Lecture 14:

Case Study: Windows NT

www.cl.cam.ac.uk/Teaching/2001/0SFounds/

Lecture 14: Monday 5th November 2001

Today’s Lecture

Today we'll cover:
e Case Study: Windows NT

— How is it structured?
Processes (and threads),
Virtual memory,

I/O and File management.

Lecture 14: Contents

After OS/2, MS decide they need “New Technology”:

Windows NT: History

1988: Dave Cutler recruited from DEC.

1989: team (~ 10 people) starts work on a new
OS with a micro-kernel architecture.

July 1993: first version (3.1) introduced

Bloated and suckful =

NT 3.5 released in September 1994: mainly size
and performance optimisations.

Followed in May 1995 by NT 3.51 (support for the
Power PC, and more performance tweaks)

July 1996: NT 4.0

— new (windows 95) look 'n feel
— various functions pushed back into kernel (most
notably graphics rendering functions)

Feb 2000: NT 5.0 aka Windows 2000
— big push to finally kill DOS/Win 9x family

Windows XP (NT 6.0) coming June 2001. . .

NT Case Study— Introduction & Overview

NT Design Principles
Key goals for the system were:
e Portability
e Security
e POSIX compliance
e Multiprocessor support
e Extensibility
e International support
e Compatibility with MS-DOS/Windows applications
This led to the development of a system which was:
e written in high-level languages (C and C++)
e based around a micro-kernel, and

e constructed in a layered/modular fashion.

NT Case Study— Introduction & Overview




Structural Overview

Logon Win16 Win32 MS-DOS Posix
e Arlinoti . Applications

oce: 052
Applications

7 POSIX \—1-

\ Subsytem /OS/2 x\x‘
7~ < Subsytem /

‘ﬁe

Native NT Interface (Sytem Calls) |_ ‘Kernel Mode
EXECUTIVE

_____________________ -

I - o VM Object Process 1

! 1

! |
File System Cache Security LPC

! Drivers Manager Manager Facility 1

———————————————————— o

DEVICE DRIVERS ”, KERNEL
Hardware Abstraction Layer (HAL) ]

Hardware

o Kernel Mode: HAL, Kernel, & Executive
o User Mode:

— environmental subsystems
— protection subsystem

HAL
e Layer of software (HAL.DLL) which hides details of
underlying hardware

e.g. interrupt mechanisms, DMA controllers,
multiprocessor communication mechanisms

e Many HALs exist with same interface but different
implementation (often vendor-specific)

Kernel
e Foundation for the executive and the subsystems
e Execution is never preempted.

e Four main responsibilities:

1. CPU scheduling

2. Interrupt and exception handling
3. Low-level processor synchronisation
4. Recovery after a power failure

e Kernel is objected-oriented; all objects either
dispatcher objects or control objects

NT Case Study— Introduction & Overview 4

NT Case Study— Low-level Functions 5

Processes and Threads

NT splits the “virtual processor” into two parts:

1. A process is the unit of resource ownership.
Each process has:

e a security token,
e a virtual address space,
e a set of resources (object handles), and
e one or more threads.
2. A thread are the unit of dispatching.
Each thread has:

a scheduling state (ready, running, etc.),
other scheduling parameters (priority, etc),
a context slot, and

(generally) an associated process.

Threads are:

e co-operative: all threads in a process share the
same address space & object handles.

e lightweight: require less work to create/delete than
processes (mainly due to shared VAS).

NT Case Study— Low-level Functions 6

CPU Scheduling
e Hybrid static/dynamic priority scheduling:

— Priorities 16-31: “real time” (static priority).
— Priorities 1-15: “variable” (dynamic) priority.

e Default quantum 2 ticks (~20ms) on Workstation,
12 ticks (~120ms) on Server.

e Threads have base and current (> base) priorities.

— On return from 1/0, current priority is boosted
by driver-specific amount.

— Subsequently, current priority decays by 1 after
each completed quantum.

— Also get boost for GUI threads awaiting input:
current priority boosted to 14 for one quantum
(but quantum also doubled)

— Yes, this is true.

e On Workstation also get quantum stretching:

— “... performance boost for the foreground
application” (window with focus)
— fg thread gets double or triple quantum.

