
Part Ib, Part II(General) and Diploma

Comparative

Programming Languages

by

Martin Richards

mr@cl.cam.ac.uk

http://www.cl.cam.ac.uk/users/mr/

University Computer Laboratory

New Museum Site

Pembroke Street

Cambridge, CB2 3QG

Martin Richards 1 Comp Prog Langs

The Course

• This is a fairly new course.

• It will cover language design issues of a
variety of programming languages.

• It will give thumb nail sketches of several
languages.

• Some languages, particularly C and C++,
will be covered in slightly nore detail, since
any computer scientist should be able to read
code in these two.

Martin Richards 2 Comp Prog Langs

Books

• Pratt, T.W. & Zelkowitz, M.V. (1996).
Programming Languages, Design and
Implementation. Prentice-Hall (3rd ed.).

• Appleby, D. & VandeKopple, J.J. (1997).
Programming Languages, Paradigm and
Practice. McGraw-Hill (2nd ed.).

• Stroustrup, B. The C++ Programming
Language. Addison-Wesley.

• Stroustrup, B. (1994). The Design and
Implementation of C++. Addison-Wesley.

• Mössenböck, H. (1993). Object-Oriented
Programming in Oberon-2, Springer-Verlag.

Martin Richards 3 Comp Prog Langs

More Books

• Antonakos, J.L. & Mansfield Jr., K.C. (1998).
Reference Guide to C and C++.
Prentice-Hall.

• Kernighan, B.W. & Ritchie, D.M. (1988).
The C Programming Language. Prentice-Hall
(2nd ed.).

• Banahan, M. The C Book, Addison Wesley

Martin Richards 4 Comp Prog Langs

Why Study Programming Languages?

• To improve your ability to develop effective
algorithms.

• To improve your use of your existing
language.

• To increase your vocabulary of useful
programming constructs.

• To allow a better choice of programming
language.

• To make it easier to learn a new language.

• To make it easier to design a new language.

Martin Richards 5 Comp Prog Langs

History

1951-55: Experimental use of expression
compilers.

1956-60: FORTRAN, ALGOL 60, COBOL,
LISP

1961-65: APL notation, ALGOL 60 (revised),
SNOBOL, CPL

1966-70: APL, SNOBOL 4, FORTRAN 66,
SNOBOL 4, BASIC, SIMULA 67, ALGOL
68, ALGOL-W, BCPL

Martin Richards 6 Comp Prog Langs

History

1971-75: Pascal, PL/1 (Standard), C, Scheme,
Prolog

1976-80: Smalltalk, Ada, FORTRAN 77, ML

1981-85: Smalltalk-80, Growth of Prolog, Ada 83

1986-90: C++, SML

1991-95: Ada 95, TCL, Perl

1996-00: Java

Martin Richards 7 Comp Prog Langs

Changing Influences

• Computer capabilities.

• Applications.

• Programming methods.

• Implementation methods

• Theoretical studies.

• Standardisation.

Martin Richards 8 Comp Prog Langs

What makes a good language

• Clarity, simplicity, and unity.

• Orthogonality.

• Naturalness for the application.

• Support of abstraction.

• Ease of program verification.

• Programming environments.

Martin Richards 9 Comp Prog Langs

What makes a good language

• Portability of programs.

• Cost of use.

– Cost of execution.

– Cost of program translation.

– Cost of program creation, testing, and use.

– Cost of program maintenance.

Martin Richards 10 Comp Prog Langs

Application Domains

• Business processing.

• Scientific.

• System.

• AI.

• Publishing.

• Process control

• Embedded systems.

• New paradigms.

Martin Richards 11 Comp Prog Langs

Language Standardisation

int i; i = (1 && 2) + 3;

Is it valid C and what is the value of i?

How do we answer such questions?

1. Read the reference manual.

2. Try it and see!

3. Read the ANSI C Standard.

Martin Richards 12 Comp Prog Langs

Language Standards

• Proprietary standards

• Consensus standards.

– ANSI.

– IEEE.

– BSI.

– ISO.

Martin Richards 13 Comp Prog Langs

Language Standards

• Timeliness.

• Conformance.

• Obsolescence.

• Ambiguity and freedom to optimise.

• Machine dependence.

• Undefined.

• Deprecated.

Martin Richards 14 Comp Prog Langs

Language Standards

What does the following mean?

x = y + z;

x = z + y;

x = a + b + c;

x = (a + b) + c;

x = a + (b + c);

a = a + b + c;

b = a + b + c;

Martin Richards 15 Comp Prog Langs

Language Standards

What does the following mean?

x = x + g();

x = g() + x;

x = g() + g();

Martin Richards 16 Comp Prog Langs

Language Standards

What does the following mean?

int x=1, y=1;

int g() { return ++y; }

int main() {

x = ++x + ++x;

y = g() + g();

printf("x=%d y=%d\n", x, y);

return 0;

}

Answer:

Linux (gcc): x=6 y=5

Mips (gcc): x=5 y=5

(cc): x=6 y=5

DEC Alpha and Sun4 (gcc): x=5 y=5

(cc): x=5 y=5

Martin Richards 17 Comp Prog Langs

Language Standards - PL/1

What does the following mean?

9 + 8/3

Is it?

1. 11.6666666....

2. Overflow

3. 1.6666666....

What does the following mean?

IF (1=1B) THEN ...

Martin Richards 18 Comp Prog Langs

Language Standards - PL/1

DEC(p,q) means p digits with q are after the
decimal point.

Type rules for DECIMAL in PL/1:

DEC(p1,q1) + DEC(p2,q2) =>

DEC(1+MAX(p1-q1,p2-q2)+MAX(q1,q2),MAX(q1,q2))

DEC(p1,q1) / DEC(p2, q2) =>

DEC(15, 15-((p1-q1)+q2))

So, for 9 + 8/3, we have:

DEC(1,0) + DEC(1,0)/DEC(1,0)

=> DEC(1,0) + DEC(15, (15-((1-0)+0)))

=> DEC(1,0) + DEC(15,14)

=> DEC(1+MAX(1-0,15-14)+MAX(0,14), MAX(0,14))

=> DEC(15,14)

So the calculation is as follows:

9 + 8/3

= 9 + 2.66666666666666

= 11.66666666666666 -- OVERFLOW

= 1.66666666666666 -- OVERFLOW disabled

Martin Richards 19 Comp Prog Langs

Language Standards - PL/1

Evaluation of: IF (1=1B) ...

1 = 1B -- DEC(1,0) and BIT STRING

=> 0001B = 1000B -- two BIT STRINGs

=> 0 -- FALSE

Martin Richards 20 Comp Prog Langs

FORTRAN History

• The first high level language to become
widely used.

• First developed by IBM for the IBM 704
computer in 1957.

• Emphesis on efficiency (for that machine).

• Static storage allocation and no recursion.

• Standards in 1966, 1977 and 1990.

