 The Algorithm

To find the minimum separation of any pair of n given points in a plane, a list
of the points is formed ordered by their x-coordinates and a global variable
min, to hold the minimum separation distance, is initialised to infinity. The
algorithm then calls a routine, sort, that is a modified version of merge sort,
to return the list of points ordered by their y-coordinates. During the merge
phase, min is updated whenever a closer pair of points is discovered.

If sort is given a list containing fewer than two points, it returns the list
unchanged, otherwise it applies sort recursively to the first and second halves
of the given list in turn. At this stage, the minimum separation of any pair of
points in either half will be in min. If a closer pair exists, its points must be
on either side of an imaginary line separating the two halves with each point
no further than min from it. An efficient check for such pairs can be made as
the two lists are merged to form the sorted result. If P , the next point to be

Preprint submitted to Elsevier Science 10 July 2001



merged, lies within a distance min of the dividing line, it is compared with a
few other similar recently processed points. Cormen, Leisersen and Rivest[1]
show that it is sufficient to check P with no more than seven other points.
Manber[2] suggests the number is five while Sedgewick[3] suggests four. This
paper shows that checking three distances is sufficient.

2 Proof

Let min0 be the value of min at the start of the current merge phase and let
the next point to be merged that is within min0 of the dividing line be called
P . P could potentially be one of a closer pair and is therefore pushed onto
a stack of such points. Suppose the next four points on the stack are A, B,
C, and Q. They clearly satisfy Py ≥ Ay ≥ By ≥ Cy ≥ Qy

1 . The algorithm
checks whether any of the distances PA, PB or PC 2 are less than min. It
does not have to check PQ since, as will be shown, if PQ < min then P will
be at least as close to one of A, B, or C.

Consider the 2min0 × min0 rectangle centered about the dividing line and
having P on its top edge. The rectangle is composed of two adjacent min0 ×
min0 squares on either side of the dividing line. Without loss of generality,
assume P is on the top edge of the left hand square. If PQ < min, Q must
be in the right hand square and A, B and C must all be in the rectangle. We
have to consider four cases depending on how many of A, B and C are in the
right hand square.

1. If A, B, C and Q are all in the right hand square they will have a minimum
separation of min0 and so can only be at its corners. P will be closest to the
point at the top left corner which cannot be Q.

2. The next case is when just one of A, B or C in is the left hand square.
Let that point be renamed Z and the other two renamed X and Y . The
arrangement might be as follows:

P

Q
Y

X

Z

1 Px and Py denote the x- and y-coordinates of point P , and similarly for other
points
2 PA denotes the distance between points P and A, and similarly for other point
pairs

2



It follows from Xy ≥ Qy and PQ < PX that Xx ≥ Qx. We can similarly
deduce Yx ≥ Qx. Without loss of generality, assume that Xx ≤ Yx. Since Q,
X and Y are on the same side they must be at least min0 apart, and since
no two points in their square can be more than

√
2min0 apart, we can deduce

angle � QXY ≤ 90◦. This combined with Xx ≥ Qx, Xy ≥ Qy and Xx ≤ Yx

implies Xy ≥ Yy.

If the arrangement satisfies the constraints given above, then another valid
arrangement can be obtained by moving Z to the point on the left edge at
the same level as Q, moving Q horizontally to the middle edge, moving Y
horizontally to the right edge and then down to the same level as Q, and,
finally, moving X onto the top edge and to the right until XY = min0.

Clearly this does not increase PQ, and QY remains ≥ min0. Since X is on or
above the circle radius min0 centered at the new position of Q, it is above the
line joining P with the new position of Y . Moving X to the top edge of the
rectangle, in a direction orthogonal to this line, will therefore increase both
PX and PY . So if PX is now < PQ, this would have been true of the original
arrangement.

If we now add a point R to the top edge such that RQ is parallel to XY , we
have the following:

Z Y

XPR

Q

Note that RXY Q is a rhombus with sides of length min0. Since PQ < min(≤
min0), P must be to the right of R forcing the PX ≤ PQ. This shows that
the distance PQ does not need to be checked when there are two other points
above Q in the right square and one other in the left.

3. The next case when two of A, B and C shares the left hand square with P .
By swapping P and Q and inverting the figure this arrangement can be seen
to be equivalent to the previous case and so the same result holds.

4. Finally, if A, B and C are in the left square with P , they must be at its
vertices. Q must then be on the bottom edge which violated the constraint
PQ < min

We can thus deduce, for all cases, that if PQ < min then P is at least as close
to A, B or C. In practice, the algorithm only pushes P onto the stack if it
is less than min (not min0) from the dividing line. This can only reduce the
number of points in the stack and so does not violate the result.

3



By considering an arrangement such as the following, it is clear that checking
P with only the top two points in the stack is insufficient.

P

Y
Q

X

3 Final Comments

The number of checks can be further reduced to two by the observation that
only two of PA, PB and PC need be checked, since, either at least one of
A, B or C will be on the same side as P , or they will all be opposite to P ,
in which case PC will be no smaller than PA or PB. To implement this two
stacks are used, one for the left side and one for the right. P is pushed onto
the stack for its side and then the distances are checked between P and the
top two points on the other stack.

Reducing the number of distance checks from four to three or even two makes
no noticeable speed improvement in practice since, for typical data, having
more than one point in the rectangle is extremely rare.

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, Cambridge, MA, 1990.

[2] U. Manber. Introduction to Algorithms, A Creative Approach. Addison-Wesley,
1990.

[3] R. Sedgewick. Algorithms in C. Addison-Wesley, 1990.

4


