
g g

Introduction to

Functional Programming

Anuj Dawar

Computer Laboratory

University of Cambridge

Lent Term 2002

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002



g g

Texts

Main Text:

Paulson, L.C. (1996). ML for the Working

Programmer. Cambridge University Press (2nd

ed.).

Other Useful Reading:

Backus, J. (1978). Can programming be liberated

from the von Neumann style? Communications of

the ACM, vol. 21, pp. 613-641.

Barendregt, H.P. (1984). The Lambda Calculus:

its Syntax and Semantics. North-Holland.

Landin, P.J. (1966). The next 700 programming

languages. Communications of the ACM, vol. 9,

pp. 157-166.

Notes and exercises available from:

www.cl.cam.ac.uk/Teaching/2001/IntroFuncProg/
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Imperative and Declarative

In an imperative programming language, the

program provides a series of instructions (or

commands) to the machine.

Examples of such languages include

C, Pascal, Modula2, Java

In a declarative programming language, the

program (in principle) describes the

computational task.

Functional: ML, Scheme, Haskell,. . .

Logic: Prolog, Godel,. . .

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Programming Views

Imperative languages present a level of

abstraction above the machine, hiding some

details (memory addresses, registers, etc.)

Still, the view is machine-centred.

Declarative languages provide a still further level

of abstraction.

A style of programming that is more

programmer-centred.

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Functional programming

In the functional programming style, the

computational task to be programmed is taken to

be a function (in the mathematical sense).

The job of the programmer is to describe this

function.

Implicit in the description is a method for

computing the function.

The function maps one domain (of inputs) to

another (of outputs).

These may be: integers; real numbers; lists;

strings; or even functions themselves

importance of types

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Commands and Expressions

In a typical imperative language, commands are

formed from assignments to variables:

x := E

by application of various control structures.

Sequencing

C1;C2

Conditionals

if B then C1 else C2

Looping

while B do C

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Expressions

A functional program is just an expression to be

evaluated.

An expression is built up from simpler expressions

by means of function applications.

E1 +E2

or

if B then E1 else E2

There are no explicit notions of variable

assignment, sequencing or control.

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Example: the factorial

The factorial function can be written imperatively

in C as follows:

int fact(int n)

{ int x = 1;

while (n > 0)

{ x = x * n;

n = n - 1;

}

return x;

}

whereas it would be expressed in ML as a

recursive function:

fun fact n =

if n = 0 then 1

else n * fact(n - 1);

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Recursion

Recursive de�nition of functions is crucial to

functional programming.

There is no other mechanism for looping

Variables cannot be updated through assignment.

They get their values from function calls.

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Type Checking

ML provides type checking, which can help catch

many programming errors.

Types in ML may be polymorphic.

fun length [] = 0

| length (x::l) = 1 + length (l);

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Advantages

\Attack complexity with simple abstractions"

� Clarity

� Expressiveness

� Shorter Programs

� Security through type system

� Ease of reasoning

� Better modularity

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Disadvantages

� Input/Output

� Interactivity and continuously running

programs

� Speed/EÆciency

There is no reasonable \pure" functional language

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Brief History

� Lambda Calculus (Church 1936)

� LISP (McCarthy 1954)

� ISWIM (Landin 1966)

� ML (Milner et al., 1974), originally a Meta

Language for the LCF Theorem Prover.

� De�nition of Standard ML (Milner, Tofte and

Harper 1990)

� Revised de�nition and standard library (1997)

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Rest of the Course

11 more lectures covering

� Basic Types in Standard ML

� Lists and Recursion

� Sorting

� Datatypes

� Higher Order Functions

� Speci�cation and Veri�cation

� Types and Type Inference

� Substantial case study

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Running ML

ML provides an interactive session.

Enter an expression. ML returns a value.

Moscow ML version 1.42 (July 1997)

Enter `quit();' to quit.

- (2*4) + 18;

> val it = 26 : int

- 2.0 * 2.0 * 3.14159;

> val it = 12.56636 : real

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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- val pi = 3.14159;

> val pi = 3.14159 : real

- val a = pi* 2.0 *2.0;

> val a = 12.56636 : real

- val a = 2 * pi;

...

! Type clash: expression of type

! real

! cannot have type

! int

- val area = fn r => pi*r*r;

> val area = fn : real -> real

- val sqr = fn r => r*r;

> val sqr = fn : int -> int

- val sqr = fn r:real => r*r;

> val sqr = fn : real -> real

- val sqr = fn r => r*r:real;

> val sqr = fn : real -> real

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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- fun area (r) = pi*r*r;

> val area = fn : real -> real

- val pi = "yabadabadoo";

> val pi = "yabadabadoo" : string

- area(2.0);

> val it = 12.56636 : real

- area;

> val it = fn : real -> real

- it(2.0);

> val it = 12.56636 : real

- area(2);

...

! Type clash: expression of type

! int

! cannot have type

! real

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Numeric Types

int: the integers

� constants 0 1 ~1 2 ~2 0032. . .

� in�x operators + - * div mod

real: the oating point numbers

� constants 0.0 ~1.414 2.0 3.94e~7 . . .