Martin Richards 21 Comp Prog Langs

FORTRAN

PROGRAM TRIVIAL

INTEGER I

I=2

IF(I .GE. 2) CALL PRINTIT

STOP

END

SUBROUTINE PRINTIT

PRINT *,’Hello World’

RETURN

END

Martin Richards 22 Comp Prog Langs

FORTRAN 77

PROGRAM MAIN

PARAMETER (MAXSIZ=99)

REAL A(MAXSIZ)

10 READ (5,100,END=999) K

100 FORMAT(I5)

IF (K.LE.0.OR. K.GT.MAXSIZ) STOP

READ *,(A(I),I=1,K)

PRINT *,(A(I),I=1,K)

PRINT *,’SUM=’,SUM(A,K)

GOTO 10

999 PRINT *,’All Done’

STOP

END

Martin Richards 23 Comp Prog Langs

FORTRAN 77

C SUMMATION PROGRAM

FUNCTION SUM(V,N)

REAL :: V(N) ! New style declaration

SUM = 0.0

DO 20 I = 1,N

SUM = SUM + V(I)

20 CONTINUE

RETURN

END

Martin Richards 24 Comp Prog Langs

Features

• Static storage.

• No recursion (in FORTRAN 66), so no
runtime stack needed.

• Separate compilation – extensive numerical
libraries, e.g. NAG.

• Shared COMMON data areas.

• The EQUIVALENCE statement.

• Subroutine arguments passed by reference.

• Efficient compiled code.

• Extensively used for scientific work.

• Archaic syntax.

Martin Richards 25 Comp Prog Langs

COBOL History

• COBOL (COmmon Business Oriented
Language) has been widely used since the
early 1960s.

• First version in 1960, revisions in 1974 and
1984.

• Uses nouns and verbs to describe actions.

• Complete separation of data descriptions
from commands.

• Compilers used to be complex and slow.

• Programs somewhat easier to read than to
write.

• Often blamed for the Y2K problem!

Martin Richards 26 Comp Prog Langs

COBOL Example

IDENTIFICATION DIVISION

PROGRAM-ID. SUM-OF-PRICES.

AUTHOR. T-PRATT.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. SUN.

OBJECT-COMPUTER. SUN.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT INP-DATA ASSIGN TO INPUT.

SELECT RESULT-FILE ASSIGN TO OUTPUT.

DATA DIVISION.

FD INP-DATA LABEL RECORD IS OMITTED.

01 ITEM-PRICE.

02 ITEM PICTURE X(30)

02 PRICE PICTURE 9999V99.

WORKING-STORAGE SECTION.

77 TOT PICTURE 9999V99, VALUE 0, USAGE COMPUTATIONAL.

01 SUM-LINE.

02 FILLER VALUE ’ SUM =’ PICTURE X(12).

02 SUM-OUT PICTURE $$,$$$,$$9.99.

02 COUNT-OUT PICTURE ZZZ9.

... More data

Martin Richards 27 Comp Prog Langs

COBOL (Cont)

PROCEDURE DIVISION.

START.

OPEN INPUT INP-DATA AND OUTPUT RESULT-FILE.

READ-DATA.

READ INP-DATA AT END GO TO PRINT-LINE.

ADD PRICE TO TOT.

ADD 1 TO COUNT.

MOVE PRICE TO PRICE-OUT.

MOVE ITEM TO ITEM-OUT.

WRITE RESULT-LINE FROM ITEM-LINE.

GO TO READ-DATA.

PRINT-LINE.

MOVE TOT TO SUM-TOT.

... More statements

CLOSE INP-DATA AND RESULT-FILE.

STOP RUN.

Martin Richards 28 Comp Prog Langs

COBOL

• Data often held in a form that requires little
conversion during input/output.

• Arithmetic operations simple and less
important than data movement.

• Static data allocation and no recursion.

• Originally the only subroutine mechanism
was the PERFORM statement which allowed
specified paragraphs to be executed, possibly
repeated.

• Such subroutines were parameterless.

Martin Richards 29 Comp Prog Langs

ALGOL Influence

Modula-3

Java

Smalltalk

Modula-2
Ada

Algol68
Pascal Simula 67

ALGOL 60

ALGOL W

CPL

BCPL

C

C++

Martin Richards 30 Comp Prog Langs

ALGOL History

• Designed by a committee in 1958

• ALGOL 60 (1960), Revised (Rome 1962)

• Eclipsed by FORTRAN because

– No I/O statements.

– No separate compilation.

– No library.

– Not supported by IBM.

• But had a major effect on language design.

Martin Richards 31 Comp Prog Langs

ALGOL Innovations

• Block structure.

• Explicit type declarations for variables.

• Scope rules for local variables.

• Dynamic (not static) lifetimes for variables.

• Nested if-then-else expressions and
statements.

• Call-by-value and call-by-name arguments.

• Recursive subroutines.

• Arrays with dynamic bounds.

• Use of BNF syntax description.

Martin Richards 32 Comp Prog Langs

ALGOL Example

comment The following procedure

will transpose a square matrix;

procedure transpose(A, m)

value m;

real array A; integer m;

begin integer i, k;

for i := 1 step 1 until m do

for k := i+1 step 1 until m do

begin real w;

w := A[i,k];

A[i,k] := A[k,i];

A[k,i] := w

end

end transpose

Martin Richards 33 Comp Prog Langs

Call by name

real procedure sum(E, i, low, high)

value low, high; real E;

integer i, low, high;

begin sum := 0.0;

for i := low step 1 until high do

sum := sum + E;

end

...

integer j;

real array A[1:10];

real result;

for j := 1 step 1 until 10 do A[j] := j;

result := sum(A[j], j, 1, 10)

Martin Richards 34 Comp Prog Langs

Call by name

The call:

sum(A[j], j, 1, 10)

is equivalent to:

begin sum := 0.0;

for j := 1 step 1 until 10 do

sum := sum + A[j];

end

Martin Richards 35 Comp Prog Langs

Nested Procedures

integer procedure f(n);

integer n;

begin

integer a;

integer procedure g(m);

integer m;

begin g := n + a + m;

a := a+1

end;

if n=0 then a := 0;

f := g(a)

end

Martin Richards 36 Comp Prog Langs

Trouble spots 1

11 different possible answers to:

begin

integer a;

integer procedure f(x, y);

value x, y;

integer x, y;

a := f := x+1;

integer procedure g(x);

integer x;

x := g := a+2;

a := 2;

outreal(1, a + f(a, g(a))/g(a))

end

Martin Richards 37 Comp Prog Langs

Trouble spots 2

• The types and mode of calling of procedure
arguments could not be specified.

• The goto statement could cause a jump out
to a label outside the current procedure.

• Labels were numeric (as in FORTRAN) and
could be muddled with integers when passed
in function arguments.

• Automatic type conversions were not fully
specified, for example x := x/y was not
properly defined when x and y were integers.
(Is it allowed, and if so was x rounded or
truncated.

• Own variables were a disaster.

• No precision specified for real numbers.

Martin Richards 38 Comp Prog Langs

ALGOL W

• Designed by Niklaus Wirth (about 1968).

• More pragmatic with repect to efficiency.

• One of the first languages to have structures
in the form of records with named fields.

• Allowed pointers to records.

• It had four modes of calling procedure
arguments.

