Lecture 10:

[/O Systems

www.cl.cam.ac.uk/Teaching/2001/0SFounds/

Lecture 10: Friday 26th October 2001

Today’s Lecture

Today we'll cover:

How does OS manage and control 1/O operations
and devices?

[/O hardware (revision),
Interrupts,

Classes of devices,

I/O services.

Lecture 10: Contents

1/0 Hardware

e Wide variety of ‘devices’ which interact with the

=

I/O subsystem is generally the ‘messiest’ part of OS.

computer via 1/0, e.g.

— Human readable: graphical displays, keyboard,
mouse, printers

— Machine readable: disks, tapes, CD, sensors

— Communications: modems, network interfaces

They differ significantly from one another with
regard to:

Data rate
Complexity of control
Unit of transfer
Direction of transfer
Data representation
Error handling

difficult to present a uniform |/O system which
hides all the complexity.

Lecture 10: 1/O Subsystem

1/O Subsystem

Unpriv — [)
-4 | Application-l/O Interface |' Virtual Device Layer
o | /O Buffering | | o i | e Vo
Priv :
e i - H
Device * | Device \ , . , , [Device ' | y N
'\ Driver ! '\ Driver ! '\ Driver |} Device Driver Layer
HW |Keybaard| |HardDisk| ... | Nerworkl Device Layer

Programs access virtual devices:

terminal streams not terminals
windows not frame buffer

event stream not raw mouse

files not disk blocks

printer spooler not parallel port
transport protocols not raw ethernet

OS deals with processor—device interface:

I/O instructions versus memory mapped
[/O hardware type (e.g. 10's of serial chips)
polled versus interrupt driven

processor interrupt mechanism

Lecture 10: 1/O Subsystem

Polled Mode 1/0

error (R/O)

D]]]E:/ command-ready (W/0)
|~ device-busy (R/0)
status
data (r/w)
|~ read (W/0)
T — viee w0
command

e Consider a simple Device with three registers:

st

atus, data and command. (Host can read and

write these via bus)

e Then polled mode operation works as follows:

H
H

H
D
D
D
o W

repeatedly reads device_busy until clear.
sets e.g. write bit in command register, and
puts data into data register.

sets command_ready bit in status register.
sees command_ready and sets device_busy.
performs write operation.

clears command_ready & then device_busy.

hat’s the problem here?

Lecture 10: 1/O Subsystem 4

Interrupts Revisited

Recall: to handle mismatch between CPU and device
speeds, processors provide an interrupt mechanism:

at end of each instruction, processor checks
interrupt line(s) for pending interrupt

if line is asserted then processor:

— saves program counter,

— saves processor status,

changes processor mode, and

— jump to well known address (or its contents)

after interrupt-handling routine is finished, can use
e.g. the rti instruction to resume.

Some more complex processors provide:

e multiple levels of interrupts

e hardware vectoring of interrupts

e mode dependent registers

Lecture 10: 1/O Subsystem

Interrupt-Driven 1/0

Can split implementation into low-level interrupt
handler plus per-device interrupt service routine:

e Interrupt handler (processor-dependent) may:

save more registers.

establish a language environment.

demultiplex interrupt in software.

invoke appropriate interrupt service routine (ISR)

e Then ISR (device- not processor-specific) will:

1.

3.
4.

for programmed 1/0 device:
— transfer data.
— clear interrupt (sometimes a side effect of tx).

. for DMA device:

— acknowledge transfer.

. request another transfer if there are any more

1/0 requests pending on device.
signal any waiting processes.
enter scheduler or return.

Question: who is scheduling who?

Lecture 10: 1/O Subsystem

Device Classes

Homogenising device APl completely not possible
= OS generally splits devices into four classes:

1.

2.

3.

4.

Block devices (e.g. disk drives, CD):

e commands include read, write, seek
e raw |/O or file-system access
e memory-mapped file access possible

Character devices (e.g. keyboards, mice, serial):

e commands include get, put
e libraries layered on top to allow line editing

Network Devices

e varying enough from block and character to
have own interface
e Unix and Windows/NT use socket interface

Miscellaneous (e.g. clocks and timers)

e provide current time, elapsed time, timer
e ioctl (on UNIX) covers odd aspects of 1/0
such as clocks and timers.

Lecture 10: 1/O Subsystem

1/0 Buffering

e Buffering: OS stores (a copy of) data in memory
while transferring between devices

— to cope with device speed mismatch
— to cope with device transfer size mismatch
— to maintain “copy semantics”

e OS can use various kinds of buffering:

1. single buffering: OS assigns a system buffer to
the user request

2. double buffering: process consumes from one
buffer while system fills the next

3. circular buffers: most useful for bursty 1/0

e Many aspects of buffering dictated by device type:

— character devices = line probably sufficient.
— network devices = bursty (time & space).
— block devices = lots of fixed size transfers.
— (last usually major user of buffer memory)

Lecture 10: 1/O Subsystem 8

Blocking v. Nonblocking 1/0

From programmer’s point of view, 1/O system calls
exhibit one of three kinds of behaviour:

1. Blocking: process suspended until 1/O completed

e easy to use and understand.
e insufficient for some needs.

2. Nonblocking: 1/0O call returns as much as available

e returns almost immediately with count of bytes
read or written (possibly 0).

e can be used by e.g. user interface code.

e essentially application-level “polled 1/0".

3. Asynchronous: process runs while 1/O executes

e 1/0 subsystem explicitly signals process when its
[/O request has completed.

e most flexible (and potentially efficient).

e ... but also most difficult to use.

Most systems provide both blocking and non-blocking
1/0 interfaces; fewer support asynchronous 1/0.

Lecture 10: 1/O Subsystem 9

Other 1/0 Issues

e Caching: fast memory holding copy of data

— can work with both reads and writes
— key to I/O performance

e Scheduling:
— e.g. ordering 1/0 requests via per-device queue
— some operating systems try fairness. . .

e Spooling: queue output for a device

— useful if device is “single user” (i.e. can serve
only one request at a time), e.g. printer.

e Device reservation:

— system calls for acquiring or releasing exclusive
access to a device (care required)

e Error handling:

— e.g. recover from disk read, device unavailable,
transient write failures, etc.

— most 1/O system calls return an error number or
code when an 1/0 request fails

— system error logs hold problem reports.

Lecture 10: 1/O Subsystem 10

1/0 and Performance

e 1/0O a major factor in system performance

— demands CPU to execute device driver, kernel
I/O code, etc.

— context switches due to interrupts

— data copying

— network traffic especially stressful.

e Improving performance:

— reduce number of context switches

— reduce data copying

— reduce # interrupts by using large transfers,
smart controllers, polling

— use DMA where possible

— balance CPU, memory, bus and 1/O performance
for highest throughput.

Improving 1/O performance is one of the main
remaining systems challenges. . .

Lecture 10: 1/O Subsystem 11

