Concurrent Systems
and Applications

CST Part 1B, Michaelmas 2002

Examples class
solution notes

tim.harris@cl.cam.ac.uk



Computer Science Tripos Part 1B 2002
Paper 4 Question 1

TLH - Concurrent Systems and Applications

Concurrent Systems and Applicati

For each of these problems neither option (z) nor option (i) is a universally ‘right’
answer and so solutions should identify a number of pros and cons of each.

(a) The first solution suggests adding a field, say public int x, to the class. The
public modifier makes it accessible from other classes. The second solution
suggests using methods for external access and using the private modifier to
limit direct access to within the defining class:

private int x;
public int getX() { return x; }
public void setX(int x) { this.x = x; }

The first solution is evidently simpler to write. It may run faster too. The
second solution, using encapsulation, can aid maintainability - e.g. the code
in the getX and setX methods can be updated if the data is to be held in some
other form. The second solution would have to be used if the data is to be
accessed remotely through RMI.

(b) Suppose that the existing code is in a method m defined on I1 and that its
counterpart on I2 is n. The first solution proposes:

class D extends C implements I2 {
public void n() {
<code before>
m(Q);
<code after>
}
}

The second proposes:

class Adapter implements I2 {
I1 ref;

public void n() {
<code before>
ref.m();
<code after>
}
}

As before the first solution may be simpler to write. The class D supports both



the methods of I1 and of I2 — a problem if they have any method signatures in
common that should be implemented differently for each interface. The first
solution only solves the problem for this one class C whereas the second can
be used to adapt any class implementing I1 to the interface I2.

This is a problem that arose when the standard utility classes, such as
java.util.Hashtable, were being designed. The first solution (the one chosen
there) just adds the synchronized modifier to each method, for example:

public void synchronized insert (Object k, Object v)

This often performs poorly: acquiring and releasing these locks has some cost
in the case of single threaded applications and simple mutual exclusion prevents
even read operations from proceeding concurrently. In any case, if the data
structure forms part of a larger system then that system may provide its own
concurrency control (for example by only invoking operations on the hashtable
after acquiring some other lock).

The second solution addresses those problems by allowing concurrency control
to be managed on a per-application basis. However, the programmer using the
data structure has to be aware of this for correct operation.

Syntactically, the only difference between the two solutions is the name of the
method. In each case it would be of the form

public void finmalize O {
<do close operations>

¥

The body of the method may have to interact with the server, or simply invoke
close on the TCP socket.

The two solutions differ in when this method will come to be called. In the
first case it must be invoked explicitly by the application: the application
must be aware of when it has finished using the connection and it is ready
to be closed. This may require extra book-keeping, for example if it is being
accessed by several threads. In the second case the method will be invoked
automatically once the garbage collector has determined that the object is
otherwise no longer accessible to the application. This. automated scheme
avoids the application having to track when the connection can be closed and
removes any risk of calling the method too early (i.e. while the connection
is still in use). However, while potentially simpler to the programmer, the
second scheme could be overly pessimistic — there is no guarantee of exactly
when the finalizer will be called and so it may be delayed some time from when
the object ceases to be reachable (which may itself be delayed from when the
application will no longer use it).



Computer Science Tripos Part IB 2002
Paper 5 Question 4

TLH Concurrent Systems and Applications
Concurrent Systems and Applicati

(a) The suspend() method causes the target thread to pause execution
immediately. It may do when while it is holding a lock - either one acquired
explicitly by the application or one used internally in the implementation of
the JVM. Either case can result in deadlock. ‘Lost wake up’ problems can also
arise if a thread invokes suspend on itself after determining that it should not

proceed into a critical section at that time.
(b) See example file Barrier. java. Points to note:

(¢) At all times the simple idiom of a while loop calling wait () has been used
along with notifyA11l() to wake waiting threads.

(71) At the cost of some extra programming notify () could be used instead
— note the correspondence between the calls to notifyAll() and the
threads that those calls wake.

(142) InterruptedException is propagated since there is no clear way to deal
with errors here.

(7v) The two methods are entirely symmetric, as you would expect. Each has
two sections: during the first the thread competes with those of the same
kind, essentially picking which will be paired up next, and then during
the second it waits for a partner.

(v) This structure means that there is no need for an explicit shared structure
to hold the id values — they are passed between the two threads concerned
in the a and b fields.