Martin Richards 39 Comp Prog Langs

ALGOL W Arguments

PROCEDURE SUB1(INTEGER A;

INTEGER VALUE B;

INTEGER RESULT C;

INTEGER VALUE RESULT D);

BEGIN

B:= 7;

A:=A+B;

C:=B+D;

D:=5

END

Martin Richards 40 Comp Prog Langs

ALGOL W Arguments

PROCEDURE SUB1(INTEGER A;

INTEGER B;

INTEGER C;

INTEGER D);

BEGIN

INTEGER BB;

INTEGER CC;

INTEGER DD;

BB:=B;

DD:=D;

BB:= 7;

A:=A+BB;

CC:=BB+DD;

DD:=5;

C:=CC;

D:=DD

END

Martin Richards 41 Comp Prog Langs

ALGOL W Records

RECORD CARD (INTEGER VAL;

INTEGER SUIT);

RECORD HAND (REFERENCE(CARD) CARD;

REFERENCE(HAND) NEXT);

REFERENCE(HAND) NORTH;

NORTH := HAND(CARD(1,1),

HAND(CARD(12,1),NULL));

... VAL(CARD(NEXT(NORTH))) ...

Martin Richards 42 Comp Prog Langs

ALGOL W Problems

What does X(Y) mean?

It depends on the types of X and Y.

It could be:

• An array subscription.

• A procedure call.

• A field selection.

• A record constructor application.

Unfortunately, since formal procedures do not
have their argument types specified, the types of
variable are not always known.

Martin Richards 43 Comp Prog Langs

BCPL

An implementation is available (and unpacked)
on the PWFs. If you would like to try it, look at
the file:

$UX/clteach/mr/BCPL/cintcode/doc/README

The BCPL distribution is available in
$UX/clteach/mr/bcpl.{tgz,zip} or via my
home page:

http://www.cl.cam.ac.uk/~mr

Martin Richards 44 Comp Prog Langs

BCPL History

• It was designed and implemented in early
1967 when I was at at MIT.

• It is a very cut down version of CPL(1962-68)
that is easy to implement.

• It was used extensively for systems research,
particularly for the development of the Tripos
Operating System and early developments of
the Cambridge Ring.

• It is still used as a testbed for compiler
research.

Martin Richards 45 Comp Prog Langs

BCPL Summary

• It was designed as a systems programming
language suitable for writing compilers and
operating systems.

• It is typeless. All values are the same size
(typically 32 bits).

• Values can be used to represent characters,
integers, truth values, and pointers to data or
code.

• Any operation is allowed on any value even
though the result is sometimes meaningless.

Martin Richards 46 Comp Prog Langs

BCPL Summary

• Pointers can be used to represent:

– character strings,

– vectors,

– structures,

– functions and

– program labels.

• Memory was modelled as a collection of equal
sized words, addressed by consecutive
integers. This allows machine independent
pointer arithmetic.

Martin Richards 47 Comp Prog Langs

BCPL Example

GET "libhdr"

LET f(n) = n=0 -> 1, n*f(n-1)

LET start() = VALOF

{ FOR i = 1 TO 9 DO

writef("f(%n) = %i5*n", i, f(i))

RESULTIS 0

}

Martin Richards 48 Comp Prog Langs

BCPL Functions

• Function arguments are called by value and
stored in consecutive memory locations.

• Functions are variadic (allow a variable
number of arguments, as in writef).

• Functions may be passed as arguments,
returned as results, or assigned.

• Although function definitions may be nested,
they may not contain variables referring to
either arguments or locals of enclosing
functions.

• Functions can be be correctly represented by
just their entry addresses.

• Separate compilation was allowed using the
global vector for inter module referencing.

Martin Richards 49 Comp Prog Langs

BCPL Example

GET "libhdr"

GLOBAL { count:200; all:201 }

LET try(ld, row, rd) BE

TEST row=all

THEN count := count + 1

ELSE { LET poss = all & ~(ld | row | rd)

UNTIL poss=0 DO

{ LET p = poss & -poss

poss := poss - p

try(ld+p << 1, row+p, rd+p >> 1)

}

}

LET start() = VALOF

{ all := 1

FOR i = 1 TO 12 DO

{ count := 0

try(0, 0, 0)

writef("%i2-queens solutions %i5*n",

i, count)

all := 2*all + 1

}

RESULTIS 0

}

Martin Richards 50 Comp Prog Langs

BCPL Example

GET "libhdr"

LET coins(sum) = c(sum, (TABLE 50, 20, 10, 5, 2, 1))

AND c(sum, t) = sum<0 -> 0,

sum=0 | !t=1 -> 1,

c(sum, t+1) + c(sum-!t, t)

LET start() = VALOF

{ writes("Coins problem*n")

t(0)

t(1)

t(2)

t(5)

t(21)

t(100)

t(200)

RESULTIS 0

}

AND t(n) BE

writef("Sum = %i3 number of ways = %i6*n",

n, coins(n))

Martin Richards 51 Comp Prog Langs

BCPL Memory

Address Contents

1000: 13

1001: 2000

1002: 0

...

2000: 61

2001: 0

2002: 24

The expression: 1000!1!2 evaluates as follows:

1000 ! 1 ! 2

= (!(1000+1)) ! 2

= (!(1001)) ! 2

= 2000 ! 2

= !(2000+2)

= !2002

= 24

Martin Richards 52 Comp Prog Langs

BCPL Streams

LET next(s) = (s!0)(s)

LET out(s, x) = (s!1)(s, x)

LET close(s) = (s!2)(s)

The functions s!0, s!1, s!2 are analogous to
methods of the object s in an object oriented
language.

The functions defined above were used by
Christopher Strachey in the operating system
OS/6 in 1970.

Martin Richards 53 Comp Prog Langs

BCPL Objects

In an object oriented language, classes have fields
and methods.

Often the fields hold different values for different
instances of a class, but the methods are usually
the same for each instance.

This suggests an implementation in which the
methods are held in a vector (of method
functions) which is referenced by each instance of
the class.

The fields vector must be accessible to each
method and so is normally passed as a (hidden)
extra argument in a method call.

Martin Richards 54 Comp Prog Langs

BCPL Objects

The following scheme works well for BCPL.

In the scope of the declaration:

MANIFEST { F=0; G=1; H=2 }

The expression

G#(obj, 13, 63)

means:

(obj!0!G)(obj, 13, 63)

(fns!1) (obj, 13, 63)

methodG (obj, 13, 63)

obj -> 0: fns -------------> 0: methodF

1: FieldA 1: methodG

2: FieldB 2: methodH

...

n: FieldZ

Martin Richards 55 Comp Prog Langs

BCPL Coroutines

Coroutines are somewhat like threads (or
processes).

• They simulate parallel execution.

• They share the same address space.

• But they only giveup control voluntarily (no
pre-emption).

Each coroutine needs its own runtime stack.

When control passes from one BCPL coroutine to
another, a value is passed.

This value looks like an argument in the coroutine
than is suspending itself, and like a result in the
coroutine that is resuming control.

Martin Richards 56 Comp Prog Langs

BCPL Coroutines

The implementation is as follows:
--------------------->------------------

| |

--

|p parent nxt f size c | .. stack .. suspended frame ..

