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Today’s Lecture

Today we'll cover:

e Case Study: Unix

— History,

— Design features,

File and Directories,
Access Control.
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Unix: Introduction

e Unix first developed in 1969 at Bell Labs
(Thompson & Ritchie)

e Originally written in PDP-7 asm, but then (1973)
rewritten in the ‘new’ high-level language C
= easy to port, alter, read, etc.

e 60 edition (“V6") was widely available (1976).

— source avail = people could write new tools.
— nice features of other OSes rolled in promptly.

e By 1978, V7 available (for both the 16-bit PDP-11
and the new 32-bit VAX-11).

e Since then, two main families:
— AT&T: “System V", currently SVR4.
— Berkeley: “BSD", currently 4.3BSD/4.4BSD.

e Standardisation efforts (e.g. POSIX, X/OPEN) to
homogenise.

e Best known “UNIX" today is probably linux, but
also get FreeBSD, NetBSD, and (commercially)
Solaris, OSF/1, IRIX, and Tru64.
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Unix Family Tree (Simplified)
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Design Features

Ritchie and Thompson writing in CACM, July 74,
identified the following (new) features of UNIX:

1. A hierarchical file system incorporating
demountable volumes.

2. Compatible file, device and inter-process 1/0.
3. The ability to initiate asynchronous processes.

4, System command language selectable on a
per-user basis.

5. Over 100 subsystems including a dozen languages.
6. A high degree of portability.

Features which were not included:

e real time

e multiprocessor support

Fixing the above is pretty hard.
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Structural Overview
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e Clear separation between user and kernel portions.
e Processes are unit of scheduling and protection.

e All 1/0 looks like operations on files.
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File Abstraction
e A file is an unstructured sequence of bytes.
e Represented in user-space by a file descriptor (fd)

e QOperations on files are:

fd = open (pathname, mode)

fd = creat(pathname, mode))
bytes = read(fd, buffer, nbytes)
count = write(fd, buffer, nbytes)
reply = seek(fd, offset, whence)
reply = close(fd)

e Devices represented by special files:

— support above operations, although perhaps
with bizarre semantics.

— also have ioctl’s: allow access to
device-specific functionality.

e Hierarchical structure supported by directory files.
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Directory Hierarchy
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e Directories map names to files (and directories).
e Have distinguished root directory called '/’

e Fully qualified pathnames = perform traversal
from root.

e Every directory has '." and ’.." entries: refer to self
and parent respectively.

e Shortcut: current working directory (cwd).

e In addition shell provides access to home
directory as ~username (e.g. ~jean/)
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Aside: Password File

/etc/passwd holds list of password entries.

Each entry roughly of the form:

user-name:encrypted-passwd: home-directory:shell

Use one-way function to encrypt passwords.

— i.e. a function which is easy to compute in one
direction, but has a hard to compute inverse.

To login:

Get user name

Get password

Encrypt password

Check against version in /etc/password
5. If ok, instantiate login shell.

o=

e Publicly readable since lots of useful info there.
e Problem: off-line attack.

e Solution: shadow passwords (/etc/shadow)
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File System Implementation
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e Inside kernel, a file is represented by a data
structure called an index-node or inode.

e Holds file meta-data:

a) Owner, permissions, reference count, etc.
b) Location on disk of actual data (file contents).

e Where is the filename kept?
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Directories and Links
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e Directory is a file which maps filenames to inodes.

e An instance of a file in a directory is a (hard) link.

(this is why have reference count in inode).
e Directories can have at most 1 (real) link. Why?

e Also get soft- or symbolic-links: a ‘normal’ file
which contains a pathname.
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On-Disk Structures
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e A disk is made up of a boot block followed by one
or more partitions.
(a partition is just a contiguous range of N
fixed-size blocks of size k for some N and k).

e A Unix file-system resides within a partition.
e Superblock contains info such as:

— number of blocks in file-system

— number of free blocks in file-system
start of the free-block list

start of the free-inode list.

various bookkeeping information.
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Mounting File-Systems In-Memory Tables

process-specific
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e Entire file-systems can be mounted on an existing
directory in an already mounted filesystem. 17 Y ~ITnoas 78
. system-wide
e At very start, only ¢/’ exists = need to mount a open file table
root file-system. —__

e Subsequently can mount other file-systems, e.g.
mount ("/dev/hda2", "/home", options)

Recall: process sees files as file descriptors

e |n implementation these are just indices into

e Provides a unified name-space: e.g. access process-specific open file table

/home/jean/ directly. e Entries point to system-wide open file table. Why?

e Cannot have hard links across mount points: why? e These in turn point to (in memory) inode table.

e What about soft links?
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Access Control Consistency Issues
Owner | Group | World Owner | Group | World e To delete a file, use the unlink system call.
R welr welr weE R wElr weElr weE

e From the shell, this is rm <filename>

= 0640 = 0755 e Procedure is:

1. check if user has sufficient permissions on the

e Access control information held in each inode. . .
file (must have write access).

e Three bits for each of owner, group and world: 2. check if user has sufficient permissions on the
read, write and execute. directory (must have write access).
e What do these mean for directories? 3. if ok, remove entry from directory.

4. Decrement reference count on inode.
5. if now zero:

a. free data blocks.

b. free inode.

e In addition have setuid and setgid bits:

— normally processes inherit permissions of
invoking user.
— setuid/setgid allow user to “become” someone

else when running a given program. o If crash: must check entire file-system:
— e.g. prof owns both executable test (0711 and — check if any block unreferenced.
setuid), and score file (0600) — check if any block double referenced.

= anyone user can run it.
= it can update score file.
= but users can’t cheat.

e And what do these mean for directories?
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Summary
You should now understand:

e Files are unstructured byte streams.

e Everything is a file: ‘normal’ files, directories, symbolic links,
special files.

e Hierarchy built from root (‘/").

e Unified name-space (multiple file-systems may be mounted
on any leaf directory).

o Low-level implementation based around inodes.

e Disk contains list of inodes (along with, of course, actual
data blocks).

e Processes see file descriptors: small integers which map to
system file table.

e Permissions for owner, group and everyone else.
e Setuid/setgid allow for more flexible control.
o Care needed to ensure consistency.

Next lecture: Unix Part Il: Processes

Background Reading:

e Silberschatz et al.: — Appendix A (on web)
o Leffler et al.: — Part 3
e Ritchie & Thompson: — Original paper (on web)
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