Lecture 12:

Unix I: History and File Management

www.cl.cam.ac.uk/Teaching/2001/0SFounds/

Lecture 12: Wednesday 31st October 2001

Today’s Lecture

Today we'll cover:

e Case Study: Unix

— History,

— Design features,

File and Directories,
Access Control.

Lecture 12: Contents

Unix: Introduction

e Unix first developed in 1969 at Bell Labs
(Thompson & Ritchie)

e Originally written in PDP-7 asm, but then (1973)
rewritten in the ‘new’ high-level language C
= easy to port, alter, read, etc.

e 60 edition (“V6") was widely available (1976).

— source avail = people could write new tools.
— nice features of other OSes rolled in promptly.

e By 1978, V7 available (for both the 16-bit PDP-11
and the new 32-bit VAX-11).

e Since then, two main families:
— AT&T: “System V", currently SVR4.
— Berkeley: “BSD", currently 4.3BSD/4.4BSD.

e Standardisation efforts (e.g. POSIX, X/OPEN) to
homogenise.

e Best known “UNIX" today is probably linux, but
also get FreeBSD, NetBSD, and (commercially)
Solaris, OSF/1, IRIX, and Tru64.

Lecture 12: Introduction 2

Unix Family Tree (Simplified)

1969

1973
1974
1975
1976
1977
1978
1979
1980
1981
1982 System I11
1983 System 'V
1984 SVR2

1985
1986
1987 SVR3
1988
1989 SVR4
1990

1991
1992

1993

First Edition
Fifth Edition
Sixth Edition
Seventh Edition —_
2V 3BSD
4.0BSD
Eighth Edition 4.2BSD \

Sun0S

Mach 43Bsp SunOS3
Ninth Edition
4.3BSD/Tahoe

Tenth Edition 4.3BSD/Reno
OSF/1 Sun0S 4

Solaris
4.4BSD Solaris 2

Lecture 12: Introduction

Design Features

Ritchie and Thompson writing in CACM, July 74,
identified the following (new) features of UNIX:

1. A hierarchical file system incorporating
demountable volumes.

2. Compatible file, device and inter-process 1/0.
3. The ability to initiate asynchronous processes.

4, System command language selectable on a
per-user basis.

5. Over 100 subsystems including a dozen languages.
6. A high degree of portability.

Features which were not included:

e real time

e multiprocessor support

Fixing the above is pretty hard.

Lecture 12: Overview 4

Structural Overview

Application
(Process)

Application
(Process)

Application
(Process)

User

System Call Interface
Kernel

Memory . Process
[ManagemenJ (Fite Sy: stem] (ManagemenJ @

| Block /O | Char I/0 |

Device Driver

1 Hardware

! ' } !

Device Driver Device Driver Device Driver

e Clear separation between user and kernel portions.
e Processes are unit of scheduling and protection.

e All 1/0 looks like operations on files.

Lecture 12: Overview 5

File Abstraction
e A file is an unstructured sequence of bytes.
e Represented in user-space by a file descriptor (fd)

e QOperations on files are:

fd = open (pathname, mode)

fd = creat(pathname, mode))
bytes = read(fd, buffer, nbytes)
count = write(fd, buffer, nbytes)
reply = seek(fd, offset, whence)
reply = close(fd)

e Devices represented by special files:

— support above operations, although perhaps
with bizarre semantics.

— also have ioctl’s: allow access to
device-specific functionality.

e Hierarchical structure supported by directory files.

Lecture 12: Files and the Filesystem 6

Directory Hierarchy

//\\

bin/ dev/ etc/ home/ usr/

LN N

steve/ jean/

/
|

unix.ps index.html

e Directories map names to files (and directories).
e Have distinguished root directory called '/’

e Fully qualified pathnames = perform traversal
from root.

e Every directory has '." and ’.." entries: refer to self
and parent respectively.

e Shortcut: current working directory (cwd).

e In addition shell provides access to home
directory as ~username (e.g. ~jean/)

Lecture 12: Files and the Filesystem 7

Aside: Password File

/etc/passwd holds list of password entries.

Each entry roughly of the form:

user-name:encrypted-passwd: home-directory:shell

Use one-way function to encrypt passwords.

— i.e. a function which is easy to compute in one
direction, but has a hard to compute inverse.

To login:

Get user name

Get password

Encrypt password

Check against version in /etc/password
5. If ok, instantiate login shell.

o=

e Publicly readable since lots of useful info there.
e Problem: off-line attack.

e Solution: shadow passwords (/etc/shadow)

Lecture 12: Files and the Filesystem 8

File System Implementation

single indirect
double indirect | ——» o block with 512

type mode

userid groupid
size nblocks o
nlinks flags °
- []
timestamps (x3) °
- - :
: direct :
direct blocks (x12) : blocks °
e (512) .
[]
| —{eaaT] :
[]
[]
[]
[]

single indirect entries

to block with 512
double indirect entries

e Inside kernel, a file is represented by a data
structure called an index-node or inode.

e Holds file meta-data:

a) Owner, permissions, reference count, etc.
b) Location on disk of actual data (file contents).

e Where is the filename kept?