� in�x operators + - * /

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Overloading

Functions de�ned for both int and real:

� operators ~ + - *

� relations < <= > >=

You must tell the type checker what type is

intended, if there is any ambiguity.

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Basis Library

Useful library of functions, collected together into

structures.

Int Real Math

The basis library is automatically loaded when

using SML/NJ.

May need to be explicitly loaded in Moscow ML.

>- load "Math";

> val it = () : unit

- fun f u = Math.sin(u)/u;

> val f = fn : real -> real

To load your own �le of de�nitions:

- use "myfile";

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Strings

Type string

� constants "" "A" "yaba!!daba&doo$\n"

� size: string -> int

determines the number of characters in a

string.

� s1^s2

the concatenation of strings s1 and s2

� relations < <= > >=

Structure String

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Characters

Type char

� constants #"A" #"y" #" "

� ord: char -> int integer value of a

character.

� chr: int -> char

� relations < <= > >=

Structure Char

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Truth Values

Type bool

� constants true false

� not: bool -> bool

� if p then x else y

p andalso q

if p then q else false

p orelse q

if p then true else q

Structure Bool

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Pairs and Tuples

- (2,3);

> val it = (2, 3) : int * int

- (2.0,2,3,"aa");

> val it = (2.0, 2, 3, "aa") :

real * int * int * string

Tuples are useful for representing vectors,

presenting functions with multiple arguments,

obtaining multiple results from a function, etc.

- fun addtwice (m,n) = m + 2*n;

> val addtwice = fn : int * int -> int

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Vectors

- fun negvec(x,y):real*real = (~x,~y);

> val negvec =

fn : real * real -> real * real

- negvec(1.0,1.0);

> val it = (~1.0, ~1.0) : real * real

- fun addvec((x1,y1),(x2,y2)):real*real =

(x1+x2,y1+y2);

> val addvec = fn : (real * real) *

(real * real) -> real * real

- fun subvec(v1,v2) = addvec(v1,negvec v2);

> val subvec = fn : (real * real) *

(real * real) -> real * real

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Evaluation Strategy

Strict (or eager) evaluation.

Also known as call-by-value

Given an expression, which is a function

application

f(E1; : : : ; En)

evaluate E1; : : : ; En and then apply f to the

resulting values.

Call-by-name:

Substitute the expressions E1; : : : ; En into the

de�nition of f and then evaluate the resulting

expression.

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Lazy Evaluation

Also known as call-by-need.

Like call-by-name, but sub-expressions that

appear more than once are not copied. Pointers

are used instead.

Potentially more eÆcient, but diÆcult to

implement.

Standard ML uses strict evaluation.

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002



g g

Lists

A list is an ordered collection (of any length) of

elements of the same type

- [1,2,4];

> val it = [1, 2, 4] : int list

- ["a" , "", "abc", "a"];

> val it = . . . : string list

- [[1],[],[2,3]];

> val it = . . . : int list list

- [];

> val it = [] : 'a list

- 1::[2,3];

> val it = [1, 2, 3] : int list

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Lists

There are two kinds of list:

nil or [] is the empty list

h::t is the list with head h and tail t

:: is an in�x operator of type

fn : 'a * 'a list -> 'a list

[x1; : : : ; xn] is shorthand for

x1::(� � � (xn::nil) � � �)

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Built-in Functions 1

null

fn : 'a list -> bool

determines if a list is empty

hd

fn : 'a list -> 'a

gives the �rst element of the list

tl

fn : 'a list -> 'a list

gives the tail of the list

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002



g g

Built-in Functions 2

length

fn : 'a list -> int

gives the number of elements in a list

rev

fn : 'a list -> 'a list

gives the list in reverse order

@

appends two lists NB: in�x!

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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List Functions

fun null l =

if l = [] then true else false;

or, using pattern matching:

fun null [] = true

| null (_::_) = false;

fun hd (x::_) = x;

fun tl (_::l) = l;

NB: these functions are built-in and do not need

to be de�ned

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Recursive de�nitions

fun rlength [] = 0

| rlength (h::t) = 1 + rlength(t);

fun append ([], l) = l

| append (h::t, l) = h::append(t,l);

fun reverse [] = []

| reverse (h::t) = reverse(t)@[h];

Purely recursive de�nitions can be very ineÆcient

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Iterative De�nitions

fun addlen ([],n) = n

| addlen (h::t, n) = addlen (t, n+1);

fn : 'a list * int -> int

fun ilength l = addlen(l,0);

fun revto ([],l) = l

| revto (h::t, l) = revto (t, h::l);

fn : 'a list * 'a list -> 'a list

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Library List Functions

load "List";

We can then use List.take, List.drop

fun take (k, []) = []

| take (k, h::t) =

if k > 0 then h::take(k-1,t)

else [];

fun drop (k, []) = []

| drop (k, h::t) =

if k > 0 then drop(k-1,l)

else h::t;

fn : int * 'a list -> 'a list

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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List of Pairs

fun zip ([], []) = []

| zip (h1::t1,h2::t2) =

(h1,h2)::zip(t1,t2);

! Warning: pattern matching is not

exhaustive

> val zip = fn :

'a list * 'b list -> ('a * 'b) list

Creates a list of pairs from a pair of lists.