--

| | | | | |

| | | | | System work variable

| | | | Size of the coroutine stack

| | | Coroutine main function

| | Next coroutine

| The parent coroutine

The save stack frame pointer

cptr := createco(f, size) -- Create a coroutine.

deleteco(cptr) -- Delete a coroutine.

res := callco(cptr, val) -- Call another coroutine (cptr).

res := cowait(val) -- Transfer control to the parent.

res := resumeco(cptr, val) -- Suspend the current coroutine

and transfer to another.

The body of a coroutine behaves like:
c := f(cowait(c)) // Repeat for ever

REPEAT

Martin Richards 57 Comp Prog Langs

Coroutines Example

GET "libhdr"

MANIFEST { upb = 4000 }

LET prime1() = VALOF

{ LET isprime = getvec(upb)

FOR i = 2 TO upb DO

isprime!i := TRUE // Until disproved

FOR p = 2 TO upb IF isprime!p DO

{ LET i = p*p

UNTIL i>upb DO

{ isprime!i := FALSE; i := i + p }

cowait(p)

}

freevec(isprime)

RESULTIS 0

}

AND prime2() = VALOF

{ FOR n = 2 TO upb DO

{ LET a, b = 2, 1

FOR i = 1 TO n DO

{ LET c = (a+b) REM n; a := b; b := c }

IF a=1 DO cowait(n)

}

RESULTIS 0

}

Martin Richards 58 Comp Prog Langs

Coroutines Example

LET start() = VALOF

{ LET P1 = createco(prime1, 100)

LET P2 = createco(prime2, 100)

LET n1, n2, min = 0, 0, 0

{ IF n1=min DO n1 := callco(P1)

IF n2=min DO n2 := callco(P2)

min := n1<n2 -> n1, n2

UNLESS n1=n2 DO

writef(" %i4 from P%c*n", min, n1<n2 -> ’1’, ’2’)

} REPEATUNTIL min=0

deleteco(P1)

deleteco(P2)

RESULTIS 0

}

Martin Richards 59 Comp Prog Langs

C History

• Designed by Dennis Ritchie and Ken
Thompson at Bell Labs in 1972.

• It was based in B, a squeezed down minimal
subset of BCPL implemented on an 8K
PDP-7 by Ken Thompson.

• In 1970 the Unix project acquired a 24K
PDP-11 and B was expanded to include
structures and a more operators. This
language became known as C.

• It was first used to write the kernel of Unix
and has been closely associated with Unix
ever since.

• ANSI Standard (1989)

• ISO Standard (1990)

Martin Richards 60 Comp Prog Langs

C Example

#include <stdio.h>

const int maxsize=9;

int convert(char ch) { return ch-’0’; }

int sum(int v[], int n) {

int res=0;

int j;

for(j=0; j<n; j++) res+=v[j];

return res;

}

int main() {

int a[maxsize];

int j, k;

while(k=convert(getchar())) {

for(j=0; j<k; j++) a[j]=convert(getchar());

for(j=0; j<k; j++) printf("%d ", a[j]);

printf("; SUM=%d\n", sum(a, k));

while(getchar() != ’\n’);

}

return 0;

}

Martin Richards 61 Comp Prog Langs

Compiling and Running

clove$ cc -o example example.c

clove$ example

41234

1 2 3 4 ; SUM 10

512345

1 2 3 4 5 ; SUM 15

0

clove$

Martin Richards 62 Comp Prog Langs

C Primitive Types

Numeric types:

unsigned char

unsigned short

unsigned int

unsigned long

char

short

int

long

float

double

long double

Martin Richards 63 Comp Prog Langs

C Primitive Types

Numeric constants:

’A’ -- int

123U -- unsigned int

1234567890UL -- unsigned long

123 -- int

0xFF0037 -- int

1234567890L -- long

123.456F -- float

123.456 -- double

123.456e-5 -- double

123.456E12 -- double

123.456L -- long double

Martin Richards 64 Comp Prog Langs

Monadic Expression Operators

e(e,e,...,e) -- function call

e[e,e,...,e] -- subscripted expression

e->name -- structure selector

e.name -- field selector

!e -- boolean not

~e -- bitwise not

++e e++ -- pre/post increment

--e e-- -- pre/post decrement

+e -- monadic plus

-e -- monadic minus

(type)e -- cast (or type conversion)

*e -- indirection

&e -- address of

sizeof e -- size of the given value

Martin Richards 65 Comp Prog Langs

Infixed Expression Operators

e * e -- multiplication

e / e -- division

e % e -- remainder

e + e -- plus

e - e -- minus

e << e -- left shift

e >> e -- right shift

Martin Richards 66 Comp Prog Langs

Infixed Expression Operators

e<e e>e e<=e e>=e -- relations

e==e e!=e -- relations

e & e -- bitwize and

e ^ e -- bitwize xor

e | e -- bitwize or

e && e -- boolean and

e || e -- boolean or

e ? e : e -- conditional expression

e=e e+=e ... -- assignments

e,e,...,e -- expression list

Martin Richards 67 Comp Prog Langs

Statements

{ d d ... d s s ... s } -- a block

e;

;

if (e) s

if (e) s else s

while (e) s

do s while(e);

for(e;e;e)s -- eg for(i=0;i<k;i++)v[i]=0;

switch(e) { case k: s

...

case k: s

default: s

}

break;

continue;

return e;

goto name;

name: s

Martin Richards 68 Comp Prog Langs

Declarations

int i, j=1, k;

float x;

long a, b;

char v[10];

int w[4] = { 0, 1, 2, 3};

int *p, **q;

int * tab[256]; -- vector of pointers

int f(int,int); -- function declaration

int (*f)(int,int); -- pointer to a function

Martin Richards 69 Comp Prog Langs

Casts

declaration cast

unsigned int i; (unsigned int)

float x; (float)

char v[10]; (char [10])

int w[4]; (int [4])

int *p; (int *)

int **q; (int **)

int * tab[256]; (int *[256])

int f(int,int); (int(int,int))

int (*f)(int,int); (int (*)(int,int))

void (*g)(void); (void(*)(void))

Martin Richards 70 Comp Prog Langs

Functions

Declarations, eg:

/* a declaration */

int mymax(int, int);

Definitions, eg:

/* a definition */

int mymax3(int a, int b, int c) {

return mymax(a, mymax(b, c));

}

/* another definition */

int mymax(int a, int b) {

return a>b ? a : b;

}

Martin Richards 71 Comp Prog Langs

Arrays and Pointers

int a[20], *p;

p = & a[5];

p = 0; / equivalent to a[5] = 0; */

for (p=&a[0]; p<&a[20]; p++) *p = 0;

In older compilers the above is more efficient than:

int a[20], i;

for (i=0; i<20; i++) a[i]=0;

Martin Richards 72 Comp Prog Langs

Pointer Arithmetic

An integer may be added to a pointer. It returns
a pointer to the adjacent location of the
appropriate size.

If p points to a 32 bit integer on a byte addressed
machine, then p+1 or 1+p points to the adjacent
32 bit integer. In machine code terms this
typically involves adding 4 to the byte address
held in p.

