Lecture 3:

Simple Computer Architecture Il

www.cl.cam.ac.uk/Teaching/2001/0SFounds/

Lecture 3: Wednesday 10th October 2001

Today’s Lecture

Today we'll cover:
e What do machine instructions look like?

— Instructions & condition codes
— Branching,
— Addressing.

e How do we store data in the machine?

— Text,
— Floating point,
— Data structures.

e Fetch-Execute cycle:

— “Tieing it all up”

Lecture 3: Contents

Arithmetic & Logical Instructions

e Some common ALU instructions are:

Mnemonic C/Java Equivalent
and d< a,b d=a&b;
xor d< a,b d =a " b;
bis d<+ a,b d=al b;
bic d< a,b d=a& ("b);
add d<+ a,b d =a + b;
sub d<+ a,b d = a - b;
rsb d< a,b d=b- a;
shl d<+ a,b d = a << b;
shr d<+ a,b d =a > b;

Both d and a must be registers; b can be a register
or a (small) constant.

e Typically also have addc and subc, which handle
carry or borrow (for multi-precision arithmetic), e.g.

add do0, a0, bo // compute "low" part.
addc di, al, b1 // compute "high" part.

e May also get:

— Arithmetic shifts: asr and as1(?)
— Rotates: ror and rol.

Lecture 3: Contents 2

Conditional Execution
e Seen flags C, N,V; add Z (zero), logical NOR of
all bits in output.

e Can predicate execution based on (some
combination) of flags, e.g.

sub d, a, b // compute d = a - b
beq procl // if equal, goto procl
br proc2 // otherwise goto proc2

Java equivalent approximately:
if (a==b) procl() else proc2Q);
e On ARM everything conditional, e.g.

sub d, a, b # compute d = a - b
moveq d, #5 # if equal, d = 5;
movne d, #7 # otherwise d = 7;

Javaequivid = (a==b) ? 5 : T;

e “Silent” versions useful when don’t really want
result, e.g. tst, teq, cmp.

e Alt (MIPS): beq regl reg2 L1

Lecture 3: Conditional Execution

Condition Codes

Suffix ~ Meaning Flags

EQ, Z Equal, zero Z ==

NE, NZ Not equal, non-zero ==

MI Negative ==1

PL Positive (incl. zero) N ==

CS, HS Carry, higher or same C ==

CC, LO No carry, lower C ==

VS Overflow V ==

Ve No overflow V ==

HI Higher C==18&& Z ==
LS Lower or same C=01||Z==
GE Greater than orequal N ==V

GT Greater than N==V && Z ==
LT Less than N '=V

LE Less than or equal N1=V || Z==

e HS, LO, etc. used for unsigned comparisons (recall
that C' means “borrow”).

e GE, LT, etc. used for signed comparisons: check
both N and V so always works.

Lecture 3: Conditional Execution 4

Loads & Stores

e Have variable sized values, e.g. bytes (8-bits),
words (16-bits), longwords (32-bits) and
quadwords (64-bits).

e Load or store instructions usually have a suffix to
determine the size, e.g. ‘D’ for byte, ‘w’ for word,
‘1’ for longword.

e When storing > 1 byte, have two main options: big
endian and little endian; e.g. storing longword
O0xDEADBEEF into memory at address 0x4.

Big Endian
L[[[fos[ac]sefer[|

00 01 02 03 04 05 06 07 08

I S R

Little Endian

If read back a byte from address 0x4, get OxDE if
big-endian, or OxEF if little-endian.

e Today have x86 & Alpha little endian; Sparc &
68K, big endian; MIPS & ARM either.

Lecture 3: Memory (CPU point of view) 5

Addressing Modes

e An addressing mode tells the computer where the
data for an instruction is to come from.

e Get a wide variety, e.g.

Register: add ri1, r2, r3
Immediate: add ri1, r2, #25
PC Relative: beq 0x20

Register Indirect: ldr r1, [r2]

" + Displacement: str ri1, [r2, #8]
Indexed: movl ri1, (r2, r3)
Absolute/Direct: movl r1, $0xF1EA0130
Memory Indirect: addl r1, ($0xF1EA0130)

e Most modern machines are load/store = only
support first five:

— allow at most one memory ref per instruction
(there are very good reasons for this)

e Note that CPU generally doesn’t care what is
being held within the memory.

e i.e. up to programmer to interpret whether data is
an integer, a pixel or a few characters in a novel.

Lecture 3: Memory (CPU point of view) 6

Representing Text

e Two main standards:

1. ASCII: 7-bit code holding (English) letters,
numbers, punctuation and a few other
characters.

2. Unicode: 16-bit code supporting practically all
international alphabets and symbols.

e ASCII default on many operating systems, and on
the early Internet (e.g. e-mail).

e Unicode becoming more popular (esp UTF-8!).

e In both cases, represent in memory as either strings
or arrays: e.g. “Pub Time!”