What happens when the two lists are of di�erent

length?

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Unzipping

fun unzip [] = ([],[])

| unzip ((x,y)::pairs) =

let val (t,u) = unzip pairs in

(x::t, y::u)

end;

Note the local declaration

let D in E end

Compare this against applying functions first

and second to extract the components of the pair.

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Equality Types

We can test certain expressions for equality:

- 2 = 1+1;

> val it = true : bool

- 1.414*1.414 = 2.0;

> val it = false : bool

- [] = [1];

> val it = false : bool

Equality testing can be used with the basic types,

and with tuples and lists, but not with functions.

- (fn x => x+2) = (fn x => 2+x);

! Type clash: match rule of type

! 'a -> 'b

! cannot have equality type ''c

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Testing for Membership

fun member (x, []) = false

| member (x, h::t) =

(x=h) orelse member (x,t);

val member = fn : ''a * ''a list -> bool

''a is an equality type variable.

- op=;

> val it = fn : ''a * ''a -> bool

fun inter ([], l) = []

| inter (h::t,l) =

if member (h,l) then h::inter(t,l)

else inter(t,l);

fn : ''a list * ''a list -> ''a list

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Insertion Sort

fun insert(x:real, []) = [x]

| insert(x, h::t) =

if x <= h then x::h::t

else h::insert(x,t);

fun insort [] = []

| insort (h::t) = insert (h, insort t);

fn : real list -> real list

Insertion sort takes O(n2) comparisons on average

and in the worst case.

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Merge Sort

fun merge ([], l) = l : real list

| merge (l, []) = l

| merge (h1::t1,h2::t2)=

if h1 <= h2

then h1::merge(t1, h2::t2)

else h2::merge(h1::t1, t2);

fun mergesort [] = []

| mergesort [x] = [x]

| mergesort l =

let val k = length l div 2 in

merge(mergesort (List.take(l, k)),

mergesort (List.drop(l, k)))

end;

Merge sort takes O(n log n) comparisons on

average and in the worst case.

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Quick Sort

fun quick [] = []

| quick [x] = [x] : real list

| quick (h::t) =

let fun part (left, right, []) =

(quick left)@(h::quick right)

| part (left, right, x::l) =

if x<=h

then part (x::left, right, l)

else part (left, x::right, l)

in

part( [], [], t) end;

Quick sort takes O(n log n) comparisons on

average and O(n2) in the worst case.

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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QS without Append

fun quik ([], sorted) = sorted

| quik ([x], sorted) = (x:real)::sorted

| quik (h::t, sorted) =

let

fun part (left, right, []) =

quik(left, h::quik(right, sorted))

| part (left, right, x::l) =

if x<= h

then part (x::left, right, l)

else part (left, x::right, l)

in

part([], [], t) end;

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002



g g

Record Types

- { name="Jones", salary=20300, age=26};

val it =

{age = 26, name = "Jones", salary = 20300}

: {age : int, name : string, salary : int}

- {1="Jones", 2=20300,3=26};

> val it = ("Jones", 20300, 26)

: string * int * int

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Record Pattern Matching

- val emp1 =

{name="Jones", salary=20300, age=26};

> val emp1 =

{age = 26, name = "Jones", salary = 20300}

: {age : int, name : string, salary : int}

- val {name=n1,salary=s1,age=a1}= emp1;

> val n1 = "Jones" : string

val s1 = 20300 : int

val a1 = 26 : int

- val {name=n1,salary=s1,...} = emp1;

> val n1 = "Jones" : string

val s1 = 20300 : int

- val {name,age,...} = emp1;

> val name = "Jones" : string

val age = 26 : int

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Record Types

type employee = {name: string,

salary: int,

age: int};

> type employee = ...

fun tax (e: employee) =

real(#salary e)*0.22;

Or,

fun tax ({salary,...}: employee) =

real(salary)*0.22;

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Enumerated Types

Consider the King and his court:

datatype degree = Duke

| Marquis

| Earl

| Viscount

| Baron;

datatype person =

King

| Peer of degree*string*int

| Knight of string

| Peasant of string;

All constructors are distinct.

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Functions on Datatypes

[King,

Peer(Duke, "Gloucester", 5),

Knight "Gawain",

Peasant "Jack Cade"];

val it = ... : person list

fun superior (King, Peer _) = true

| superior (King, Knight _) = true

| superior (King, Peasant _) = true

| superior (Peer _,Knight _) = true

| superior (Peer _, Peasant _) = true

| superior (Knight _, Peasant _) = true

| superior _ = false;

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Exceptions

Exceptions are raised when there is no matching

pattern, when an overow occurs, when a

subscript is out of range, or some other run-time

error occurs.