C BCPL

int a[20]; LET a = VEC 19

int *p; LET p = ?

a[1] a!1

*(a+1) !(a+1)

*(1+a) !(1+a)

1[a] 1!a

&a[1] @ a!1

& *(a+1) @ !(a+1)

a+1 a+1

Martin Richards 73 Comp Prog Langs

Strings

C character strings are zero terminated char
vectors. BCPL strings are byte vectors with the
length held in byte zero.

C BCPL

char s[5]="ABCD"; LET s = "ABCD"

s[0] == ’A’ s%0 = 4

s[1] == ’B’ s%1 = ’A’

s[2] == ’C’ s%2 = ’B’

s[3] == ’D’ s%3 = ’C’

s[4] == 0 s%4 = ’D’

Martin Richards 74 Comp Prog Langs

String Copying

C:

void copystring(char *from, char *to) {

while (*from) *to++ = *from++;

*to=0;

}

BCPL:

LET copystring(from, to) BE

FOR i = 0 TO from%0 DO to%i := from%i

Martin Richards 75 Comp Prog Langs

Space Allocation

C:

int *p = (int *)malloc(sizeof(int[100]));

if(p==0) /* no space */

...

free(p);

BCPL:

LET p = getvec(99)

IF p=0 DO ... // no space

...

freevec(p)

Martin Richards 76 Comp Prog Langs

Structures

#include <stdio.h>

struct Inode {

int val;

struct Inode* next;

} *p, *q;

struct Inode *mk(int x, struct Inode *rest) {

struct Inode *res =

(struct Inode*)malloc(sizeof(struct Inode));

res->val = x;

res->next = rest;

return res;

}

int main(int argc, char** argv) {

p = mk(13, 0);

q = mk(541, p);

printf("%d\n", q->next->val);

return 0;

}

Martin Richards 77 Comp Prog Langs

Structures

#include <stdio.h>

typedef struct Inode {

int val;

struct Inode *next;

} *Ilist;

Ilist mk(int x, Ilist rest) {

Ilist res = (Ilist)malloc(sizeof(struct Inode));

res->val = x;

res->next = rest;

return res;

}

int main(int argc, char** argv) {

Ilist p = mk(13, 0);

Ilist q = mk(541, p);

printf("%d\n", q->next->val);

return 0;

}

Martin Richards 78 Comp Prog Langs

Structures

#include <stdio.h>

typedef struct Inode Inode;

struct Inode {

int val;

Inode *next;

};

Inode *mk(int x, Inode *rest) {

Inode *res = (Inode *)malloc(sizeof(Inode));

res->val = x;

res->next = rest;

return res;

}

int main(int argc, char** argv) {

Inode *p = mk(13, 0);

Inode *q = mk(541, p);

printf("%d\n", q->next->val);

return 0;

}

Martin Richards 79 Comp Prog Langs

Field Selection

The field selection operator is dor (.) as in Java.
The arrow notation is a shortcut for indirection
followed by field selection.

e -> name means (* e) . name.

Martin Richards 80 Comp Prog Langs

Unions

Sometimes it is useful to have a variable whose
value is one type at one moment and another type
later. This is possible using unions.

Syntactically a union declaration is just like a
structure declaration, only the struct is replaced
by union.

It causes all the fields to be overlaid at the same
position, rather than being given distinct
locations.

Martin Richards 81 Comp Prog Langs

Unions

union {

float f;

int i;

} var;

var.f = 23.5F;

printf("val = %f\n", var.f);

var.i = 5;

printf("val = %d\n", var.i);

Martin Richards 82 Comp Prog Langs

Example Problem

Construct a tree representation suitable for the
expressions like 1+2*3, and define a function eval

to evaluate it.

The required structure is something like:

ADD

/ \

/ \

NUM MUL

1 / \

/ \

NUM NUM

2 3

Martin Richards 83 Comp Prog Langs

ML Solution

datatype E = NUM of int

| POS of E

| NEG of E

| MUL of E * E

| DIV of E * E

| ADD of E * E

| SUB of E * E;

fun eval(NUM k) = k

| eval(POS e) = eval e

| eval(NEG e) = ~ (eval e)

| eval(MUL(x,y)) = eval x * eval y

| eval(DIV(x,y)) = eval x div eval y

| eval(ADD(x,y)) = eval x + eval y

| eval(SUB(x,y)) = eval x - eval y;

eval(ADD(NUM 1,

MUL(NUM 2, NUM 3)));

Martin Richards 84 Comp Prog Langs

BCPL Solution

GET "libhdr"

MANIFEST {

Op=0; Rand1=1; Rand2=2

NUM=1; POS=2; NEG=3; MUL=4; DIV=5; ADD=6; SUB=7

}

LET eval(e) = VALOF SWITCHON Op!e INTO

{ CASE NUM: RESULTIS Rand1!e

CASE POS: RESULTIS + eval(Rand1!e)

CASE NEG: RESULTIS - eval(Rand1!e)

CASE MUL: RESULTIS eval(Rand1!e) * eval(Rand2!e)

CASE DIV: RESULTIS eval(Rand1!e) / eval(Rand2!e)

CASE ADD: RESULTIS eval(Rand1!e) + eval(Rand2!e)

CASE SUB: RESULTIS eval(Rand1!e) - eval(Rand2!e)

}

Martin Richards 85 Comp Prog Langs

BCPL Solution

LET mk1(op, a) = VALOF

{ LET r = getvec(1)

Op!r, Rand1!r := op, a

RESULTIS r

}

LET mk2(op, a, b) = VALOF

{ LET r = getvec(2)

Op!r, Rand1!r, Rand2!r := op, a, b

RESULTIS r

}

LET start() = VALOF

{ LET exp = mk2(ADD, mk1(NUM, 1),

mk2(MUL, mk1(NUM,2), mk1(NUM,3)))

writef("eval(exp) = %n*n", eval(exp))

RESULTIS 0

}

Martin Richards 86 Comp Prog Langs

MCPL Solution

GET "mcpl.h"

MANIFEST

NUM, POS, NEG, MUL, DIV, ADD, SUB

FUN eval

: [NUM, val] => val

: [POS, x] => + eval x

: [NEG, x] => - eval x

: [MUL, x, y] => eval x * eval y

: [DIV, x, y] => eval x / eval y

: [ADD, x, y] => eval x + eval y

: [SUB, x, y] => eval x - eval y

FUN start : =>

printf("val = %d\n",

eval [ADD,[NUM,1],[MUL,[NUM,2],[NUM,3]]]

)

Martin Richards 87 Comp Prog Langs

Union Example

#include <stdio.h>

enum Ops {NUM, POS, NEG, MUL, DIV, ADD, SUB};

typedef struct Num Num;

typedef struct Monad Monad;

typedef struct Dyad Dyad;

typedef union Expr {

Num *N;

Monad *M;

Dyad *D;

} Expr;

struct Num {

int op;

int val;

};

struct Monad {

int op;

Expr rand;

};

struct Dyad {

int op;

Expr left;

Expr right;

};

Martin Richards 88 Comp Prog Langs

Union Example

Expr mknum(int n) {

Expr res;

Num *e = (Num *) malloc(sizeof(Num));

e->op = NUM;

e->val = n;

res.N = e;

return res;

