Wide Area Networks :

Backbone Infrastructure

Ian Pratt

University of Cambridge Computer Laboratory

Outline

Demands for backbone bandwidth

- Fibre technology
 - *≪*DWDM
- Cong-haul link design
- Backbone network technology
 - ∠IP Router Design
 - *K*The near future : reducing layering
 - Longer term : all-optical networks

Internet Backbone growth

~125 million Internet hosts, ~350 million users
 Host/user growth rate at 40-80% p.a.

Metcalfe's Law: "the utility of a network is proportional to the number of users squared"

Access bandwidth increasing at 25%p.a.

Set to jump with DSL & Cable Modem

High percentage of long-haul traffic
 Unlike phone service where call freq. ? 1/?distance
 Web caches & Content Distribution Nets may help
 Huge future requirements for backbone b/w

Optical Fibre

Multi-mode fibre : 62.5/125?m

- ∠Typically used at 850nm
- Requires less precision hence cheaper : LANs
- *∝*Fibre ribbons
- Single-mode fibre : 8-10/125?m
 - *«*Better dispersion properties
 - Normally best at 1310nm, can be shifted
 - 1310nm typically used in Metropolitan area
 - Minimum attenuation at 1550nm
 - NZDSF at 1550nm used for long-haul

Fibers joined by "splicing"

Transceiver Technology

Currently at 100Gb/s for a single channel \approx 2.5 and 10 Gb/s in common use (OC-48, OC-92) ∠Use TDM to subdivide channel Improving at ~70%p.a. Wavelength Division Multiplexing ∠Use multiple 'colours' (?'s) simultaneously % 1310 & 1550nm – fused fibre couplers for de/mux ∠4 channel 20nm spacing around 1310nm Proposed for 10Gb/s Ethernet So-called "Coarse WDM"

Dense WDM (DWDM)

Optical Amplifiers

Erbium Doped Fibre Amplifiers (EDFA)
 few m's of Erbium doped fibre & pump laser
 wide bandwidth (100nm), relatively flat gain
 1550 'C' band, 1585 'L' band, also 'S' band
 Raman amplification
 counter-propagating pump laser
 Improve S/N on long-haul links
 Amplification introduces noise
 Need 3R's eventually: reshape, retime, retransmit

Long-haul links

E.g. as installed by "Level (3) Inc.": NZDSF fibre (1550nm)

≤32x10Gb/s = 320Gb/s per fibre

- 2 ducts, 96 cables/duct, 64 fibres/cable
- 2100km spans between optical amplification
 - Renting sites for equipment is expensive
 - 8 channel add/drop at each site, O/E terminated
- 600km between signal regeneration
 - Expensive transceiver equipment
- US backbone capacity up 8000% in 5 years! Level 3, Williams, Frontier, Qwest, GTE, IXC, Sprint, MCI, AT&T,...

SONET/SDH

SONET US standard, SDH European

- ✓ OC-3 / STM-1 155Mbp/s✓ OC-12 / STM-4 622Mbp/s
- \approx 0C-12 / STIVI-4 OZZIVID/
- ✓ OC-48 / STM-16 2.4Gbp/s
- ≤ OC-192 / STM-64 10Gbp/s

Can use as a point-to-point link

Enables circuits to be mux'ed, added, dropped

Often used as bi-directional TDM rings with ADMs

- ≤50ms protection switch-over to other ring
 - "wastes" bandwidth, particularly for meshes
 - SONET/SDH switches under development

Perceived as expensive, provisioning relatively slow

IP Routers

Need big, fast routers

- Particularly at POPs for interconnecting ISPs
 - Densely connected mesh of high speed links
 - Often need features too : filtering, accounting etc.
- Rapidly becoming a bottleneck
 - ∠Best today: sixteen OC-192 ports
- Fortunately, routeing is parallelize-able
 - ∠Have beaten Moore's Law 70% vs. 60% p.a.
 - ∠Recent DWDM advances running at 180%...

