Today’s Lecture

Lecture 5:

Today we'll cover:
e What is an 0S?

— Abstract view,

— Historical perspective,

— Kernel vs Microkernel design,
— OS functions.

Operating Systems: The Basics

e What hardware support do we need?

— Dual mode operation,
— 1/0O and memory protection,

www.cl.cam.ac.uk/Teaching/2001/0SFounds/ — CPU protection.
Lecture 5: Monday 15th October 2001 Lecture 5: Contents
What is an Operating System? An Abstract View
[]

App 1
App 2
App N

A program that controls the execution of all other
programs (applications). ' c o o o
e Acts as an intermediary between the user(s) and

the computer.

e Objectives: Operating System
— convenience, t t t
- efficiency, Hardware
— extensibility.
e Similar to a government. . . :-) e The Operating System (OS):
e Wide variety: Unix (Solaris, Linux, Irix, OSF/1), h conltt.’o:s all execut|on.b cat
Windows 9x/2000/XP, MacOS, BeOS, etc. — multiplexes resources between applications.

— abstracts away from complexity.

e Typically also have some libraries and some tools
provided with OS.

e Are these part of the OS? Is IE4 a tool?
— no-one can agree. . .

e For us, the OS = the kernel.

Lecture 5 Introduction 2 Lecture 5: Introduction

In The Beginning. . .
e 1949: First stored-program machine (EDSAC)
e to ~ 1955: “Open Shop”.

— large machines with vacuum tubes.
— 1/0O by paper tape / punch cards.
— user = programmer = operator.

e To reduce cost, hire an operator:

— programmers write programs and submit
tape/cards to operator.

— operator feeds cards, collects output from
printer.

e Management like it.
e Programmers hate it.
e Operators hate it.

= need something better.

Batch Systems

e Introduction of tape drives allow batching of jobs:

— programmers put jobs on cards as before.
— all cards read onto a tape.

— operator carries input tape to computer.
COMPUTE!

results written to output tape.

output tape taken to printer.

e Computer now has a resident monitor:

— initially control is in monitor.
— monitor reads job and transfers control.
— at end of job, control transfers back to monitor.

e Even better: spooling systems.

— use interrupt driven 1/0.
— use magnetic disk to cache input tape.
— fire operator!

e Monitor now schedules jobs. . .

Lecture 5: Evolution

Lecture 5: Evolution

Multi-Programming

Job 4 Job 4 Job 4
Job 3 Job 3 Job 3
Job 2 Job 2 Job 2
Job 1 Job 1 Job 1
Operating Operating Operating
System System System
Time >

e Use memory to cache jobs from disk = more than
one job active simultaneously.

e Two stage scheduling:

1. select jobs to load: job scheduling.
2. select resident job to run: CPU scheduling.

e Users want more interaction = time-sharing:

e e.g. CTSS, TSO, Unix, VMS, Windows NT. ..

Lecture 5: Evolution

Today and Tomorrow

e Single user systems: cheap and cheerful.

— personal computers.
— no other users = ignore protection.
— e.g. DOS, Windows, Win 95/98, . ..

e RT Systems: power is nothing without control.
— hard-real time: nuclear reactor safety monitor.
— soft-real time: mp3 player.

e Parallel Processing: the need for speed.

— SMP: 2-8 processors in a box.
— MIMD: super-computing.

e Distributed computing: global processing?

— Java: the network is the computer.
— Clustering: the network is the bus.

— CORBA: the computer is the network.
— .NET: the network is an enabling framework. . .

Lecture 5: Evolution

Monolithic Operating Systems

S/W

App i App

App. App.

e Oldest kind of OS structure (“modern” examples
are DOS, original MacOS)

e Problem: applications can e.g.

— etc. ..

trash OS software.

trash another application.
hoard CPU time.

abuse 1/0 devices.

e No good for fault containment (or multi-user).

e Need a better solution. . .

Lecture 5: Structures & Protection Mechanisms

Dual-Mode Operation

e Want to stop buggy (or malicious) program from
doing bad things.

= provide hardware support to differentiate between
(at least) two modes of operation.

1. User Mode : when executing on behalf of a user
(i.e. application programs).

2. Kernel Mode : when executing on behalf of the
operating system.

e Hardware contains a mode-bit, e.g. 0 means
kernel, 1 means user.

interrupt or fault

reset Kernel User
/—> Mode Mode

set user mode

e Make certain machine instructions only possible in
kernel mode. . .

Lecture 5: Structures & Protection Mechanisms 9

Protecting 1/0 & Memory

e First try: make 1/0O instructions privileged.