}

Expr mk1(int operator, Expr a) {

Expr res;

Monad *e = (Monad *) malloc(sizeof(Monad));

e->op = operator;

e->rand = a;

res.M = e;

return res;

}

Expr mk2(int operator, Expr a, Expr b) {

Expr res;

Dyad *e = (Dyad *) malloc(sizeof(Dyad));

e->op = operator;

e->left = a;

e->right = b;

res.D = e;

return res;

}

Martin Richards 89 Comp Prog Langs

Union Example

int eval(Expr e) {

switch(e.M->op)

{ default: return 0;

case NUM: return e.N->val;

case POS: return eval(e.M->rand);

case NEG: return - eval(e.M->rand);

case MUL: return eval(e.D->left) * eval(e.D->right);

case DIV: return eval(e.D->left) / eval(e.D->right);

case ADD: return eval(e.D->left) + eval(e.D->right);

case SUB: return eval(e.D->left) - eval(e.D->right);

}

return 0;

}

int main() {

Expr exp = mk2(ADD,

mknum(1),

mk2(MUL, mknum(2), mknum(3)));

printf("eval(exp) => %d\n", eval(exp));

}

Martin Richards 90 Comp Prog Langs

Object Oriented Languages

Object Oriented Languages support:

• Data abstraction (the encapsulation of state
with operations).

• Information hiding (encapsulation).

• Message passing and polymorphism.

• Inheritance, including dynamic binding.

Significant languages in the history of Object
Orientation.

• Simula-67

• Smalltalk

• C++

• Java

• Oberon, Eiffel and many others

Martin Richards 91 Comp Prog Langs

Simula-67

• Originated in Norway by Nygaard and Dahl
in 1961, and was fully developed by 1967.

• Based on Algol 60.

• Designed for discrete event simulation.

• It extended Algol to contain objects that had
state and a thread of control (similar to
coroutine) that could simulate parallel
activities.

• It had an inheritance mechanism.

Martin Richards 92 Comp Prog Langs

Simula-67 Example

A simulation of a post office with a door, 4
counters, each with a clerk and a queue, and a
random supplied of customers entering the door.

Martin Richards 93 Comp Prog Langs

Simula-67 Example

BEGIN

CLASS customer(tasks, oldlady)

INTEGER tasks; BOOLEAN oldlady; BEGIN ... END;

CLASS queue; BEGIN ... END;

CLASS clerk(q); ref(queue)q; BEGIN ... END;

CLASS door; BEGIN ... END;

CLASS counter; BEGIN ... END;

REAL opentime, closetime;

REF(counter) c1, c2, c3, c4;

opentime := 8.00;

closetime := 17.00;

hold(opentime);

c1 :- NEW counter;

c2 :- NEW counter;

c3 :- NEW counter;

c4 :- NEW counter;

NEW door;

hold(closetime);

END

Martin Richards 94 Comp Prog Langs

Simula-67 Example

CLASS customer(tasks, oldlady)

INTEGER tasks; BOOLEAN oldlady;

BEGIN

REF(customer) next;

REF(counter) service;

WHILE tasks>0 DO

BEGIN

<assign value to service>;

IF oldlady THEN <enter front of service.q>

ELSE <enter tail of service.q>;

IF service.postofficer is free

THEN <activate service.postofficer>

ELSE passivate;

<participate in transaction>;

<leave counter>

tasks := tasks-1;

END

END;

Martin Richards 95 Comp Prog Langs

Simula-67 Example

CLASS queue;

BEGIN

REF(customer) first, last;

END;

CLASS clerk(q); REF(queue)q;

BEGIN

REF(customer) person;

servicing:

WHILE q.first =/= NONE DO

BEGIN person :- q.first;

<take person out of the queue>;

<engage with him in transactions>;

END;

<do other work until interrupted by the

arrival of a new customer in the queue>;

GOTO servicing;

END;

Martin Richards 96 Comp Prog Langs

Simula-67 Example

CLASS door;

BEGIN

REAL arrtime;

WHILE time<=closetime DO

BEGIN arrtime := <time of next arrival>;

hold(arrtime);

NEW customer(<initial value of tasks>,

<initial value of oldlady>);

END;

END;

CLASS counter;

BEGIN

REF(queue) q;

REF(clerk) postofficer;

q :- NEW queue;

postofficer :- NEW clerk(q);

END;

Martin Richards 97 Comp Prog Langs

Simula-67 Class Hierachy

A hierachy of classes can be declared.

CLASS a ...;

a CLASS b ...;

a CLASS c ...;

b CLASS d ...;

b CLASS e ...;

Hierarchy Objects

a b c d e

--- --- --- --- ---

a | a | | a | | a | | a | | a |

/ \ --- |---| |---| |---| |---|

/ \ | b | | c | | b | | b |

b c --- --- |---| |---|

/ \ | d | | e |

/ \ --- ---

d e

Martin Richards 98 Comp Prog Langs

Simula-67 Various Primitive

Componentes in a simulation which may be
scheduled should be prefixed by the class
process. The class outline is:

link CLASS process;

BEGIN BOOLEAN PROCEDURE idle; ...;

REAL PROCEDURE evtime; ...;

REF(process) PROCEDURE nextev; ...;

detach;

...

passivate;

END;

Martin Richards 99 Comp Prog Langs

Simula-67 Various Primitive

REF(process) PROCEDURE current; ...

returns the current process.

REAL PROCEDURE time; ...

returns the current time.

PROCEDURE hold(t); REAL t; ...

suspend the current process until time t..

PROCEDURE cancel(p); REF(process) p; ...

remove p from the event queue.

ACTIVATE p;

ACTIVATE p AT time;

ACTIVATE p DELAY time;

activate p at specified time.

Martin Richards 100 Comp Prog Langs

Smalltalk

Smalltalk was designed by Alan Kay in 1972
when he was working at Xerox PARC (Palo Alto)
as part of his Dynabook project.

It was influenced by some of Papert’s work at
MIT on Logo, an interactive highly graphical
computer learning environment intended to teach
programming to children.

Dynabook was a far sighted early version of a
handheld computer.

The first was made of cardboard and filled with
lead shot, to see what size and weight people
would put up with.

Martin Richards 101 Comp Prog Langs

Smalltalk

Smalltalk was designed an an interpretive
language, in which all names were looked up at
runtime from and environment of declared names.

In more modern implementations code is
compiled giving a speedup of 450 times!

There are several Smalltalk implementations
including a GNU version and one from the Disney
Corporation (where Alan Kay now works).

This latter one is embedded in a system called
Squeek and the version of Smalltalk is called Self.

It consists of a complete program development
system that is responsive and small enough
(approx 1-2 Mbytes) to fit in a Palm Top or
Handheld computer.

Martin Richards 102 Comp Prog Langs

Running Smalltalk

Squeak is available on the PWF machines both
under Windows and Linux. I would recommend
using the Windows version.

To enter Squeak, do the following (under
Windows):

Click on: Start -> Run...

Fill in Open: cmd then press RET

F:\> I:

I:\> cd clteach\mr\squeak

I:\squeak> sq

After a while this will enter the Squeak system.