Exceptions can also be explicitly raised.

exception Failure;

exception BadVal of Int;

raise Failure

raise (BadVal 5)

E handle P1 => E1 | . . . | Pn => En

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Recursive Datatypes

The built-in type operator of lists might be

de�ned as follows:

infix :: ;

datatype 'a list = nil

| :: of 'a * 'a list;

Binary Trees:

datatype 'a tree =

Lf

| Br of 'a * 'a tree * 'a tree;

Br(1, Br(2, Br(4, Lf, Lf),

Br(5, Lf, Lf)),

Br(3, Lf, Lf))

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Functions on Trees

Counting the number of branch nodes

fun count Lf = 0

| count (Br(v,t1,t2)) =

1+count(t1)+count(t2);

val count = fn : 'a tree -> int

Depth of a tree

fun depth Lf = 0

| depth (Br(v,t1,t2)) =

1+Int.max(depth t1, depth t2);

val depth = fn : 'a tree -> int

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Listing a Tree

Three di�erent ways to list the data elements of a

tree

Pre-Order

fun preorder Lf = []

| preorder (Br(v,t1,t2))=

[v] @ preorder t1 @ preorder t2;

In-Order

fun inorder Lf = []

| inorder (Br(v,t1,t2))=

inorder t1 @ [v] @ inorder t2;

Post-Order

fun postorder Lf = []

| postorder (Br(v,t1,t2))=

postorder t1 @ postorder t2 @ [v];

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Multi-Branching Trees

To de�ne a datatype of a tree where each node

can have any number of children

datatype 'a mtree =

Branch of 'a * ('a mtree) list;

a

To recursively de�ne functions, we can use map.

fun double (Branch(k,ts)) =

Branch(2*k, map double ts);

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Arrays

Arrays in an imperative language designate a

contiguous block of memory locations.

An array can be updated in place.

A[k] := x

There are no such arrays in a purely functional

language.

A functional array can be thought of as a function

from a �nite set of integers.

A : f1; : : : ; kg ! �

We require an update operation:

B = update(A, k, x)

This creates a new copy of the array, which is the

same as A except for the value at k.

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Arrays as Binary Trees

A tree whose depth is equal to the maximum

number of bits in a subscript

For a subscript k, take its binary representation,

and at each level, follow the left branch if the bit

is 0 and the right branch if it is 1.

1

2 3

4 6 5 7

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Lookup

exception Array; (*out of range*)

fun asub (Lf, _) = raise Array

| asub (Br(v,t1,t2), k) =

if k = 1

then v

else if k mod 2 = 0

then asub(t1, k div 2)

else asub(t2, k div 2);

val asub = fn : 'a tree * int -> 'a

For an array A and integer k asub(A,k) gives the

value of A[k].

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Update

fun aupdate (Lf, k, w) =

if k = 1 then Br(w, Lf, Lf)

else raise Array

| aupdate (Br(v,t1,t2), k, w) =

if k = 1

then

Br(w, t1, t2)

else if k mod 2 = 0

then

Br(v,aupdate(t1,k div 2,w),t2)

else

Br(v,t1,aupdate(t2,k div 2,w));

val aupdate =

fn : 'a tree * int * 'a -> 'a tree

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002



g g

Binary Tree Directories

A Directory associates values with keys.

If a directory is implemented as a list, each

update and each lookup takes O(n) operations on

the average.

When the directory is implemented as a binary

search tree, the operations take O(log n) on the

average.

Toby:7Jenni:5

Paula:6Gordon:3

Henry:4
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Search Tree Lookup

exception Bsearch of string;

fun blookup (Lf, b) = raise Bsearch(b)

| blookup (Br((a,x), t1, t2), b) =

if b<a then blookup(t1, b)

else if a<b then blookup(t2, b)

else x;

exn Bsearch = fn : string -> exn

val blookup =

fn : (string * 'a) tree * string -> 'a

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Update

fun bupdate (Lf, k:string, v) =

Br((k,v), Lf, Lf)

| bupdate (Br((a,x),t1,t2), k, v) =

if k < a

then Br((a,x),bupdate(t1,k,v),t2)

else if a < k

then Br((a,x),t1,bupdate(t2,k,v))

else Br((k,v),t1,t2); (*a=k*)

val bupdate =

fn : (string * 'a) tree * string * 'a

-> (string * 'a) tree

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Higher-Order Functions

A higher order function (also called a functional)

is a function that either takes a function as an

argument, or yields a function as a result.

Higher order functions are a key feature that

distinguishes functional from imperative

programming.

� partial evaluation

� general purpose functionals (such as map)

� sequences or in�nite lists

� search strategies

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002
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Function Values

The expression

fn x => E

is a function-valued expression.

Pattern-matching can be used:

fn P1 => E1 | . . . | Pn => En

The declaration

val double = fn n=>n*n;

is the same as:

fun double n = n*n;

if E then E1 else E2

is de�ned as:

(fn true => E1 | false => E2) E
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Curried Functions

Every function in ML takes only one argument.

