
Programming the
ARM

Computer Design 2002, Lecture 4
Robert Mullins

2

Quick Recap
The Control Flow Model

Ordered list of instructions, fetch/execute, PC
Instruction Set Architectures

Types of internal storage
Accumulator, stack and general purpose register machines

Addressing modes
Register indirect, displacement, memory indirect etc.

Branch conditions
Condition codes, condition registers, branch and compare

Encoding Instructions
Fixed length or variable length encodings
Representing immediates, opcode and operands

3

Quick Recap

Making the common case fast and Amdahl’s
Law

- See H&P (chapters 1 and 2)
The Big Picture - Interaction between the
compiler, architecture and instruction set

E.g. a poorly designed instruction set may make high-
performance implementation difficult and restrict the
effectiveness of an optimizing compiler.

4

Lecture 4

This Lecture
Implementing functions and procedures
The ARM Procedure Call Standard (APCS)
Development tools
Practical 4 of the ECAD labs

5

Functions and Procedures

Structure program (abstraction/hierarchy)
Package useful code so it can be reused

Must use a well defined interface
Questions

How do we pass arguments to the function?
How do we obtain the result?

6

Procedure Calls

Register values are preserved by saving and
restoring them from a stack in memory
Agree on a standard, define how registers are
used (part of ABI – Application Binary Interface)

Which registers hold arguments
Which register holds the result (or pointer to)
Some registers may need to be saved (preserved) by
caller (caller-saved)
Some may need to be saved by callee (callee-saved)

7

ARM Procedure Call Standard
There are in fact many variants, lets look at base
standard
Four argument registers (r0-r3)

Not preserved by routine/function (callee)
May be saved by caller if necessary
May be used to return results to caller

Registers r4-r11 are typically used to hold the routine’s
local variables

The value of these registers remains unchanged after a
subroutine call
Registers may need to be saved and restored by callee

Registers r12-r15 have special dedicated roles
e.g. the link register holds the return address

8

APCS Register Usage Convention

the program counterpc15

the link register (return address)lr14

lower end of current stack frame (stack pointer)sp13

the intra-procedure-call scratch registerip12

frame pointer (pointer to start of current stack frame) or variable
register 8

fp11

stack limit or variable register 7sl or v710

static base or variable register 6sb or v69

variable register 5v58

variable register 4v47

variable register 3v36

variable register 2v25

variable register 1v14

argument 4 / result / scratch register for functiona43

argument 3 / result / scratch register for functiona32

argument 2 / result / scratch register for functiona21

argument 1 / result / scratch register for functiona10

APCS RoleAPCS NameRegister

9

Parameter Passing and result
return

a1-a4 (r0-r3) may be used to hold
parameters
Additional parameters may be passed on
the stack
Results may be returned in a1-a4 as a
value or indirectly as an address

10

Simple function call
MOV r0, #10
MOV r1, #5
BL max ;
…..

max CMP r0, r1
MOVLT r0, r1 ; if r0<r1 r0=r1
MOV pc, lr

For simple leaf functions that only use r0-r3 (a1-a4) the function overhead is
small as no registers need to be saved. In real programs around half the
functions may be simple leaf functions like this.

11

Saving and restoring registers

BL myfunction
…..

myfunction STMFD sp!, {r4-r10, lr} ; save registers
…..
…..
LDMFD sp!, {r4-r10, pc} ; restore and

; return

12

The Stack

Full-descending stack - ARM stack grows down, stack pointer points to last
entry (not next free entry)

13

ARM Assembler Examples

14

Assembler Directives

Information for the assembler
Common uses

Define and name new section, code or data
Constants, aliases
Allocate bytes of memory as data and
initialize contents

15

Allocating memory for data
Allocate bytes of memory (DCB)
C_String DCB “MyString”, 0
Allocate words of memory (DCD)
Data DCD 1234, 1, 5, 20
Reserve a ‘zeroed’ block of memory
(SPACE or %)
table % 1024 ; 1024 bytes of zeroed

; memory

16

Writing Assembler, Hello World Example
; create new code area called ‘hello’
AREA hello, CODE, READONLY

SWI_WriteC EQU 0x3 ; symbolic name for constant
SWI_Exit EQU 0x18

ENTRY ; entry point into program

START ADR r1, TEXT ; ADD r1, pc, offset of TEXT
LOOP LDRB r2, [r1] ; load character

CMP r2, #0 ; check we are not at end of string
MOV r0, #SWI_WriteC ; call putchar (r1 points to char)
SWINE 0x123456 ; do system call
ADD r1, r1, #1 ; increase our pointer
BNE LOOP ; loop if we are not finished

MOV r0, #SWI_Exit ; standard exit system call
MOV r1, #0x20000
ADD r1,r1,#0x26
SWI 0x123456

TEXT DCB "Hello World\n", 0
END ; end of source file!

17

18

The program in memory….

19

int fib (int a) {
if (a<=1) return a;
else return fib (a-1)+fib(a-2);

}

fib:
stmfd r13!, {r4, r5, r14} ; preserve registers
mov r4, r0 ; r4=a
cmp r0, #1 ; compare a with 1
movle r0, r4 ; (if a<=1) result=a
ldmlefd r13!, {r4, r5, pc} ; (if a<=1) return
sub r0, r4, #1
bl fib ; fib (a-1)
mov r5, r0 ; r5=fib(a-1)
sub r0, r4, #2
bl fib ; fib (a-2)
add r0, r5, r0 ; result=fib(a-1)+fib(a-2)
ldmfd r13!, {r4, r5, pc} ; return

20

21

22

Fib(5)
R5
R4
Return Address to Main()

R4=5
Fib(R4-1)

R5
R4 (a=5)
Return address

Fib(3)….. etc.
Fib(R4-2)
Return sum

23

ECAD Workshop Four
Sieve of Eratosthenes

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 0 1 0 1 0 1 0 1 0 1 0

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 0 1 0 1 1 1 0 1 0 1 1

24

Later Workshops

Make sure you use procedure call
standard correctly

Use branch-and-link (BL) instruction to call
procedure
Pass parameters in correct registers
Save registers when necessary
Restore registers on exit

25

Next Lecture

OS Support and Memory Management
Virtual Memory
Interrupts/Exceptions
ARM specifics (operating modes, page table
organisation etc.)

26

Self Study/Supervision Work
Write a simple C program to sum the numbers 1
to n, compile it and examine the assembler
produced

You might want to try executing the program in the
debugging environment, this will allow you to single
step through the program. You can look at the
contents of the registers and memory as you go.

Challenge
Write a program (in ARM assembly language) to
reverse the bytes of a 32-bit register
It’s possible to do this using only one additional
register to hold temporary results and 4 ARM
instructions!

