A Broadside Register

1

A broadside two-to-one multiplexor

2

A dual port register file

Read Only Memory (ROM)

sufficiently long, valid data from that address comes out.

6

Read Cycle (write is similar)

A DRAM has a multiplexed address bus and the address is presented in two halves, known as row and column addresses. So the capacity is $4^{**}A \times D$. A 4 Mbit DRAM might have A=10 and D=4.

When a processor (or its cache) wishes to read many locations in sequence, only one row address needs be given and multiple col addresses can be given quickly to access data in the same row. This is known as 'page mode' access.

EDO (extended data out) DRAM is now quite common. This guarantees data to be valid for an exteneded period after CAS, thus helping system timing design at high CAS rates.

Refresh Cycle - must happen sufficiently often!

No data enters or leaves the DRAM during refresh, so it 'eats memory bandwidth'. Typically 512 cycles of refresh must be done every 8 milliseconds.

Crystal oscillator clock source

RC oscillator clock source

Clock multiplication and distribution

Power-on reset

Driving a heavy current or high-voltage load

Debouncer circuit for a two-pole switch

ALU and flags register

Internal Structure Block Diagram

Example of memory address decode and simple LED and switch interfacing for programmed IO (PIO) to a microprocessor.

PC Motherboard, 1997 vintage

the busy wire is high.

Flow control: New data can be sent at any time unless either:

additional signals are used to indicate clear to send or

a software protocol is defined to run on top (Xon/Xoff) by reserving certain of the bytes.

Keyboard and/or PS/2 port

Canonical synchronous FSM

LOOP-FREE COMBINATORIAL LOGIC BLOCK

Timing Specifications

Typical nature of a critical path

Johnson counters

Pipelining

Loop-free combinatorial logic

function - first half

Synchronous global clock

signal

Loop-free combinatorial logic

function - second half

Cascading FSMs

An example that uses (badly) a derived clock: a serial-to-parallel converter

A D-type with clock-enable

Clock Skew

a) A three-stage shift register with some clock skew delays.

c) A solution for serious skew and delay problems ?

Crossing an async boundary

1. The wider the bus width, N, the fewer the number of transactions per second needed and the greater the timing flexibility in reading the data from the receiving latch.

2. Make sure that the transmitter does not change the guard and the data in the same transmit clock cycle.

3. Place a second flip-flop after the receiving decision flip-flop so that on the rare occurances when the first is metastable for a significant length of time (e.g. 1/2 a clock cycle) the second will present a good clean signal to the rest of the receiving system.

Paths between FSMs w/ derived clocks

(Chips are not always square)

A chip in its package, ready for bond wires

IO and power pads

Die cost example

Area	Wafer dies	Working dies	Cost per working die
2	9000	8910	0.56
3	6000	5910	0.85
4	4500	4411	1.13
6	3000	2911	1.72
9	2000	1912	2.62
13	1385	1297	3.85
19	947	861	5.81
28	643	559	8.95
42	429	347	14.40
63	286	208	24.00
94	191	120	41.83
141	128	63	79.41
211	85	30	168.78
316	57	12	427.85
474	38	4	1416.89

A taxonomy of ICs

Field Programmable Gate Arrays

A simple IO block FPGA

Contents of the PAL macrocell

Example programming of a PAL showing only fuses for the top macrocell

pin 2 pin 2 pin 3 pin 4	16 = c 2 = a 3 = b 4 = c	o1; ; ;						
01.06	e = ~a	a:						
o1 =	(b &	o1)	c;					
-x							(oe term)	
x-	x						(pin 3 and	16)
		x					(pin 4)	
xxxx	XXXX	xxxx	XXXX	xxxx	XXXX	xxxx		
XXXX	xxxx	XXXX	xxxx	XXXX	XXXX	XXXX		
XXXX	xxxx	XXXX	xxxx	XXXX	XXXX	XXXX		
XXXX	xxxx	XXXX	xxxx	XXXX	XXXX	XXXX		
XXXX	xxxx	XXXX	xxxx	XXXX	XXXX	XXXX		
х							(macrocell	fuse)

Delay-power style of technology comparison chart

Logic net with tracking and input load capacitances

An example cell from a manufacturer's cell library

Parameters	Pin	Value	Units	
Input loading	a b c d	2.1 2.1 2.1 2.0	Load units	
Drive capability	f	35	Load units	

Comparative view of digital logic technologies

	Maximum	Maximum	Maximum			
Technology	clock speed	gate count	I/Os			
GaAs bipolar	100 GHz	500	30			
GaAs fet	30 GHz	10K	300			
Si ECL	10 GHz	10M	500			
Si CMOS	8 GHz	50M	1000			
Within Si CMOS						
Full-custom	8 GHz	50M	1000			
Standard cell	4 GHz	25M	1000			
Gate array	2 GHz	5M	1000			
FPGA	175 MHz	500K	800			
CPLD	150 MHz	10K	200			
PAL	200 MHz	500	60			

Addition of two integers serially, I.s.b first

Second operand B

Bit-serial multiplication of an integer by a hardwired constant

Design partitioning: The Cambridge Fast Ring

Design partitioning: An external modem

Design partitioning: A Miniature Radio Module

A Microcontroller

LEDs wired in a matrix to reduce external pin count

IR Handset Internal Circuit

Scan multiplex logic for an LED pixel-mapped display

Use of a ROM as a function look-up table

Merge unit block diagram

MIDI serial data format

9n	kk	vv	(note	on)			
8n	kk	vv	(note	off))		
9n	kk	00	(note	off	with	zero	velocity)

MIDI merge unit internal functional units

59

The serial to parallel converter:

```
input clk;
output [7:0] pardata; output guard;
```

The running status remover:

```
input clk;
input guard_in; input [7:0] pardata_in;
output guard_out; output [23:0] pardata_out
```

For the FIFOs:

```
input clk;
input guard_in; input [7:0] pardata_in;
input read; output guard_out; output [23:0] pardata_out;
input read; output guard_out; output [23:0] pardata_out;
```

For the merge core unit:

```
input clk;
input guard_in0; input [23:0] pardata_in0; output read0;
input guard_in1; input [23:0] pardata_in1; output read1;
output guard_out; output [23:0] pardata_out;
input read; output guard_out; output [23:0] pardata_out;
```

Status inserter / parallel to serial converter are reverse of reciprocal units

Network Camera Node