Martin Richards 103 Comp Prog Langs

Smalltalk

Smalltalk is a purely object-oriented language
which cleanly supports the notions of classes,
methods, messages and inheritance.

All smalltalk code consists of chains of messages
sent to objects.

Its syntax is almost trivial.

BODY -> | name ... name | E . E ... E

E -> name x Transcript :=

| # E #green

| number 123

| string ’hello’

| (E)

| ^ E return with value of E

| [E . E ... E] [Transcript show: ’hello’]

| [:name ... :name | E . E ... E] [: x | x + 1]

| E name

| E name E ... name E

| E name E ... name E ; ... ; name E ...

Martin Richards 104 Comp Prog Langs

Smalltalk Fragments

|count|

count := 0.

[count < 3]

whileTrue:

[(count odd) ifTrue: [Transcript show: ’ODD’]

ifFalse: [Transcript show: ’EVEN’].

count := count+1.

Transcript cr.

]

|canon|

canon := [:singers :song |

singers do:

[:voice | Transcript

show: voice asString, ’,’, song;

cr]]

canon value: #(kermit jasper fred) value: ’croak’.

Martin Richards 105 Comp Prog Langs

Smalltalk Class

For programming convenience Smalltalk classes a
grouped into Categories and their methods are
also grouped into categories.

Morphic-Window -- Class categories

Graphics-3D

...

Interface-Pluggable

Sesame-Street

CookieMonster -- a class

initialization -- method categories

access

queries

isAsleep -- methods

isAwake

isFull

self isEmpty -- definition of isFull

ifFalse: [^ self tummy size >= self hunger]

ifTrue: [^false]

actions

private

Monster -- another class

Tools-Outlines

...

Martin Richards 106 Comp Prog Langs

Declaring a new Class

A class is created by sending a message to the
class that is going to be its parent. For example

!Object subclass: #Monster

instanceVariableNames: ’colour tummy’

classVariableNames: ’ ’

poolDictionaries: ’ ’

category: ’Sesame-Street’!

This create the class Monster which is a subclass
of Object. It has two instance variables (colour
and tummy) and no class variables, and Monster is
one of the classes in the category Sesame-Street.
Ignore poolDictionaries.

Classes are created dynamically (during program
execution).

Martin Richards 107 Comp Prog Langs

Definition of CookieMonster

We now create a class CookieMonster as a
subclass of Monster. It is also a member of
Sesame-Street.

!Monster subclass: #CookieMonster

instanceVariableNames: ’state hunger’

classVariableNames: ’ ’

poolDictionaries: ’ ’

category: ’Sesame-Street’!

Martin Richards 108 Comp Prog Langs

Defining Methods

Methods can be defined by sending a methodsFor

message to a class. For example:

!Monster methodsFor: ’actions’!

eat: someItem

self tummy add: someItem

!!

!Monster methodsFor: ’queries’!

isEmpty

^ self tummy isNil

!!

Martin Richards 109 Comp Prog Langs

Defining Methods

!Monster methodsFor: ’access’!

colour

^ colour

!

colour: aSymbol

colour := aSymbol

!

tummy

^ tummy

!

tummy: aCollection

tummy := aCollection

!!

!Monster methodsFor: ’initialization’!

initialize

self colour: #green.

self tummy: Bag new

!!

Martin Richards 110 Comp Prog Langs

Defining Class Methods

Class methods and variables in Smalltalk are like
static methods and variables in Java.

There is on class method to define for Monster.

!Monster class methodsFor: ’creation’!

new

^ super new initialize

!!

Martin Richards 111 Comp Prog Langs

Cookie Monster Methods

Cookie Monsters inherit from Monster, but add
more specific behaviour of their own.

!CookieMonster methodsFor: ’private’!

askForCookie

^ FillInTheBlank request: ’Give me a cookie’

!

complainAbout: anItem

Transcript show: ’No want ’, anItem printString.

Transcript cr.

self colour #red

!

isCookie: anItem

^ ((anItem = ’cookie’) | (anItem = #cookie))

!!

Martin Richards 112 Comp Prog Langs

Cookie Monster Methods

!CookieMonster methodsFor: ’actions’!

eat: aCookie

super eat: aCookie.

self colour: #green

!

nag

[self isAwake]

whileTrue:

[| item |

item := self askForCookie.

(self isCookie: item)

ifTrue: [self eat: item]

ifFalse: [self complainAbout: item].

(self isFull) ifTrue: [self sleep]

]

!

sleep

self state: #asleep.

self hunger: 0

!

wakeUp

self tummy: Bag new.

self state: #awake.

self hunger: (Random new next * 13).

self nag.

!!

Martin Richards 113 Comp Prog Langs

Cookie Monster Methods

!CookieMonster methodsFor: ’queries’!

isAsleep

^ state = #asleep

!

isAwake

^ self isAsleep not

!

isFull

self isEmpty

ifFalse: [^ self tummy size >= self hunger]

ifTrue: [^false]

!!

!CookieMonster methodsFor: ’access’!

hunger

^ hunger

!

hunger: anIntegerNumberOfCookies

hunger := anIntegerNumberOfCookies

!

state

^ state

!!

Martin Richards 114 Comp Prog Langs

Object oriented Programming

This lecture covers the paper

What is “Object-Oriented Programming?”
by

Bjarne Stroustrup

It is available via

http://www.cl.cam.ac.uk/Teaching

/2000/CompProgLangs/bjarne.ps

Martin Richards 115 Comp Prog Langs

Language Design Philosophy

• All features must be cleanly and elegantly
integrated into the language.

• It must be possible to use features in
combination to achieve solutions that would
otherwise have required extra separate
features.

• There should be as few spurious and “special
purpose” features as possible.

• A feature should be such that its
implematation does not impose significant
overheads on programs that do not require it.

• A user need only know about the subset of
the language explicitly used to write a
program.

Martin Richards 116 Comp Prog Langs

Programming Paradigms

Procedural Programming

double sqrt(double arg) {

// code for calculating a square root

}

void some_function() {

double root2 = sqrt(2);

// ...

}

Martin Richards 117 Comp Prog Langs

Data Hiding

The file stack.h

char pop();

void push(char);

const stack_size = 100;

The file stack.cpp

#include "stack.h"

static char v[stack_size]; // local to module

static char* p = v;

char pop() {

// check for underflow and pop

}

void push(char ch) {

// check for overflow and push

}

The file prog.cpp

#include "stack.h"

void some_function() {

push(’c’);

char c = pop();

if (c != ’c’) error("impossible");

}

Martin Richards 118 Comp Prog Langs

Data Abstraction

The file stack.h

class stack_id; // stack_id is a type

stack_id create_stack(int size);

void destroy_stack(stack_id);

char pop(stack_id);

void push(stack_id, char);

The file prog.cpp

#include "stack.h"

void some_function() {

stack_id s1;

stack_id s2;

s1 = create_stack(200);

// Oops: forgot to create s2

push(s1, ’a’);

char c1 = pop(s1);

if (c1 != ’a’) error("impossible");

push(s2, ’b’);

char c2 = pop(s2);

if (c2 != ’b’) error("impossible");

destroy_stack(s2);