For functions that require two arguments, we can

use pairs:

- op+ (5,4);

> val it = 9 : int

- op+;

> val it = fn : int * int -> int

Or we can de�ne:

- fun plus m n = m+n;

> val plus = fn : int -> int -> int

This is the curried version of plus

Partial evaluation:

- map (plus 4) [2, 3, 4];

> val it = [6, 7, 8] : int list
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More Curried Functions

- hd;

> val it = fn : 'a list -> 'a

- hd [op+,op-,op*,op div] (5,4);

> val it = 9 : int

Here the type of hd is:

(int*int -> int) list -> int*int -> int

An analogy can be made with nested arrays, as in

Pascal:

A: array [1..10] of

array [1..10] of real

. . .A[i][j]. . .
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Generic Sorting

fun insort lessequal =

let fun ins (x,[]) = [x]

| ins (x,h::t)=

if lessequal(x,h) then x::h::t

else h::ins(x,t)

fun sort [] = []

| sort (x::l) = ins(x,sort l)

in sort end;

> val insort = fn :

('a * 'a -> bool) ->

('a list -> 'a list)

- insort (op<=) [5,3,5,7,2,9];

> val it = [2, 3, 5, 5, 7, 9] : int list

- insort (op>=) [5,3,5,7,2,9];

> val it = [9, 7, 5, 5, 3, 2] : int list
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A Summation Functional

fun sum f 0 = 0.0

| sum f m = f(m-1) + sum f (m-1);

> val sum =

fn : (int -> real) -> int -> real

sum f m =

m�1X

i=0

f(i)

sum (sum f) m =

m�1X

i=0

i�1X

j=0

f(j)
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Matrix Transpose

The map functional applies a function to every

element of a list

fun map f [] = []

| map f (h::t) = (f h)::(map f t);

Representing a matrix as a list of lists, the

following de�nes the transpose function.

fun transp ([]::_) = []

| transp rows =

(map hd rows)::

(transp (map tl rows));

fn : 'a list list -> 'a list list
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Matrix Multiplication

The dot product of two vectors as a curried

function:

fun dotprod [] [] = 0.0

| dotprod (h1::t1) (h2::t2) =

h1*h2 + dotprod t1 t2;

Matrix multiplication:

fun matmult (Arows, Brows) =

let val cols = transp Brows

in map (fn row => map (dotprod row) cols)

Arows

end;
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The Fold Functional

foldl and foldr are built-in functionals which

can be de�ned as:

fun foldl f e [] = e

| foldl f e (h::t) =

foldl f (f(h,e)) t;

fun foldr f e [] = e

| foldr f e (h::t) =

f(h, foldr f e t);

These can be used to give simple de�nitions of

many list functions

foldl op+ 0 sum

foldl (fn (_,n) => n+1) 0 length

foldr op:: xs ys ys@xs
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Predicates

fun exists p [] = false

| exists p (h::t) = (p h) orelse

exists p t;

fn : ('a -> bool) -> 'a list -> bool

Determines whether there is any element in a list

that satis�es the predicate p.

fun filter p [] = []

| filter p (h::t) = if p h then

h::(filter p t)

else filter p t;

fn : ('a -> bool) -> 'a list -> 'a list
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Lazy Lists

Lists where the next element is computed on

demand.

Also known as streams in the literature.

(not to be confused with input/output streams)

� Avoids waste if the entire list is not needed.

� In�nite objects are a useful abstraction.

� Models simple I/O.

Disadvantage: Termination is lost
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Lazy Lists in ML

() |the unique tuple of length 0 has type unit.

A datatype for lazy lists:

datatype 'a seq = Nil

| Cons of 'a * (unit -> 'a seq);

Cons(h; tf) is the sequence with head h and tail

function tf .

Example: the in�nite sequence k; k + 1; k + 2; : : :

fun from k =

Cons(k, fn () => from(k+1));

val from = fn : int -> int seq
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Operations on Lazy Lists

exception Empty;

fun hdq Nil = raise Empty

| hdq (Cons(h,_)) = h;

fun tlq Nil = raise Empty

| tlq (Cons(_,tf)) = tf();

from 1;

> val it = Cons(1, fn) : int seq

- tlq it;

> val it = Cons(2, fn) : int seq

- tlq it;

> val it = Cons(3, fn) : int seq
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Consuming a Sequence

fun takeq (0,s) = []

| takeq (n,Nil) = []

| takeq (n,Cons(h,tf))=

h::takeq(n-1,tf());

takeq takes an integer n and a sequence s and

produces a list of the �rst n elements of s

fun squares Nil :int seq = Nil

| squares (Cons(h,tf)) =

Cons(h*h,fn () => squares (tf()));

- squares (from 1);

> val it = Cons(1, fn) : int seq

- takeq (5,it);

> val it = [1, 4, 9, 16, 25] : int list
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Joining Two Sequences

fun appendq (Nil, yf) = yf

| appendq (Cons(h,tf),yf) =

Cons(h, fn() => appendq(tf(),yf));

appendq: 'a seq * 'a seq -> 'a seq

If the �rst sequence is in�nite,

appendq(x,y) = x

fun interleave (Nil, yf) = yf

| interleave (Cons(h,tf),yf) =

Cons(h,fn() => interleave(yf,tf()));
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Functionals for Lazy Lists

fun mapq f Nil = Nil

| mapq f (Cons(h,tf)) =

Cons(f h, fn() => mapq f (tf()));

- mapq (fn x => x*x) (from 1);

> val it = Cons(1, fn) : int seq

- takeq(5,it);

> val it = [1, 4, 9, 16, 25] : int list

fun filterq p Nil = Nil

| filterq p (Cons(h,tf)) =

if p h then

Cons(h,fn() => filterq p (tf()))

else filterq p (tf());
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Searching In�nite Trees

Many problem solving applications involve

searching a very large search space, structured as

a tree.

