Formal Definition of Left

First write $U \xrightarrow{1+} B_1 \cdots B_n$ if U can produce the string $B_1 \cdots B_n$ using one or more productions. We define, for each non-terminal U in the grammar, the set Left(U) to consist of those symbols

that can start strings derived from U. I.e. If $U \xrightarrow{1+} B_1 \cdots B_n$ then B_1 is in Left(U). Left(U) can be derived for all non-terminals in the grammar by the following algorithm:

- 1. Initialise all sets Left(U) to empty.
- 2. For each production $U \longrightarrow B_1 \cdots B_n$ enter B_1 into Left(U).
- 3. For each production $U \longrightarrow B_1 \cdots B_n$ where B_1 is also a non-terminal enter all the elements of $Left(B_1)$ into Left(U)
- 4. Repeat 3. until no further change.