String Array

20 | 62 | 75 | 50 | Ox351A.25E4 | 75 | 50 | 00 | 09

65 | 6D | 69 | 54 | Ox351A.25E8 69 | 54 | 20 | 62

xx | xx | 00 | 2

Ox351A.25EC | xx | 21 | 65 | 6D

\

e 0x49207769736820697420776173203a2d28

Lecture 3: Memory (Programmer’s Point of View) 7

Floating Point

e In many cases want to deal with very large or very
small numbers.

e Use idea of “scientific notation”, e.g. n = m x 10°¢

— m is called the mantissa
— e is called the exponent.

e.g. C =3.01 x 108 m/s.

e For computers, use binary i.e. n = m X 2°, where
m includes a “binary point”.

e Both m and e can be positive or negative; typically

— sign of mantissa given by an additional sign bit.
— exponent is stored in a biased (excess) format.

= usen = (—1)m x2°°" where 0 <m < 2and bis
the bias.

e e.g. 4-bit mantissa & 3-bit bias-3 exponent allows
positive range [0.0015 x 273, 1.1115 x 24]

=@, (§)16], or[5,30]

Lecture 3: Memory (Programmer's Point of View) 8

Floating Point cont.

e In practice use IEEE floating point with
normalised mantissa m = l.zx ... T2
= use n = (—1)*((1+m) x 2¢7Y),

e Both single (float) and double (double)
precision:

31 ‘30 23‘22 0

‘S ‘ Exponent(a)‘ Mantissa (23) ‘

Bias-1023 Bias-127

63162 52|51 0

‘S‘ Exponent (11) ‘ Mantissa (52) ‘

e IEEE fp reserves e = 0 and e = max:

— +£0 (!): both e and m zero.

— 400 : e = max, m zero.

— NaNs : e = max, m non-zero.
— denorms : e =0, m non-zero

e Normal positive range [27126 ~ 2128] for single, or
271022 ., 91024) for double.

e NB: still only 232/254 values — just spread out.

Lecture 3: Memory (Programmer's Point of View) 9

Data Structures

e Records / structures: each field stored as an offset
from a base address.

e Variable size structures: explicitly store addresses
(pointers) inside structure, e.g.

datatype rec = node of int * int * rec
| leaf of int;

val example = node(4, 5, node(6, 7, leaf(8)));

Imagine example is stored at address 0x1000:

Address | Value Comment
0xOF30 | OxFFFF | Constructor tag for a leaf

0x0F34 | 8 Integer 8

0xOF3C | OxFFFE | Constructor tag for a node
0x0F40 | 6 Integer 6

0x0F44 | 7 Integer 7

0x0F48 | 0xOF30 | Address of inner node

0x1000 | OxFFFE | Constructor tag for a node
0x1004 | 4 Integer 4

0x1008 | 5 Integer 5

0x100C | 0xOF3C | Address of inner node

Lecture 3: Memory (Programmer's Point of View) 10

Instruction Encoding
e An instruction comprises:

a. an opcode: specify what to do.
b. zero or more operands: where to get
values

e.g.add r1, r2, r3 E‘ 1010111 | 001 | 010 | 011 ‘

e Old machines (and x86) use variable length
encoding motivated by low code density.

e Most modern machines use fixed length encoding
for simplicity. e.g. ARM ALU operations.

31 28|272625|24 2112019 16[15 1211 0

‘Cond 00| I|Opcode | S| Ra Rd Operand 2 ‘

and ri13, ri13, #31 = 0xe20dd01f =

| 1110 | 00 | 1 | 0000 | 0 | 1101 | 1101 | 000000011111 ‘

bic r3, r3, r2 = 0xelc33002 =

| 1110 | 00 | 0 | 1110 | 0 | 0011 | 0011 | 000000000010 ‘

cmp rl, r2 = 0xe1510002 =

| 1110 | 00 I 0 | 1010 | 1 | 0001 | 0000 | 000000000010 I

Lecture 3: Memory (Programmer’s Point of View) 11

Fetch-Execute Cycle Revisited

Control Unit

>
Decode

Register File

1. CU fetches & decodes instruction and generates
(a) control signals and (b) operand information.

2. Inside EU, control signals select functional unit
(“instruction class”) and operation.

3. If ALU, then read one or two registers, perform
operation, and (probably) write back result.

4. If BU, test condition and (maybe) add value to PC.

5. If MAU, generate address (“addressing mode”)
and use bus to read/write value.

6. Repeat ad infinitum.

Lecture 3: Fetch-Execute Cycle Revisited 12

Summary

You should now understand:

e Different forms of machine instructions,
e Different forms of addressing,

e Representing text and data structures,

e Floating point representation.

Next lecture: Buses and 1/O devices

Background Reading:
e Hennessy/Patterson:

— Chapter 3 - Machine Instructions (MIPS)
— Section 4.8 - Floating Point

Lecture 3: Summary

13