// Ooops: forgot to destroy s1

}

Martin Richards 119 Comp Prog Langs

Data Abstraction

The above scheme is nearly good enough when no
more than one object of a type is needed.
class complex {

double re, im;

public:

complex(double r, double i) { re=r; im=i; }

complex(double r) { re=r; im=0; }

friend complex operator+(complex, complex);

friend complex operator-(complex, complex);

friend complex operator-(complex);

friend complex operator*(complex, complex);

friend complex operator/(complex, complex);

};

The definition of complex + could be:
complex operator+(complex a1, complex a2) {

return complex(a1.re+a2.re, a1.im+a2.im);

}

Typical use:
complex a = 2.3;

complex b = 1/a;

complex c = a+b*complex(1, 2.3);

c = - (a/b)+2;

Martin Richards 120 Comp Prog Langs

Problems with Data Abstraction

class point { ... };

class color { ... };

enum kind { circle, triangle, square };

class shape {

point center;

color col;

kind k;

// representation of shape

public:

point where() { return center; }

void move{point to} { center=to; draw(); }

void draw();

void rotate(int);

// more operations

};

void shape::draw()

switch (k) {

case circle: // draw a circle

break;

case triangle: // draw a triangle

break;

case square: // draw a square

break;

}

}

Martin Richards 121 Comp Prog Langs

Object-Oriented Programming

class shape {

point center;

color col;

...

public:

point where() { return center; }

void move{point to} { center=to; draw(); }

virtual void draw();

virtual void rotate(int);

...

};

Typical use of class shape is:
void rotate_all(shape* v, int size, int angle) {

// rotate all members of a vector by given angle

for (int i=0; i<size; i++) v[i].rotate(angle);

}

Typical definition of a particular shape.
class circle : public shape {

int radius;

public:

void draw() { ... }

void rotate(int a) {} // yes, the null function

}

Martin Richards 122 Comp Prog Langs

Initialization and Cleanup

class vector {

int sz;

int* v;

public:

void init(int size);

...

};

vector v;

// don’t use yet

v.init(10);

// ok to use v now

..

Martin Richards 123 Comp Prog Langs

Initialization and Cleanup

It is better to use constructors and destructors.
class vector {

int sz;

int* v;

public:

vector(int); // constructor

~vector(); // destructor

int& operator[] (int index); // subscript operator

Typical definitions:
vector::vector(int s) {

if (s<=0) error("bad vector size");

sz = s;

v = new int[s]; // allocate an array

}

vector::~vector() {

delete v; // deallocate the vector

}

Martin Richards 124 Comp Prog Langs

Assignment and Initialization

It is possible to control all copy operations in
C++.
class vector {

int sz;

int* v;

public:

vector(int); // constructor

~vector(); // destructor

int& operator[] (int index); // subscript operator

void operator=(const vector&); // assignment

vector(const vector&); // initialization

};

Typical definitions:
vector::operator=(const vector& a) {

// check size and copy elements

if (sz != a.sz) error("bad vector size for =");

for (int i=0; i,sz; i++) v[i]=a.v[i];

}

vector::vector(const vector& a) {

// initialize a vector from another vector

sz = a.sz;

v = new int[sz];

for (int i=0; i,sz; i++) v[i]=a.v[i];

}

Martin Richards 125 Comp Prog Langs

Parameterized Types

It would be more useful if the writer of the
vector class did not know what the element type
it is to use.
template<class T> class vector { // element type T

T* v;

int sz;

public:

vector(int s) {

if (s <= 0) error("bad vector size");

v = new T[sz=s];

}

T& operator[] (int index); // subscript operator

int size() { return sz; }

...

};

A template specifies a family of types.
vector<int> v1(100);

vector<complex> v2(200);

v2[i] = complex(v1[x], v1[y]);

Usually, only one version of size() is needed.

Martin Richards 126 Comp Prog Langs

Iterators

Iterators can be provided by overloading the
function call operator.
class vector_iterator {

vector& v;

int i;

public:

vector_iterator(vector& r) { i=0; v=r; }

int operator()() {

return i<v.size() ? v.elem(i++) : 0;

}

};

It can now be used, as in:
void f(vector& v) {

vector_iterator next(v);

int i;

while (i=next()) print(i);

}

Martin Richards 127 Comp Prog Langs

Iterators (alternative)

The iterator mechanism can be put in the
“container” type, if preferred.
class vector {

int* v;

int i;

int current;

public:

int next() { return (++current < sz) ? v[current] : 0; }

int curr() { return v[current];

int prev() { return (0 <= --current) ? v[current] : 0; }

};

It can now be used, as in:
void f(vector& v) {

vector v(sz);

int i;

while (i=v.next()) print(i);

}

Martin Richards 128 Comp Prog Langs

Multiple Implementations

template<class T> class stack {

public:template<class T> class stack {

virtual void push(T) = 0; // pure virtual function

virtual T pop() = 0;

};

This declares an abstract class. It can be used,
but not created.
stack<cat> s; // error: stack is abstract

void some_fn(stack<cat> s, cat kitty) { // ok

s.push(kitty);

cat c2 = s.pop();

...

}

Martin Richards 129 Comp Prog Langs

Multiple Implementations

template<class T> class aStack : public stack<T> {

// actual representation of a stack object

// in this case an array

...

public:

aStack(int size);

~aStack();

void push(T);

T pop();

};

Elsewhere we can create a list based stack.
template<class T> class lStack : public stack<T> { ...

};

We can now create stacks of both sorts
void g() {

lStack<cat> s1(100);

aStack<cat> s2(100);

cat ginger;

cat snowball;

some_fn(s1, ginger);

some_fn(s2, snowball);

}

Martin Richards 130 Comp Prog Langs

Multiple Inheritance

Multiple inheritance is when a class inherits from
more than one base class. C++ allows multiple
inheritance many languages (eg Java) do not.

class my_displayed_task : public displayed, public task {

// my stuff

};

class my_task : public task { // not displayed

// my stuff

};

class my_displayed : public displayed { // not a task

// my stuff

};

Using only single inheritance leads to code
duplication and loss of flexibility – typically both.

Martin Richards 131 Comp Prog Langs

Ambiguity

Multiple inheritance cause ambiguity when two
parents have methods with the same name. Such
ambiguity can be solved at compile time.
class A { public: void f(); ... }

class B { public: void f(); ... }

class C : public A, public B { ... }

void g(C* p) {

p->f(); // error: ambiguous

}

A solution is the following:
class C : public A, public B {

...

public:

void f();

...

}

void C::f()

{ // C’s own stuff

A::f();

B::f();

}

Martin Richards 132 Comp Prog Langs

Exceptions

class vector {

// ...

// class range { }; // type used in exceptions

};

int& vector::operator[](int i)

{

if (i<0 || sz<=i throw range();

return v[i];

}

throw will unwind the stack until a handler for
vector::range is found.
void f(int i) {

try { // exceptions in this try block are

// handled by the handler defined below

vector v(i);

// ..

v[i] = 7; // cause vector::range exception

// ...

int i = g(); // might cause a range exception

}

catch (vector::range) {

errot("f(): vector range error");

return;

}

}

Martin Richards 133 Comp Prog Langs

