Lecture 13:

Unix Il: Processes

www.cl.cam.ac.uk/Teaching/2001/0SFounds/

Lecture 13: Friday 2nd November 2001

Today’s Lecture

Today we'll cover:
e Case Study: Unix Part Il

— Processes,
— Shell, and
— IPC: Pipes and signals.

Lecture 13: Contents 1

Unix Processes

Uni | Kernel Address Space
nix / (shared by all)
Kernel
| Stack Segment | Ad drei)?s Space
rows downward per f'rocess
‘ ;unm'o:s are’iall‘:’fi { 7
Free
Space
grows upwards as more
memory allocated

e Recall: a process is a program in execution.
e Have three segments: text, data and stack.

e Unix processes are heavyweight.

Lecture 13: Processes

Unix Process Dynamics

parent . .
process parent process (potentially) continues
>\ wait
I

child
process

program executes @
——

e Process represented by a process id (pid)

zombie
process

e Hierarchical scheme: parents create children.

e Four basic primitives:

pid = fork ()

reply = execve(pathname, argv, envp)
exit(status)

— pid = wait (status)

e fork() nearly always followed by exec()
= vfork() and/or COW.

Lecture 13: Processes 3

Start of Day

Kernel (/vmunix) loaded from disk (how?) and
execution starts.

Root file-system mounted.

Process 1 (/etc/init) hand-crafted.
e init reads file /etc/inittab and for each entry:

1. opens terminal - special file (e.g. /dev/tty0)
2. duplicates the resulting fd twice.
3. forks an /etc/tty process.

e each tty process next:

1. initialises the terminal
2. outputs the string “login:” & waits for input
3. execve()’s /bin/login

e login then:

1. outputs “password:” & waits for input

2. encrypts password and checks it against
/etc/passwd.

3. if ok, sets uid & gid, and execve()'s shell.

e Patriarch init resurrects /etc/tty on exit.

The Shell

J

issue prompt
repeat

infinitum
get command line

child
== process™” @

no -fg ? program

executes
yes

-0

|
v

< zombie __
‘process

e Shell just a process like everything else.

e Uses path for convenience.
e Conventionally ‘&’ specifies background.

e Parsing stage (omitted) can do lots. . .

Lecture 13: Processes

Lecture 13: Processes

Shell Examples

pwd
/home/gmb
1s -F
IRAM.micro.ps gnome_sizes prog-nc.ps
Mail/ ica.tgz rafe/
0SDI99_self_paging.ps.gz lectures/ riol07/
TeX/ linbot-1.0/ src/
adag.pdf manual.ps store.ps.gz
docs/ past-papers/
emacs-lisp/ pbosch/
fs.html pepsi_logo.tif
cd src/
pwd
/home/gmb/src
1s -F
cdq/ emacs-20.3.tar.gz misc/ read_mem.c
emacs-20.3/ ispell/ read_mem* rio007.tgz
wc read_mem.c

95 225 2262 read_mem.c
1s -1F r*
-rwxrwxr-x 1 gmb user 34956 Mar 21 1999 read_mem*
-rw-rw-r-— 1 gmb user 2262 Mar 21 1999 read_mem.c
“rw-—————-— 1 gmb user 28953 Aug 27 17:40 rio007.tgz

1s -1 /usr/bin/X11/xterm
-rwXr-xr-x 2 root system 164328 Sep 24 18:21 /usr/bin/X11/xterms

e Prompt is ‘#'.
e Use man to find out about commands.

e User friendly?

Lecture 13: Processes

Standard 1/0

e Every process has three fds on creation:

— stdin: where to read input from.
— stdout: where to send output.
— stderr: where to send diagnostics.

e Normally inherited from parent, but shell allows
redirection to/from a file, e.g.:

— 1s >listing.txt
— 1s >&listing.txt
— sh <commands.sh.

e Actual file not always appropriate; e.g. consider:

1s >temp.txt;
wc <temp.txt >results

e Pipeline is better (e.g. 1s | wc >results)

e Most Unix commands are filters = can build
almost arbitrarily complex command lines.

e Redirection can cause some buffering subtleties.