(c) See example files Shop. java, Cutomer.java and Barber.java. This is a
‘classic’ concurrency problem, usually attributed to Dijkstra. In a computing
context the barbers represent devices performing operations on behalf of clients
(the customers). During service there’s a 1-1 association between clients and
devices. After service the device must wait for the client to retrieve results
(leave the chair) before moving to another client. Points to note:

(1) The Barrier class is used to pair up customers with barbers.

(#) The shop, as defined here, serves only to identify the barrier to use — it
does not need to identify the barbers or customers using it.

(¢41) The haircutFinished and customerLeft fields are protected by the
mutual-exclusion lock on the instance of barber — they essentially denote
when the barber and the customer have respectively finished using the
chair.



(v) It is important to be clear on how the not ify methods are used in
conjunction with mutual-exclusion locks — that is, that the synchronized
regions here in Customer acquire the lock on the associated Barber object



Jul 08, 02 11:16

chn2

Page 1M

——
Barrier.java
public class Barrier {
boolean waitingA = false;
boolean waitingB = false;

Object a,

public synchronized Object enterA (Object

{

}

b;

id)
throws InterruptedException

while (waitingA) {
wait();
}

waitingA =

a = id;

notifyall();

while (!'waitingB) ({
wait();

true;

}

waitingA = false;
notifyaAll();
return b;

public synchronized Object enterB (Object id)

{

throws InterruptedException

while (waitingB) {
wait ();

}

waitingB =

b = id;

notifyall();

while (!waitinga) {
wait ();

}

waitingB = false;
notifyall ();
return a;

true;

POL()@.(“ S Quashiew~ l 2060

Co\r\c»xr*‘?/“} S\(}S‘-N &F\\Fp\u;oi‘;m\s

P oot L%J



Jul 08, 02 11:15

chn2 R Barber.java

Page 1/1

public class Barber {
boolean haircutFinished;
boolean customerLeft;

public Customer getCustomer (Shop s)
throws InterruptedException

{
Customer c;
haircutFinished = false;
customerLeft = false;
c = (Customer) (s.w.enterB (this));
return c;

}

public synchronized void finishedCustomer (Customer c)

throws InterruptedException

{

haircutFinished = true;

notifyall();
while (!customerLeft) {
wait();
}
}
}
Jul 08,02 11:16
chn2 Shop.java Page 1/1

public class Shop {
Barrier w = new Barrier ();

}

Jul 08, 02 11:16

chn2 Customer.java Page 1/1
public class Customer {
public Barber getHaircut {Shop s)
throws InterruptedException
{ .
Barber b = (Barber) (s.w.enterA (this)})
synchronized (b) {
while (!b.haircutFinished) {
b.wait();
}
return b;
}
public void leaveChair (Barber b)
throws InterruptedException
{
synchronized (b) {
b.customerLeft = true;
b.notifyall ();
}
}
}
20072

Poper

S Q\,\Qgh,o-f\ L\'

b Quskems M dpplcahions



Concurrent Systems and Applications
2002 Paper 6 Q4

(a) Strict isolation requires that transactions are isolated during their exe-
cution from the concurrent effects of others. Non-strict isolation relaxes this
during execution, but requires that a transaction executed as-if isolated if it
commits.

(b) The transaction proceeds by acquiring locks and performing operations
as the locks permit. It releases all of its locks at the point at which it commits
or aborts. This enforces strict isolation because retaining locks in this way
prevents other transactions from seeing updates made by transactions that
are still in progress.

(c) 2PL splits transactions into two phases; a first phase of acquiring locks
and a second phase during which locks may be released. As before, opera-
tions may be performed at any time that the locks permit. This introduces
cascading aborts because updates made by one transaction may be seen by
others before they have been committed.

(i) This means that locks may be released during the second phase of execu-
tion, possibly increasing concurrency. (ii) When a transaction attempts to
commit it must wait until any transactions it saw updates from have com-
mitted. (iii) When a transaction aborts it must cause any other transactions
that saw updates from it to abort.

(d) (i) Deadlock may have occured. Neither 2PL nor S-2PL prevents dead-
lock. The usual solutions are possible: coalesce locks, enforce an ordering
between lock acquisition, or detect and abort the deadlocked transactions.

(ii) All of the locks must be held until the transaction attempts to commit.
2PL may be better since only the lock protecting the final update would have
to be held.

(iii) Use timestamp ordering or optimistic concurrency control. (For 4 marks
include a description of one of these)