NT Case Study— Low-level Functions 7




Object Manager

Object Name @ s
/ Object Directory
Security Descriptor
i Quota Charges
gbl 3Ct Open Handle Count
leaaer Open Handles List '}
Temporary/Permanent Ty pe Obl ect
\ Type Object Pointer Type Name
Reference Count Common Info.
Methods:
R open
Object Object-Specfic Data Close
(perhaps including Delete
BOdy a kernel object) Parse
Security
Query Name

e Every resource in NT is represented by an object

e The Object Manager (part of the Executive) is
responsible for:

— creating objects and object handles

— Performing security checks

— Tracking which processes are using each object
e Typical operation:

— handle = open(objectname, accessmode)
— result = service(handle, arguments)

NT Case Study— Executive Functions 8

Object Namespace

driver\ device\ BaseNamedObjects)\

22\
/ / \ / N\ T .
/' FloppyO\ Serialo\ Harddisk0\ A
A: C: COML: / / \

Partitionl\ Partition2\

. / \

e Objects (optionally) have a name

e Object Manger manages a hierarchical namespace:

shared between all processes = sharing
implemented via directory objects

each object protected by an access control list
naming domains (implemented via parse) mean
file-system namespaces can be integrated

e Also get symbolic link objects: allow multiple
names (aliases) for the same object.

e Modified view presented at API level. . .

NT Case Study— Executive Functions 9

Process Manager

e Provides services for creating, deleting, and using
threads and processes.

e Very flexible:

— no built in concept of parent/child relationships
or process hierarchies

— processes and threads treated orthogonally.

= can support Posix, 0OS/2 and Win32 models.

Virtual Memory Manager
e NT employs paged virtual memory management
e The VMM provides processes with services to:

— allocate and free virtual memory
— modify per-page protections
e Can also share portions of memory:
— use section objects (= software segments)

— based verus non-based.
— also used for memory-mapped files

NT Case Study— Executive Functions 10

I/0 Manager

/0 Requests

File
System
river

10
Manager

Inter

Driver

Device
Driver HAL

303

e The I/O Manager is responsible for:

— file systems
— cache management
— device drivers

e Basic model is asynchronous:

— each 1/0 operation explicitly split into a request
and a response

— 1/0 Request Packet (IRP) used to hold
parameters, results, etc.

e File-system & device drivers are stackable. . .

NT Case Study— Executive Functions 11




File System

The fundamental structure of the NT filing system
(NTFS) is a volume

— created by the NT disk administrator utility

— based on a logical disk partition

— may occupy a portion of a disk, and entire disk,
or span across several disks.

A file in NTFS is not a simple byte stream, as in
MS-DOS or UNIX, rather, it is a structured object
consisting of attributes.

Every file in NTFS is described by one or more
records in an array stored in a special file called the
Master File Table (MFT).

NTFS has a number of advanced features, e.g.

security (access checks on open)
unicode based names
use of a log for efficient recovery

support for sparse and compressed files

(but only recently are features being used)

NT Case Study— Executive Functions 12

Summary

o Main Windows NT features are:
— layered/modular architecture:
— generic use of objects throughout
— multi-threaded processes
— multiprocessor support
— asynchronous 1/O subsystem
— advanced filing system
— preemptive priority-based scheduling
e Design essentially more advanced than Unix.
e Implementation of lower levels (HAL, kernel & executive)
actually rather decent.
e But: has historically been crippled by
— almost exclusive use of Win32 API
— legacy device drivers (e.g. VXDs)
— lack of demand for “advanced” features
e Windows XP + Luna might finally break free. . .

Next lecture: Last year's exam questions!

Background Reading:

e Solomon — “Inside Windows NT (2nd Edition)”
e Silberschatz et al.: — Chapter 21 (Win2K)

NT Case Study— Summary 13

Course Review

Part I: Computer Organisation

— “how does a computer work?”
— fetch-execute cycle, data representation, etc

— NB: ‘circuit diagrams’ not examinable

Part II: Operating System Functions

OS structures: h/w support, kernel vs. p-kernel

Processes: states, structures, scheduling

Memory: virtual addresses, sharing, protection

I/O subsytem: polling/interrupts, buffering.

Filing: directories, meta-data, file operations.

e Part Ill: Case Studies

— Unix: file abstraction, command ‘extensibility’

— Windows NT: layering, objects, asynch. 1/0.

NT Case Study— Summary 14