Usually the tree is not available in its entirety,

but the nodes are generated as needed.

We represent such a tree as a function of type

next : � ! � list

Di�erent search strategies may be appropriate.

� Depth First Search searches the entire

sub-tree rooted at a before proceeding to its

sibling.

� Breadth First Search searches all nodes at a

given level before proceeding to the next level.
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Depth First Search

Fast, when it works

Requires space proportional to the height of the

tree.

If the tree is in�nite, it may not �nd a solution

even if one exists.

fun depth next x =

let fun dfs [] = Nil

| dfs (h::t)=

Cons(h,fn() => dfs((next h)@t))

in dfs [x] end;

fn : ('a -> 'a list) -> 'a -> 'a seq
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Breadth First Search

Guaranteed to �nd a solution in �nite time, if one

exists.

Finds the nearest solution �rst.

Requires space proportional to the size of the

tree.

fun breadth next x =

let fun bfs [] = Nil

| bfs (h::t)=

Cons(h,fn() => bfs(t@(next h)))

in bfs [x] end;

fn : ('a -> 'a list) -> 'a -> 'a seq
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Testing and Veri�cation

We wish to establish that a program is correct.

That is to say, it meets its speci�cations.

Testing

Try a selection of inputs and check

against results

There is no guarantee that all bugs will be found.

Behaviour of a program is not continuous

Veri�cation

Prove that the program is correct.

Proofs can be long, tedious and complicated.

Functional programs are easier to do proofs with.
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Formal vs. Rigorous proof

Formal Proof:

� what logicians study

� purely symbolic

� needs an axiom system

� needs machine support

Rigorous Proof:

� what mathematicians do

� in natural language (with some symbols)

� needs clear foundations

� understandable to people

A rigorous proof is a convincing mathematical

argument.
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Assumptions

In order to reason with ML programs, we make

some assumptions about the expressions that will

be used in proofs.

� Expressions are purely functional.

� Expressions are well-formed and well-typed.

� Types are interpreted as sets.

� Execution of programs always terminates.

fun undef(x) = undef(x + 1);

factorial terminates for n � 0.
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Principle of Induction

We have a property �(n) we wish to prove for all

integers n � 0.

Prove:

� �(0); and

� �(k) implies �(k + 1), for all k.

This proves �(n) for all n.

For any particular n, �(n) can be derived in n

steps.
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Two Factorial Functions

fun fact n =

if n = 0 then 1 else n*(fact n-1);

Or, a more eÆcient, iterative, version

fun facti (n,p) =

if n=0 then p else

facti(n-1, n*p);

Are the two functions equivalent?

Can we show that for all n:

facti(n; 1) = fact(n)
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Inductive Proof

We make the stronger inductive hypothesis.

8 p facti(n; p) = fact(n)� p

Base case:

facti(0; p) = p defn. of facti

= 1� p

= fact(0)� p defn. of fact

Induction Step:

facti(k + 1; p) = facti(k; (k + 1)� p)

= fact(k)� (k + 1)� p

= fact(k + 1)� p
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Complete Induction

To show that �(n) is true for all n � 0, it is also

suÆcient to show that:

(8i < k �(i)) implies �(k)

� no separate base case is necessary

� �(n) is still provable in n steps

� a more general form of proof by induction
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Proof by Complete Induction

fun power(x,k) =

if k=1 then x

else if k mod 2 = 0 then

power(x*x, k div 2)

else x*power(x*x, k div 2);

Prove by induction (on k) that for all k � 1:

8x power(x; k) = x
k
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Complete Induction (contd.)

if k = 1 then power(x; 1) = x = x
1

if k = 2j then

power(x; k) = power(x; 2j)

= power(x2; j)

= (x2)j

= x
2j

if k = 2j + 1 then

power(x; k) = power(x; 2j + 1)

= x� power(x2; j)

= x� (x2)j

= x
2j+1
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Structural Induction

To prove a property �(l) for all lists l, it suÆces

to show:

� base case: �([])

� induction step: for any h and t, if �(t), then

�(h :: t)

�([x1; : : : ; xn]) can be proved in n steps.

Similarly for other recursive datatypes.
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Some List Functions

fun app([], l) = l

| app(h::t, l) = h::app(t, l);

fun nrev [] = []

| nrev (h::t) = (nrev t)@[h];

fun revto ([], l) = l

| revto (h::t, l) = revto (t,h::l);

We can prove properties such as:

app(app(l1; l2); l3) = app(l1; app(l2; l3))

revto(l1; l2) = nrev(l1)@l2
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Append is Associative

For all l1, l2 and l3:

app(app(l1; l2); l3) = app(l1; app(l2; l3))

By structural induction on l1.

Base case:

app(app([]; l2); l3) = app(l2; l3)

= app([]; app(l2; l3))

Induction Step:

app(app(h :: t; l2); l3) = app(h :: app(t; l2); l3)

= h :: app(app(t; l2); l3)

= h :: app(t; app(l2; l3))

= app(h :: t; app(l2; l3))
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Reverse

8 l2 revto(l1; l2) = nrev(l1)@l2

By structural induction on l1.

