Lecture 7:

Processes 1I: CPU Scheduling

www.cl.cam.ac.uk/Teaching/2001/0SFounds/

Lecture 7: Friday 19th October 2001

Today’s Lecture

Today we'll cover:
e How do we schedule the CPU?

— Criteria, and
— Various strategies.

Lecture 7: Contents 1

CPU-1/0 Burst Cycle

Frequency

T
2 4 6 8 10 12 14 16

CPU Burst Duration (ms)

e CPU-1/0 Burst Cycle: process execution consists
of a cycle of CPU execution and 1/0 wait.

o Processes can be described as either:

1. 1/O-bound: spends more time doing |/O than
computation; has many short CPU bursts.

2. CPU-bound: spends more time doing
computations; has few very long CPU bursts.

e Observe most processes execute for at most a few
milliseconds before blocking

= need multiprogramming to obtain decent overall
CPU utilization.

Lecture 7: Contents 2

CPU Scheduler

Recall: CPU scheduler selects one of the ready
processes and allocates the CPU to it.

e There are a number of occasions when we
can/must choose a new process to run:

1. a running process blocks (running — blocked)
2. a timer expires (running — ready)

3. a waiting process unblocks (blocked — ready)
4. a process terminates (running — exit)

e If only make scheduling decision under 1, 4 = have
a non-preemptive scheduler:

v simple to implement
) 4 open to denial of service
— e.g. Windows 3.11, early MacOS.

e Otherwise the scheduler is preemptive.

v solves denial of service problem
X more complicated to implement
X introduces concurrency problems. . .

Lecture 7: CPU Scheduling 3

Idle system

What do we do if there is no ready process?
e halt processor (until interrupt arrives)

v saves power (and heat!)

v increases processor lifetime

) 4 might take too long to stop and start.
e busy wait in scheduler

(74 quick response time

X ugly, useless
e invent idle process, always available to run

(74 gives uniform structure

v/ could use it to run checks

X uses some memory

X can slow interrupt response

In general there is a trade-off between responsiveness
and usefulness.

Lecture 7: CPU Scheduling

Scheduling Criteria

A variety of metrics may be used:

1. CPU utilization: the fraction of the time the CPU
is being used (and not for idle process!)

2. Throughput: # of processes that complete their
execution per time unit.

3. Turnaround time: amount of time to execute a
particular process.

4. Waiting time: amount of time a process has been
waiting in the ready queue.

5. Response time: amount of time it takes from when
a request was submitted until the first response is
produced (in time-sharing systems)

Sensible scheduling strategies might be:
e Maximize throughput or CPU utilization

e Minimize average turnaround time, waiting time or
response time.

Also need to worry about fairness and liveness.

Lecture 7: CPU Scheduling 5

First-Come First-Served Scheduling
e FCFS depends on order processes arrive, e.g.

Process Burst Time

P 25
P 4
Py 7

e |f processes arrive in the order Py, P, Ps:

? [&] » |

0 25 29 36

— Waiting time for Py=0; P,=25; P3;=29;
— Average waiting time: (0 + 25 + 29)/3 = 18.

e |f processes arrive in the order P53, Py, P;:

[& [&] A |

0 7 11 36

— Waiting time for Py=11; P,=7; P3=0;
— Average waiting time: (11 +7+0)/3 =6.
— i.e. three times as good!

e First case poor due to convoy effect.

Lecture 7: CPU Scheduling

SJF Scheduling

Intuition from FCFS leads us to shortest job first
(SJF) scheduling.

o Associate with each process the length of its next
CPU burst.

e Use these lengths to schedule the process with the
shortest time (FCFS can be used to break ties).

For example:

Process Arrival Time Burst Time

P 0 7
P 2 4
P 4 1
Py 5 4
R Bl = [& |
0 7 8 12 16

e Waiting time for P1=0; Po=6; P3=3; P4=T;
o Average waiting time: (0+6+3+7)/4 =4.

SJF is optimal in that it gives the minimum average
waiting time for a given set of processes.

