Lecture 8:

Memory Management I
Introduction and Contiguous Allocation

www.cl.cam.ac.uk/Teaching/2001/0SFounds/

Lecture 8: Monday 22nd October 2001

Next four lectures

To improve CPU utilisation, we'll keep several
processes in memory.

e \We need a memory-management scheme.
As main memory is too small

e We will use secondary storage (disk).

Next four lectures:

1. Memory management |
2. Memory management Il
3.1/0
4

. Filing systems

Lecture 8:

Today’s Lecture

Today we’ll cover:

e How do we manage memory when sharing the CPU
between many processes?

— Objectives,

— Logical vs. Physical Addresses,
— Contiguous allocation,

— Fragmentation and Compaction.

Lecture 8: Contents 2

Memory Management

In a multiprogramming system:
e many processes in memory simultaneously
e every process needs memory for:

— instructions (“code” or “text”),
— static data (in program), and
— dynamic data (heap and stack).

e in addition, operating system itself needs memory
for instructions and data.

= must share memory between OS and k processes.
The memory magagement subsystem handles:

1. Relocation

2. Allocation

3. Protection

4. Sharing

5. Logical Organisation
6

. Physical Organisation

Lecture 8: Memory Management

The Address Binding Problem

Consider the following simple program:

int x, y;
x = b;
y=x+ 3;

We can imagine that this would result in some
assembly code which looks something like:

str #5, [Rx] // store 5 into ’x’

ldr R1, [Rx] // load value of x from memory
add R2, R1, #3 // and add 3 to it

str R2, [Ry] // and store result in ’y’

where the expression ‘[addr]' means “the contents
of the memory at address addr”.

Then the address binding problem is:
what values do we give Rx and Ry?

This is a problem because we don’t know where in
memory our program will be loaded when we run it:

e c.g. if loaded at 0x1000, then x and y might be
stored at 0x2000, but if loaded at 0x5000, then x
and y might be at 0x6000.

Lecture 8: Relocation 4

Address Binding and Relocation

To solve the problem, we need to translate between
program addresses and real addresses.

This can be done:
e at compile time:

— requires knowledge of absolute addresses
— e.g. DOS .com files

e at load time:

— when program loaded, work out position in
memory and update code with correct addresses

— must be done every time program is loaded

— ok for embedded systems / boot-loaders

e at run-time:

— get some hardware to automatically translate
between program and real addresses.

— no changes at all required to program itself.

— most popular and flexible scheme, providing we
have the requisite hardware (MMU).

Lecture 8: Relocation 5

Logical vs Physical Addresses

Mapping of logical to physical addresses is done at
run-time by Memory Management Unit (MMU), e.g.

Relocation Register

logical ”
address

physical
address

Memory

|
>wﬂ. + —
\,

address fault

1. Relocation register holds the value of the base
address owned by the process.

2. Relocation register contents are added to each
memory address before it is sent to memory.

3. e.g. DOS on 80x86 — 4 relocation registers,
logical address is a tuple (s, 0).

4. NB: process never sees physical address —
simply manipulates logical addresses.

5. OS has privilege to update relocation register.

Lecture 8: Relocation 6

Contiguous Allocation

Given that we want multiple virtual processors, how
can we support this in a single address space?

Where do we put processes in memory?

e OS typically must be in low memory due to
location of interrupt vectors

e Easiest way is to statically divide memory into
multiple fixed size partitions:

— bottom partition contains OS, remaining
partitions each contain exactly one process.

— when a process terminates its partition becomes
available to new processes.
e.g. 0S/360 MFT.

e Need to protect OS and user processes from
malicious programs:

— use base and limit registers in MMU

— update values when a new processes is scheduled

— NB: solving both relocation and protection
problems at the same time!

Lecture 8: Contiguous Allocation 7

Static Multiprogramming

Blocked Run Partitioned
+— Queue ~ T Queue > Memory

e Partition memory when installing OS, and allocate
pieces to different job queues.

e associate jobs to a job queue according to size.
e swap job back to disk when:
— blocked on 1/O (assuming 1/0 is slower than the
backing store).
— time sliced: larger the job, larger the time slice
e run job from another queue while swapping jobs
e e.g. IBM 0S/360 MVT, ICL System 4
e Problems: fragmentation, cannot grow partitions.

Lecture 8: Contiguous Allocation 8

Dynamic Partitioning
Get more flexibility if allow partition sizes to be

dynamically chosen (e.g. 0S/360 MVT) :

e OS keeps track of which areas of memory are
available and which are occupied.

e e.g. use one or more linked lists:

[[0000T0co4a T3—{2200]3810 [F—{4750]%1E8 |
; BOFO[B130 [4—>[D708 [FFEF [J4—in

e When a new process arrives the OS searches for a
hole large enough to fit the process.

e To determine which hole to use for new process:

— first fit: stop searching list as soon as big
enough hole is found.

— best fit: search entire list to find “best” fitting
hole (i.e. smallest hole large enough)

— worst fit: counterintuitively allocate largest hole
(again must search entire list).

e When process terminates its memory returns onto
the free list, coalescing holes where appropriate.

Lecture 8: Contiguous Allocation 9

Scheduling Example

z
2000K
P2 —
— P4
1000K 1000K
P1 pP1 P1 —
400K 400K
oS oS oS
0 0

e Consider machine with total of 2560K memory.
e Operating System requires 400K.
e The following jobs are in the queue:

Process Memory Time

P 600K 10
P, 1000K 5
Ps 300K 20
Py 700K 8
P 500K 15

Lecture 8: Contiguous Allocation 10

External Fragmentation

e Dynamic partitioning algorithms suffer from
external fragmentation: as processes are loaded
they leave little fragments which may not be used.

e External fragmentation exists when the total
available memory is sufficient for a request, but is
unusable because it is split into many holes.

e Can also have problems with tiny holes

Solution: compact holes periodically.

Lecture 8: Contiguous Allocation 11

.
Compaction
2100K 2100K 2100K 21008
P3
900k 1900
1500K
1200k 1200k 1200k
1000K P4 1000k _P3
800K p
p3 P
600K 600K 600K
soox|—B2_| soox| P2 s00x|—£2
Pl Pl Pl
300K 300K 300K 300K
o oS o oS o oS o oS

Choosing optimal strategy quite tricky. . .
Note that:
e Require run-time relocation.

e Can be done more efficiently when process is
moved into memory from a swap.

e Some machines used to have hardware support
(e.g. CDC Cyber).

Also get fragmentation in backing store, but in this
case compaction not really viable. . .

Lecture 8: Contiguous Allocation 12

Summary

You should now understand:

e What memory management aims to achieve,
e Logical vs. Physical addresses,

e Contiguous allocation,

e External fragmentation,

e Compaction.

Next lecture: Memory Management Il: Paging and
Segmentation

Background Reading:

e Silberschatz et al.: — Sections 9.1-9.3 incl.

Lecture 8: Summary

13