Base case:

revto([]; l2) = l2 = []@l2 = nrev[]@l2

Induction Step:

revto(h :: t; l2) = revto(t; h :: l2)

= nrev(t)@(h :: l2)

= nrev(t)@[h]@l2

= nrev(h :: t)@l2
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Other Examples

nlength(l1@l2) = (nlength l1) + (nlength l2)

nrev(l1@l2) = (nrev l2)@(nrev l1)

nrev(nrev l) = l

l@[] = l

(map f) Æ (map g) = map(f Æ g)

Correctness preserving program transformations.
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Structural Induction on Trees

datatype 'a tree =

Lf

| Br of 'a*'a tree*'a tree

To show �(t) for all trees t, it suÆces to show:

� �(Lf) Base case

� For any t1, t2 and x:

if �(t1) and �(t2) then �(Br(x; t1; t2)).

Induction step

�(t) can be proved in size(t) steps.
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Two Preorder Functions

fun preorder Lf = []

| preorder (Br(x,t1,t2)) =

x::preorder(t1)@preorder(t2);

fun preord (Lf, l) = l

| preord (Br(x,t1,t2),l) =

x::preord(t1, preord (t2,l));

We can show that the two are equivalent:

8 l preord(t; l) = preorder(t)@l

By induction on t
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Preorder

Base Case:

preord(Lf; l) = l = []@l = preorder(Lf)@l

Induction Step:

preord(Br(x; t1; t2); l)

= x :: preord(t1; preord(t2; l))

= x :: preorder(t1)@preord(t2; l)

= x :: preorder(t1)@preorder(t2)@l

= preorder(Br(x; t1; t2))@l
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Induction Principles

Structural Induction works well on functions

whose recursive de�nition follows the de�nition of

the datatype.

Structural Recursion.

Some functions follow other recursive patterns.

mergesort works by splitting its list in

two.

We can show that �(l) holds for all lists l by

showing that:

if 8 l0 length(l0) < length(l)! �(l0)

then �(l)

More generally, well-founded induction works on

any well-ordered set
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Logical reasons for types

Types help us rule out certain programs that

don't seem to make sense.

Can we apply a function to itself f f?

Sometimes, it might be sensible:

fn x => x or fn x => y.

But in general it looks very suspicious.

This sort of self-application can lead to

inconsistencies in formal logics.

Russell's paradox considers fx j x 62 xg,

To avoid this, Russell introduced a system of

types.

Type theory is an alternative to set theory as a

foundation for mathematics.

There are interesting links between type theory

and programming.
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Programming reasons for types

� More eÆcient code, and more e�ective use of

space.

� `Sanity check' for programs, catching a lot of

programming errors before execution.

� Documentation.

� Data hiding and modularization.

At the same time, some programmers �nd them

an irksome restriction. How can we achieve the

best balance?
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Di�erent typing methods

We can distinguish between

� Strong typing, as in Modula-3, where types

must match up exactly.

� Weak typing, as in C, where greater latitude

is allowed.

and also between

� Static typing, as in FORTRAN, which

happens at compilation

� Dynamic typing, as in LISP, which happens

during execution.

ML is statically and strongly typed.

At the same time, polymorphism gives great

exibility.
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Type Expressions

A type expression is:

� One of the basic types: unit, bool, int,

real, string.

� A type variable �.

� � ! �

� � � �

� � list

Where � and � are any type expressions.
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Polymorphism

Some functions can have various di�erent types

| polymorphism. We distinguish between:

� True (`parametric') polymorphism, where all

the possible types for an expression are

instances of some schematic type.

fn x => x

� Ad hoc polymorphism, or overloading, where

this isn't so.

+

Overloading is limited to a few special cases.

Except for overloading, the ML type inference

system can infer a type for every expression.
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Type variables

If an expression has a type involving a variable �

then it can also be given any type that results

from consistently replacing � by another type

expression.

A type � is more general than � , (� � �), when

we can substitute types for type variables in �

and get � . For example:

� � bool

� � �

(�! �) � (int ! int)

(�! �) 6� (int ! bool)

(� ! �) � (� ! �)

(� ! �) 6� �
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Most general types

Every expression in ML that has a type has a

most general type.

(Hindley/Milner)

There is an algorithm for �nding the most general

type of any expression, even if it contains no type

information at all.

ML implementations use this algorithm.

Thus, except for overloading, it is never necessary

to write down a type.

This makes the ML type system much less

onerous than some others.

For every pair of type expressions � and � , if they

can be uni�ed, there is a most general uni�er, up

to re-naming of type variables.
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ML type inference (1)

Example:

fn a => (fn f => fn x => f x) (fn x => x)

Attach distinct type variables to distinct variables

in the expression.

fn (a:�) => (fn (f:�) => fn (x:) =>

(f:�) (x:)) (fn (x:Æ) => (x:Æ))

Note:

� previously de�ned constants get their

assigned type.

� distinct instances of polymorphic constants

get assigned types with distinct type

variables.

� di�erent bindings of the same variable are

really di�erent variables.
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ML type inference (2)

f x can only be well-typed if f : � ! � and x : �

for some � and � .

(f x) : � .

fn (x:�) => E: has type � ! .

Using these facts, we can �nd relations among the

type variables.

Essentially, we get a series of simultaneous

equations, and use them to eliminate some

unknowns.