Lecture 12: Files and the Filesystem 9

Directories and Links

Filename I-Node
13
H B 2
/ i | hello.txt 107
{ | unix.ps 78
Filename l-Node /| N\ 2 L1
56 | P e
.. 214 [} P e
unix.ps 78 |4 home/ bin/ doc/’
index.html 385 | %
misc 47
................................... hello.txt

éteve/ jean/

N

misc/ index.html unix.ps

e Directory is a file which maps filenames to inodes.

e An instance of a file in a directory is a (hard) link.

(this is why have reference count in inode).
e Directories can have at most 1 (real) link. Why?

e Also get soft- or symbolic-links: a ‘normal’ file
which contains a pathname.

Lecture 12: Files and the Filesystem 10

On-Disk Structures

Hard Disk

//7:'0111 \ / Partition 2 \\
3
Q

£
[%}
k] k]
@ | Inode Data 2 |Inode Data
2| Table Blocks 2 | Table Blocks
@ @
o1 |2 i|i+1 Jlj*1|j+2 I\ 1+1 m

e A disk is made up of a boot block followed by one
or more partitions.
(a partition is just a contiguous range of N
fixed-size blocks of size k for some N and k).

e A Unix file-system resides within a partition.
e Superblock contains info such as:

— number of blocks in file-system

— number of free blocks in file-system
start of the free-block list

start of the free-inode list.

various bookkeeping information.

Lecture 12: Files and the Filesystem 11

Mounting File-Systems In-Memory Tables

process-specific

Root File-System , Mount Process A file tables
, / A Point o—1T / \
1 1 3
: // § 25 Process B
! bin/ dev/ etc/ usr/ File-System s B oz
. I/ \ l \ on /dev/hda2 1 27
I R : | 2 62
1 ; * N ! 3 5
! ! / . 4 17
' hdal hda2 hdbl " ' e
! 1! : —
L :: steve/ jean/
L \ I N[__32
I \ ! User Space
1
:_ _______________ ! Kernel Space 0 47 acitve inode table
1 135 T\
e Entire file-systems can be mounted on an existing
directory in an already mounted filesystem. 17 Y ~ITnoas 78
. system-wide
e At very start, only ¢/’ exists = need to mount a open file table
root file-system. —__

e Subsequently can mount other file-systems, e.g.
mount ("/dev/hda2", "/home", options)

Recall: process sees files as file descriptors

e |n implementation these are just indices into

e Provides a unified name-space: e.g. access process-specific open file table

/home/jean/ directly. e Entries point to system-wide open file table. Why?

e Cannot have hard links across mount points: why? e These in turn point to (in memory) inode table.

e What about soft links?

Lecture 12: Files and the Filesystem 12 Lecture 12: Files and the Filesystem
Access Control Consistency Issues
Owner | Group | World Owner | Group | World e To delete a file, use the unlink system call.
R welr welr weE R wElr weElr weE

e From the shell, this is rm <filename>

= 0640 = 0755 e Procedure is:

1. check if user has sufficient permissions on the

e Access control information held in each inode. . .
file (must have write access).

e Three bits for each of owner, group and world: 2. check if user has sufficient permissions on the
read, write and execute. directory (must have write access).
e What do these mean for directories? 3. if ok, remove entry from directory.

4. Decrement reference count on inode.
5. if now zero:

a. free data blocks.

b. free inode.

e In addition have setuid and setgid bits:

— normally processes inherit permissions of
invoking user.
— setuid/setgid allow user to “become” someone

else when running a given program. o If crash: must check entire file-system:
— e.g. prof owns both executable test (0711 and — check if any block unreferenced.
setuid), and score file (0600) — check if any block double referenced.

= anyone user can run it.
= it can update score file.
= but users can’t cheat.

e And what do these mean for directories?

Lecture 12: Files and the Filesystem 14 Lecture 12: Files and the Filesystem

Summary
You should now understand:

e Files are unstructured byte streams.

e Everything is a file: ‘normal’ files, directories, symbolic links,
special files.

e Hierarchy built from root (‘/").

e Unified name-space (multiple file-systems may be mounted
on any leaf directory).

o Low-level implementation based around inodes.

e Disk contains list of inodes (along with, of course, actual
data blocks).

e Processes see file descriptors: small integers which map to
system file table.

e Permissions for owner, group and everyone else.
e Setuid/setgid allow for more flexible control.
o Care needed to ensure consistency.

Next lecture: Unix Part Il: Processes

Background Reading:

e Silberschatz et al.: — Appendix A (on web)
o Leffler et al.: — Part 3
e Ritchie & Thompson: — Original paper (on web)

Lecture 12: Summary 16