Router Evolution

First generation

Workstation with multiple line cards connected via a bus

Software address lookup and header rewrite

∠Buffering in main memory

Second generation

Forwarding cache & header rewrite on line card

- Peer to peer transfers between line cards
 - Buffer memory on line cards to decouple bus scheduling

Router Evolution

Shared bus became a bottleneck

Third generation

- Space-division switched back plane
 - pt2pt connections between fabric and line cards
- All buffering on line cards
- ✓Full forwarding table
- CPU card only used for control plane
 - Routeing table calculation
- Fourth generation

Optical links between line cards and switch fabric

IP Address Lookup

Longest prefix match lookup
(find most specific route)
Map to output port number
Currently, about 120k routes and growing
Need full table in core
99.5% of prefixes = 24 bits (50% are 24 bits)
Packet rates high on high speed links
40 byte packet every 32ns on OC-192 10Gb/s

Hardware address lookup

Binary trie

Iterative tree descent until leaf node reached

Compact representation, but

Lots of memory accesses in common case

24-8 direct lookup trie

- 2²⁴ entry lookup table (16.8MB) with 2nd level table for the infrequent longer prefixes
- ✓Vast majority of entries will be duplicates, but ✓Only \$20 of DRAM

Normally one lookup per memory access

Packet Buffer Requirements

Routers typically have 1x b/w delay product of buffering per port

∠e.g. for OC-768 : 250ms x 40Gb/s =1.25GB/port

- Need DRAM for density, but random access to slow
 currently around 50ns and improving at only 7% p.a.
 40 byte packet every 8ns at OC-768
- Use small SRAM at head and tail of a DRAM FIFO to batch packets and make use of DRAM's fast sequential access modes to the same DRAM row

Switch fabric design

Ideal fabric would allow every input port to send to the same output port simultaneously So-called output buffered switch Implementation infeasible / unnecessary Input-buffered switches used in practice Simple design suffers from head-of-line blocking Limit of 58% of max throughput for random traffic May be able to run fabric at greater than line speed

Switch Fabric Design

Use "virtual output queues" on input ports

- Scheduler to try and maximise fabric utilization
 - Choose links on request graph such as to maximise the number of output ports in use in each slot time
 - Bipartite match
- Maximum Weight Matching now realisable
 - Previously used an approximation
- In future, parallel packet switching with load balancing looks promising

IP over ATM over SONET

Uses SONET to provide point-to-point links between ATM switches

Hang ATM switches off SONET ADMs VC/VPs used to build a densely connected mesh *«*flexible traffic shaping/policing to provision paths Can provide restoration capability ~100ms Hang IP routers off ATM switches Routers see dense mesh of pt-to-pt links Reduces # of high-performance routers required Don't carry "through traffic" • IP capable of relatively slow restoration MPLS to better exploit underlying ATM in the future

Near future: IP over SONET

"Packet over SONET" (PoS)

- Build traffic shaping into routers/tag switches
- tag-switching to make routing more efficient CDIR routing tricky, especially if packet classification for QoS required
 - Virtual circuit identifier pre-pended to packets
 - "soft-state" only
- Route at the edges, tag switch in the core
- Use MPLS to fix paths for flows
 - provision alternate paths
 - ∠provide QoS etc.

Near future: IP over "not SONET"

CISCO "Dynamic Packet Transport"

- Replace SONET higher layers with something more amenable to packet transfer mode
- still uses SONET physical layer (allows tunnelling)
- Ring based architecture
 - Rapid self-healing through ring wrapping
 - Don't over commit critical traffic!
 - Flow-through and Local TX FIFOs in each station
 - Spatial Reuse Protocol (SRP) is bandwidth efficient
 - Uses 802.3 (Ethernet) 48 bit station addresses
 - Rudimentary QoS with two priority classes
 - Watermarks on FIFOs with back-pressure to other stations

All Optical Networks

Really fast routers and ATM switches difficult and expensive
 Variable buffering tricky
 Optical-electrical-optical (OEO) conversion expensive
 "only" on the semiconductor performance curve...
 Exploit DWDM : "transparent optical networks"
 Use DWDM to build a *network* rather than a fat pipe
 Use ?'s like ATM Virtual Paths

Optical Components

Add-Drop Multiplexers (ADMs)
 Fibre Bragg Gratings – in common use
 Tuneable lasers - available
 Tuneable filters – getting there
 Optical Cross Connects (OXCs)
 Beam steering devices
 holographic devices – typically very lossy
 micro-mirrors

? converters – some promising technologies

All Optical Networks

What functionality can we do all-optically?

- ✓IP routeing
 - Looks very hard
- Packet switching (MPLS like)
 - Variable length packets may be tricky, as is header lookup
- Cell switching
 - Buffering slightly easier, but still variable length
- *≝*TDM
 - Fixed length buffering, out-of-band switch configuration
 - Looks do-able
 - Good enough for carrying traffic aggregates in core?