Lecture 11:

File Management

www.cl.cam.ac.uk/Teaching/2001/0SFounds/

Lecture 11: Monday 29th October 2001

Today’s Lecture

Today we'll cover:

e How does OS present a uniform logical view of
information storage?

— Files and directories,

— Namespaces,

— Sharing of files and directories, and
— Operations on files.

Lecture 11: Contents

File Management

text name user file-id information requested
from file
user space L I
R A S N
Directory
Service

Storage Service

/O subsystem
Disk Handler

Filing systems have two main components:

1. Directory Service
e maps from names to file identifiers.
e handles access & existence control
2. Storage Service

e provides mechanism to store data on disk
e includes means to implement directory service

Lecture 11: Filing Systems

File Concept

What is a file?
e Basic abstraction for non-volatile storage.

e Typically comprises a single contiguous logical
address space.

e Internal structure:

1. None (e.g. sequence of words, bytes), or
2. Simple record structures

— lines

— fixed length

— variable length
3. Complex structures

— formatted document

— relocatable object file

e Can simulate last two with first method by
inserting appropriate control characters.

e All a question of who decides:

— operating system
— program(mer).

Lecture 11: Files and File Meta-data

Naming Files

Files usually have at least two kinds of ‘name’:
1. System file identifier (SFID):
e (typically) a unique integer value associated with
a given file
e SFIDs are the names used within the filing
system itself
2. "Human" name, e.g. hello. java

e What users like to use
e Mapping from human name to SFID is held in a
directory, e.g.

Name SFID
hello. java 12353
Makefile 23812
README 9742

e Directories also non-volatile = must be stored
on disk along with files.

3. Frequently also get user file identifier (UFID).

e used to identify open files (see later)

Lecture 11: Files and File Meta-data 4

File Meta-data

Metadata Table
SFID (on disk)

£ (SFID) File Control Block

// Type (file or directory)
/
/ Location on Disk
Size in bytes

\ Time of creation

\| Access permissions

In addition to their contents and their name(s), files
typically have a number of other attributes, e.g.

e Location: pointer to file location on device

e Size: current file size

Type: needed if system supports different types

Protection: controls who can read, write, etc.

Time, date, and user identification: data for
protection, security and usage monitoring.

Together this information is called meta-data.
It is contained in a file control block.

Lecture 11: Files and File Meta-data

Directory Name Space

What are the requirements for our name space?
e Efficiency: locating a file quickly.
e Naming: user convenience

— allow two (or more generally V) users to have
the same name for different files
— allow one file have several different names

e Grouping: logical grouping of files by properties
(e.g. all Java programs, all games, . . .)

First attempts:
e Single-level: one directory shared between all users

=> naming problem
= grouping problem

e Two-level directory: one directory per user

— access via pathname (e.g. bob:hello. java)
— can have same filename for different user
— but still no grouping capability.

Lecture 11: Directories

Directory Name Space cont.

e Get more flexibility with a general hierarchy.

— directories hold files or [further] directories
— create/delete files relative to a given directory

e Human name is full path name, but can get long:
e.g. /usr/groups/X11R5/src/mit/server/os/4.2bsd/utils.c

— offer relative naming
— login directory
— current working directory

e What does it mean to delete a [sub]-directory?

Lecture 11: Directories

Directory Name Space cont.

e Hierarchy good, but still only one name per file.
= extend to directed acyclic graph (DAG) structure:

— allow shared subdirectories and files.
— can have multiple aliases for the same thing

e Problem: dangling references
e Solutions:

— back-references (but variable size records)
— reference counts.

e Problem: cycles. . .

Lecture 11: Directories 8

Directory Implementation

/Ann/mail/B

Name [D[SFID
ann [v|10341 INanelp[sFip

Bob [v[179 mail|Y|2165—+Name|D|SFID

: A |N[5797 sent |v| 434

HH B [n|2459

vao [v[7182 c In[25

e Directories are non-volatile = store as “files” on
disk, each with own SFID.

e Must be different types of file (for traversal)
e Explicit directory operations include:

— create directory

delete directory

list contents

select current working directory
insert an entry for a file (a “link")

Lecture 11: Directories 9

File Operations

UFID| SFID |File Control Block (Copy)
1| 23421 location on disk, size,...
2 3250 " "
3| 10532 " "
4 7122 " " '

e Opening a file: UFID = open(<pathname>)

1. directory service recursively searches directories
for components of <pathname>

2. if all goes well, eventually get SFID of file.

3. copy file control block into memory.

4. create new UFID and return to caller.

e Create a new file: UFID = create(<pathname>)
e Once have UFID can read, write, etc.

— various modes (see next slide)
e Closing a file: status = close(UFID)

1. copy [new] file control block back to disk.
2. invalidate UFID

Lecture 11: Filesystem Interface 10

File Operations cont.

start of file end of file
1 already accessed| to be read

)

current _f

file position

e Associate a cursor or file position with each open
file (viz. UFID), initialised to start of file.

e Basic operations: read next or write next, e.g.

— read(UFID, buf, nbytes), or
— read(UFID, buf, nrecords)

e Sequential Access: above, plus rewind (UFID).
e Direct Access: read N or write N

— allow “"random” access to any part of file.
— can implement with seek (UFID, pos)

e Other forms of data access possible, e.g.

— append-only (may be faster)
— indexed sequential access mode (ISAM)

Lecture 11: Filesystem Interface 11

Other Filing System Issues

e Access Control: file owner/creator should be able
to control what can be done, and by whom.

— access control normally a function of directory
service = checks done at file open time

— various types of access, e.g.
* read, write, execute, (append?),
* delete, list, rename

— more advanced schemes possible (see later)

e Existence Control: what if a user deletes a file?

— probably want to keep file in existence while
there is a valid pathname referencing it
— plus check entire FS periodically for garbage

— existence control can also be a factor when a file

is renamed /moved.

e Concurrency Control: need some form of locking
to handle simultaneous access

— may be mandatory or advisory
— locks may be shared or exclusive
— granularity may be file or subset

Lecture 11: Filesystem Interface

12

Summary

You should now understand:
e How files can be structured,
e How a directory can be represented,

e Directory hierarchies,

Sharing of files/directories,

Simple operations provided.

Next lecture: Unix (Part I)

Background Reading:

e Silberschatz et al.: — Chapter 11

Lecture 11: Summary 13