Lecture 13: Processes

Pipes

old data

new data
Process A \ Process B

\/

write (fd, buf, n) read(fd, buf, n)

e One of the basic Unix IPC schemes.
e Logically consists of a pair of fds

e e.g. reply = pipe(int fds[2])

e Concept of “full” and “empty” pipes.

e Only allows communication between processes with
a common ancestor. \Why?

e Named pipes address this.

Lecture 13: Interprocess Communication 8

Signals
e Problem: pipes need planning = use signals.
e Similar to a (software) interrupt.

e Examples:

SIGINT : user hit Ctrl-C.

SIGSEGV : program error.

SIGCHLD : a death in the family. . .
SIGTERM : ... or closer to home.

e Unix allows processes to catch signals.
e e.g. Job control:

— SIGTTIN, SIGTTOU sent to bg processes
— SIGCONT turns bg to fg.
— SIGSTOP does the reverse.

e Cannot catch SIGKILL (hence kill -9)

e Signals can also be used for timers, window resize,
process tracing, . . .

Lecture 13: Interprocess Communication

1/0 Implementation

User
— Kernel
| Generic File System Layer |
Buffer
Cache
Cooked
Character I/O
Raw Character I/O Raw Block I/0
|Device Driverl |Devi:e Drivell Device Driver | | Device Driver
T T Kernel
v v v v Hardware

e Recall:

— everything accessed via the file system.
— two broad categories: block and char.

e Low-level stuff gory and machine dep. = ignore.

e Character 1/0 low rate but complex = most
functionality in the “cooked” interface.

e Block I/O simpler but performance matters =
emphasis on the buffer cache.

Lecture 13: 1/O Subsystem 10

The Buffer Cache

e Basic idea: keep copy of some parts of disk in
memory for speed.

e On read do:

1. Locate relevant blocks (from inode)
2. Check if in buffer cache.

3. If not, read from disk into memory.
4. Return data from buffer cache.

e On write do same first three, and then update
version in cache, not on disk.

e “Typically” prevents 85% of implied disk transfers.

e Question: when does data actually hit disk?

e Answer: call sync every 30 seconds to flush dirty
buffers to disk.

e Can cache metadata too — problems?

Lecture 13: 1/O Subsystem

11

Unix Process Scheduling Unix Process States

e Priorities 0-127; user processes > PUSER = 50.

e Round robin within priorities, quantum 100ms.

e Priorities are based on usage and nice, i.e.
interrupt

P;(i) = PUsER + 25D L 9 5 nice; (}
Z
exlt

preempt

gives the priority of process j at the beginning of F

schedule /

interval ¢ where: sleep .
same
. 2xload; . __state
CPUJ(Z) = WCPU (l 1) + nlcej . ----- -
wakeup

and nice; is a (partially) user controllable

adjustment parameter € [—20, 20]. fork ()—
® Joad; is the sampled average length of the run ru = running (user-mode) rk = running (kernel-mode)
queue in which process j resides, over the last z = zombie p = preempted
minute of operation sl = sleeping rb = runnable
. . [« = created
e so if e.g. load is 1 = ~ 90% of 1 seconds CPU
usage “forgotten” within 5 seconds. e Note: above is simplified — see CS section 23.14

for detailed descriptions of all states/transitions.

Lecture 13: Process Scheduling 12 Lecture 13: Process Scheduling 13

Summary

e Main Unix features are:

— file abstraction

x a file is an unstructured sequence of bytes
* (not really true for device and directory files)
hierarchical namespace

 directed acyclic graph (if exclude soft links)
* can recursively mount filesystems
heavy-weight processes

IPC: pipes & signals

I/O: block and character

dynamic priority scheduling

x base priority level for all processes

x priority is lowered if process gets to run

* over time, the past is forgotten

e But V7 had inflexible IPC, inefficient memory
management, and poor kernel concurrency.

o Later versions address these issues.

Next lecture: Case Study Il: Windows NT

Lecture 13: Summary 14