The remaining unknowns, if any, parametrize the

�nal polymorphic type.

If the types can't be matched up, or some type

variable has to be equal to some composite type

containing itself, then typechecking fails.

It is a form of term uni�cation.
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Uni�cation

To solve a list of equations:

t1 = s1; : : : ; tn = sn

� if t1 is a variable, replace all occurrences of it

in the rest of the list by s1;

� otherwise, if s1 is a variable, replace all

occurrences of it in the rest of the list by t1;

� otherwise, if they are distinct constants, then

fail;

� otherwise, if they have distinct head

constructors (!; �; list) then fail;

� otherwise, add to the list the list of equations

of their corresponding parts;

Repeat until all equations are processed.
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ML type inference (3)

For (f:�) (x:) to be well-typed,

For some �

� =  ! �.

(fn f => fn x => f x):( ! �)! ( ! �)

and this is applied to

(fn x => x):Æ ! Æ

So ( ! �) = (Æ ! Æ) and

 = Æ and � = Æ

So, the whole expression has type �! (Æ ! Æ).

It doesn't matter how we name the type variables

now, so we can call it � ! (� ! �).
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Let polymorphism

Let allows us to have local bindings

let val v = E in E' end.

This is like (fn v => E') E, but typechecking

this way leads to a problem,

If v is bound to something polymorphic, multiple

instances must be allowed to have di�erent types.

let val I = fn x => x

in if I true then I 1 else 0

end;

One way to type-check this is by substitution of

the bound variable.

There are more eÆcient ways.
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Type preservation

Typechecking ML is static, completed before

evaluation.

Evaluation of well-typed expressions cannot give

rise to ill-typed expressions.

type preservation.

The main step in evaluation is :

(fn x => t[x]) u

-> t[u]

x and u must have the same types at the outset,

so this preserves typability.

The reverse is not true,

(fn a => fn b => b) (fn x => x x)
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Pathologies of typechecking

fn a => let fun pair x y = fn z => z x y

val x1 = fn y => pair y y

val x2 = fn y => x1(x1 y)

val x3 = fn y => x2(x2 y)

val x4 = fn y => x3(x3 y)

val x5 = fn y => x4(x4 y)

in x5 (fn z => z)

end;

The type of this expression takes about a minute

to calculate, and when printed out takes 50,000

lines.

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002



g g

Case Study: Parsing

� Recursive Descent Parsing.

� Parsing functionals that closely correspond to

the rules of a grammar.

� Functionals that correspond to concatenation,

alternatives, repetition, etc.

� Easy to allow backtracking.

� Contruct syntax trees to which it is easy to

attach semantics.

� Similar functionals in other domains.

caveat: The functions are easy to write - the

parsing algorithms are the same.
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Outline

A lexical analyser converts the string of symbols

into a list of tokens.

datatype token = Key of string

| Id of string;

Key for keywords, and Id for identi�ers.

A parser is a function of type:

type 'a phrase =

token list -> 'a * token list;

The parser removes tokens from the front of the

list that match the rule of type 'a.
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Basic Parsers

$"string" : string phrase

id : string phrase

empty : 'a list phrase

exception Error of string;

fun id (Id a::toks) = (a, toks)

| id toks =

raise Error "Identifier expected";

fun empty toks = ([], toks);

Anuj Dawar University of Cambridge Computer Laboratory, January 17, 2002



g g

Alternatives and Consecutives

infix 0 || ;

fun (ph1 || ph2) toks =

ph1 toks handle Error _ => ph2 toks;

infix 5 -- ;

fun (ph1 -- ph2) toks =

let val (x, toks2) = ph1 toks

val (y, toks3) = ph2 toks2

in ((x,y), toks3) end;
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Transformation and Repetition

infix 3 >> ;

fun (ph >> f) toks =

let val (x, toks2) = ph toks

in (f x, toks2) end;

fun repeat ph toks =

(ph -- repeat ph >> (op::)

|| empty) toks;
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Propositional Logic 1

Grammar rules:

Prop = Termf"|" Termg

Term = Factorf"&" Factorg

Factor = Id j "~" Factor j "(" Prop")"

fun orl(p, []) = p

| orl(p,(_,q)::l) = orl(Disj(p,q), l);

fun andl(p, []) = p

| andl(p,(_,q)::l) = andl(Conj(p,q), l);
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Propositional Logic 2

fun prop toks =

(term -- repeat($"|" -- term)

>> orl) toks;

fun term toks =

(factor -- repeat($"&" -- factor)

>> andl) toks;

fun factor toks =

( id >> Atom

|| $"~" -- factor

>> (fn (_,p) => Neg p)

|| $"(" -- prop -- $")"

>> (fn ((_,p),_) => p)

) toks;
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Backtracking Parser

The parser yields 1 outcome, or an error.

We can obtain a backtracking parser by replacing

the exception by a lazy list of outcomes.

[]

[(x, toks)]

[(x1, toks1), (x2, toks2),...]

Depending on whether the string of tokens is a

syntax error, a unique parse, or an ambiguous

parse.

-- and || can be modi�ed to combine lazy lists.

The lazy consumption of outcomes leads to

backtracking.
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