
Further Java topics



The volatile modifier

static bool signal = false;

public void run() {

while (!signal) {

doSomething();

}

}

If some other thread sets the signal field to true then
what will happen?

� The thread running the code above may keep executing
the while loop

� This might happen if the JVM produces machine code
that loads the value of signal into a processor register
and just tests that register value each time around the
loop

! Such behaviour is valid and may help performance

Concurrent Systems and Applications 2001 – 2 Tim Harris



The volatile modifier (2)

volatile is a modifier that can be applied to fields, e.g.

volatile static bool signal = false;

When a thread reads or writes a volatile field it must
actually access the memory location in which that field’s
value is held

The precise rules about when a value held in a register may
be re-used are still being formulated. However, in general, if
a shared field is being accessed then either:

� the thread updating the field must release a mutual
exclusion lock that the thread reading from the field
acquires,

� or the field should be volatile .

Note that the first condition is satisfied by the usual use of
synchronized methods! volatile is therefore rarely
seen in practice

For more details: section 2.2. of Doug Lea’s book (online at
http://gee.cs.oswego.edu/dl/cpj/jmm.html )

Concurrent Systems and Applications 2001 – 3 Tim Harris



Garbage collection

As with Standard ML, a Java program does not need to
explicitly reclaim storage space from objects and arrays that
are no longer needed

class Loop {

public static final void main (String args[]) {

while (true) {

int x[] = new int[42];

}

}

}

� This code will run forever without any problems and
without requiring additional storage space for each
iteration of the loop

� The garbage collector is responsible for identifying when
storage space can be reclaimed

$ java -verbosegc Loop

[GC 511K->95K(1984K), 0.0032864 secs]

[GC 607K->95K(1984K), 0.0008373 secs]

[GC 607K->95K(1984K), 0.0002556 secs]

[GC 607K->95K(1984K), 0.0002518 secs]

[GC 607K->95K(1984K), 0.0002451 secs]

Concurrent Systems and Applications 2001 – 4 Tim Harris



Garbage collection (2)

There are lots of different techniques that might be used to
implement the garbage collector (see Part 1B DS&A, Part 2
Advanced Algorithms)

The JVM guarantees that storage space will not be reclaimed
while an object remains reachable, i.e. if it

� is referred to by a static field in a class,

� is referred to by a local variable in a running thread,

� is referred to by from another reachable object,

� still needs to be finalized

A
B

C

D

E

Objects A, B, C are all reachable. Objects D and E are not

Concurrent Systems and Applications 2001 – 5 Tim Harris



Finalizers

When the GC detects that an object is otherwise
unreachable (e.g. D and E on the previous slide) then it can
run a finalizer method on it. These are ordinary methods that
override a default version defined on java.lang.Object

protected void finalize() throws Throwable { }

Why might this be useful?

� To perform some clean-up operation

– although the GC can reclaim the storage space
allocated to the object, it will not be able to reclaim
other resources associated with it

– e.g. if a TCP connection is set up in the constructor
then perhaps the finalizer should invoke close() on
the associated TCPConnection object so that the
remote machine knows that the connection is no
longer in use

� To aid debugging
– e.g. to check that objects are becoming unreachable at

the times at which the programmer intended

Concurrent Systems and Applications 2001 – 6 Tim Harris



Finalizers (2)

What about examples like this? The Restore class
implements a simple singly-linked-list:

class Restore {

int value;

Restore next;

static Restore found;

Restore (int value) {

this.value=value; this.next=null;

}

public void finalize () {

synchronized (Restore.class) {

this.next = found;

found = this;

}

}

}

The finalize method will be invoked on objects once
they cease to be accessible to the application...

...but it then restores access to through the static found
field. This is perfectly safe, but very unclear

Concurrent Systems and Applications 2001 – 7 Tim Harris



Finalizers (3)

Beware! The JVM gives few guarantees about exactly when a
finalizer will be executed

� A finalizer will not be run on an object before it becomes
unreachable. It is invoked at most once on an object

� The method System.runFinalization() will cause
the JVM to ‘make a best effort’ to complete any
outstanding finalizations

� There is no built-in control over the order in which
finalizers are executed on different objects

� There is no control over the thread that executes finalizer
methods – there may be a dedicated thread for executing
them, there may be one thread per class, they may be
executed by one of the threads performing garbage
collection

Finalizers (and everything they access!) should be written
defensively: assume that they may run concurrently with
anything else and make sure that they do not deadlock or
enter endless loops

Concurrent Systems and Applications 2001 – 8 Tim Harris



Reference objects

Reference objects provide a more general mechanism for

� scheduling cleanup actions when objects become
unreachable via ordinary references,

� managing caches in which the presence of an object in
the cache should not prevent its garbage collection, or

� accessing temporary objects which can be removed
when memory is low

A reference object holds a reference to some other object
introducing an extra level of indirection. The referent is
selected at the time that the reference object is instantiated
and can subsequently be obtained using the get method:

import java.lang.ref.*;

class RefExample {

public static void main (String args[]) {

int a[] = new int[42];

Reference r = new WeakReference (a);

System.out.println ("r : " + r);

System.out.println (r.get());

}

}

Concurrent Systems and Applications 2001 – 9 Tim Harris



Reference objects (2)

The garbage collector is aware of reference objects and will
clear the reference that they contain in certain situations.
Suppose that an object (t ) is accessible through a weak
reference object (r ) and through an ordinary object (u):

t

u

r

If u becomes unreachable then t is said to be weakly
reachable and the GC is permitted to clear the reference in r :

t

u

r

Further calls to r.get() will return null . The reference
object can be cleared explicitly by invoking r.clear()

✘ Traversal requires extra calls to get()

✔ ...but reference objects are simpler conceptually than
separate ‘weak reference types’ to the language

Concurrent Systems and Applications 2001 – 10 Tim Harris



Reference objects (3)

A reference object can be associated with a reference queue
(instantiated from java.lang.ref.ReferenceQueue ):

Reference r = new WeakReference (a, rq);

After clearing reference objects the garbage collector will
(possibly some time later) append those associated with
reference queues to the appropriate queue

! it is the reference object (r ), not the referent (t ), that is
appended to the queue

A reference queue supports three operations:

� poll() attempts to remove a reference object from the
queue, returning null if none is available

� remove(x) attempts to remove a reference object,
blocking up to x milliseconds

� remove() attempts to remove a reference object,
blocking indefinitely

Concurrent Systems and Applications 2001 – 11 Tim Harris



Reference objects (4)

There are actually three different classes defining
successively weaker kinds of reference object:

� SoftReference – a soft reference may be cleared by
the GC if memory is tight, so long as the referent is not
reachable by ordinary references. Useful for
memory-sensitive caches

� WeakReference – may be cleared by the GC once the
referent is not reachable by ordinary references or soft
references. Useful for hashtables from which data can be
discarded when no longer in use elsewhere in the
application

� PhantomReference – useful in combination with
reference queues as a more flexible alternative to
finalizers. Enqueued once the referent is not reachable
through ordinary, soft or weak references and once it has
been finalized. get always returns null

In practice PhantomReference would be sub-classed
and instances of those sub-classes would maintain any
information needed for clean-up

Concurrent Systems and Applications 2001 – 12 Tim Harris