Lecture 7: CPU Scheduling 7

SRTF Scheduling
e SRTF = Shortest Remaining-Time First.
e Just a preemptive version of SJF.

e i.e. if a new process arrives with a CPU burst
length less than the remaining time of the current
executing process, preempt.

For example:

Process Arrival Time Burst Time

P 0 7

P, 2 4

Ps 4 1

P, 5 4
[A]e [B[] & [~
0 2 4 5 7 11 16

e Waiting time for P1=9; P;=1; P3=0; P;=2;
e Average waiting time: (9+1+0+2)/4 =3.

What are the problems here?

Lecture 7: CPU Scheduling 8

Predicting Burst Lengths

e For both SJF and SRTF require the next “burst
length” for each process = need to estimate it.

e Can be done by using the length of previous CPU
bursts, using exponential averaging:
1. t,, = actual length of n** CPU burst.
2. Tn41 = predicted value for next CPU burst.
3. For ,0 < a <1 define:

Tat1 = Aty + (1 — @)1y

o If we expand the formula we get:
Tot1 = otpt. +(1-af otn_jt.. +(1—0)" 1

where 7g is some constant.

e Choose value of a according to our belief about
the system, e.g. if we believe history irrelevant,
choose a = 1 and then get 7,1 = tp.

e In general an exponential averaging scheme is a
good predictor if the variance is small.

Lecture 7: CPU Scheduling 9

Round Robin Scheduling

Define a small fixed unit of time called a quantum
(or time-slice), typically 10-100 milliseconds. Then:

e Process at the front of the ready queue is allocated
the CPU for (up to) one quantum.

e When the time has elapsed, the process is
preempted and appended to the ready queue.

Round robin has some nice properties:

e Fair: if there are n processes in the ready queue
and the time quantum is g, then each process gets
1/nt" of the CPU.

e Live: no process waits more than (n — 1)q time
units before receiving a CPU allocation.

e Typically get higher average turnaround time than
SRTF, but better average response time.

But tricky choosing correct size quantum:
e ¢ too large = FCFS/FIFO

e ¢ too small = context switch overhead too high.

Lecture 7: CPU Scheduling 10

Static Priority Scheduling
e Associate an (integer) priority with each process
e For example:

0 | system internal processes

1 | interactive processes (staff)

2 | interactive processes (students)
3 | batch processes.

e Then allocate CPU to the highest priority process:

— ‘highest priority’ typically means smallest integer
— get preemptive and non-preemptive variants.

e e.g. SJF is a priority scheduling algorithm where
priority is the predicted next CPU burst time.

e Problem: how to resolve ties?

— round robin with time-slicing

— allocate quantum to each process in turn.

— Problem: biased towards CPU intensive jobs.
% per-process quantum based on usage?
* ignore?

e Problem: starvation. . .

Lecture 7: CPU Scheduling 11

Dynamic Priority Scheduling
Use same scheduling algorithm, but allow priorities to
change over time, e.g.

1. Simple aging:
e processes have a (static) base priority and a
dynamic effective priority.
e if process starved for k seconds, increment
effective priority.
e once process runs, reset effective priority.
2. Computed priority:
e first used in Dijkstra's THE
e timeslots: ..., t, t+1,...
e in each time slot ¢, measure the CPU usage of
process j: u’
e priority for process j in slot ¢ + 1:

pg+1 = f(u‘tyvpgv uiflvpgflv -)

o eg plyy =pl/2+ kul
e penalises CPU bound — supports /0 bound.

Today such computation considered acceptable. . .

Lecture 7. CPU Scheduling 12

Summary

You should now understand:

e What a CPU scheduler does,
e Criteria for scheduling,

e Predicting burst lengths,

e Various strategies:

First-come first-served,
Shortest job first,

Shortest remaining-time first,
Round-robin,

Static and dynamic priorities.

A

Next lecture: Memory Management

Background Reading:
e Silberschatz et al.: — Chapter 6

Lecture 7@ Summary

13