— applications can’t mask interrupts.
— applications can't control 1/O devices.

e But:

1. Application can rewrite interrupt vectors.
2. Some devices accessed via memory

e Hence need to protect memory also. . .

e e.g. define a base and a limit for each program.

OXFFFF

0xD800
0x9800

0x5000
0x3000

0x0000

e Accesses outside

Job 4

Job 3

limit register

Job 2

0x4800

0x5000

Job 1

Operating
System

base register

allowed range are protected.

Lecture 5: Structures & Protection Mechanisms

10

Memory Protection Hardware

2 yes < yes
\ no \ no

vector to OS (address error)

Memory

e Hardware checks every memory reference.

e Access out of range = vector into operating
system (just as for an interrupt).

e Only allow update of base and limit registers in
kernel mode.

e Typically disable memory protection in kernel mode
(although a bad idea).

e In reality, more complex protection h/w used:

— main schemes are segmentation and paging
(covered later on in course)

Lecture 5: Structures & Protection Mechanisms 11

Protecting the CPU

e Need to ensure that the OS stays in control.

— i.e. need to prevent any given application from
‘hogging’ the CPU the whole time.
= use a timer device.

e Usually use a countdown timer, e.g.

1. set timer to initial value (e.g. OXFFFF).
2. every tick (e.g. lus), timer decrements value.
3. when value hits zero, interrupt.

e (Modern timers have programmable tick rate.)
e Hence OS gets to run periodically and do its stuff.

e Need to ensure only OS can load timer, and that
interrupt cannot be masked.

— use same scheme as for other devices.
— (viz. privileged instructions, memory protection)

e Same scheme can be used to implement
time-sharing (more on this later).

Lecture 5: Structures & Protection Mechanisms 12

Kernel-Based Operating Systems

App. [| App. || | App. || App.

Unpriv \ x l /

...... annonn
Priv | Kernel o

{ System Calls

S/W . RS
W u} u}

e Applications can't do 1/0 due to protection
= operating system does it on their behalf.

e Need secure way for application to invoke
operating system:
= require a special (unprivileged) instruction to
allow transition from user to kernel mode.

e Generally called a software interrupt since
operates similarly to (hardware) interrupt. . .

e Set of OS services accessible via software interrupt
mechanism called system calls.

Lecture 5: Structures & Protection Mechanisms 13

Microkernel Operating Systems

App. App. App. App.

Server Server

Unpriv 1 \ 1
Priv Server Device Device
Driver Driver

Kernel { scheduler }

HW =0 o

e Alternative structure:

— push some OS services into servers.
— servers may be privileged (i.e. operate in kernel
mode).

e Increases both modularity and extensibility.

o Still access kernel via system calls, but need new
way to access servers:

= interprocess communication (IPC) schemes.

Lecture 5: Structures & Protection Mechanisms 14

Kernels versus Microkernels

So why isn't everything a microkernel?
e Lots of IPC adds overhead
= microkernels usually perform less well.

e Microkernel implementation sometimes tricky:
need to worry about synchronisation.

e Microkernels often end up with redundant copies of
OS data structures.

Hence today most common operating systems blur
the distinction between kernel and microkernel.

e e.g. linux is “kernel”, but has kernel modules and
certain servers.

e e.g. Windows NT was originally microkernel (3.5),
but now (4.0 onwards) pushed lots back into kernel
for performance.

e Still not clear what the best OS structure is, or
how much it really matters. . .

Lecture 5: Structures & Protection Mechanisms 15

Operating System Functions Summary

e Regardless of structure, OS needs to securely

multiplex resources, i.e. You should now understand:

1. protect applications from each other, yet o What an OS is (abstractly),
2. share physical resources between them. e The historical evolution of OS,
e Also usually want to abstract away from grungy e Hardware support needed:

hardware, i.e. OS provides a virtual machine: .
— Dual mode operation,

- shart.e CEU (|n time). and provide each — 1/O and memory protection,
application with a virtual processor, — CPU protection.

— allocate and protect memory, and provide
applications with their own virtual address space, o Different approaches to kernel design:

— present a set of (relatively) hardware — Microkernel vs. kernel
independent virtual devices, and

— divide up storage space by using filing systems.
Next lecture: Processes
e Remainder of this part of the course will look at

each of the above areas in turn. . .
Background Reading: Silberschatz et al.:
e Chapter 1 — History and basics of OS
e Section 2.5 — Hardware protection
e Section 3.5.3 — Microkernel design

Lecture 5: Functions 16 Lecture 5: Summary

