
Computer Systems

Modelling

R. J. Gibbens

Computer Laboratory

Michaelmas Term 2001

Computer Systems Modelling, Nov 2001 Slide 1

Eight lectures covering:

ä Introduction to modelling, what is it, why

is it useful?

ä Simulation techniques, random number

generation, analysis of results from

simulation or measurements

ä Operational analysis, performance bounds,

balanced systems

ä Queueing theory, Markov chains,

single/multiple servers, bounded queues,

queueing networks

Computer Systems Modelling, Nov 2001 Slide 2

Recommended books

ä Jain, The Art of Computer Systems

Performance Analysis, Wiley, 1991

— Simulation, random number generation,

operational analysis, some basic queueing

theory, substantial sections on designing

and analysing experiments

ä Leung, Quantitative Analysis of Computer

Systems, Wiley, 1988

— Operational analysis, basic queueing

theory, small section on simulation

ä Kleinrock, Queueing Systems — Volume 1:

Theory, Wiley, 1975

— A classic on queueing theory, much more

emphasis on mathematical derivations

Computer Systems Modelling, Nov 2001 Slide 3

Why model?

ä A manufacturer may have a range of

compatible systems with different

characteristics — which configuration

would be best for a particular application?

ä A system is performing poorly — what

should be done to improve it? Which

problems should be tackled first?

ä Fundamental design decisions may affect

performance of a system. A model can be

used as part of the design process to avoid

bad decisions and to help quantify a

cost/benefit analysis.

Computer Systems Modelling, Nov 2001 Slide 4

A toy problem

system CPU time disk time total

A 4.6 4.0 8.6

B1 5.1 1.9 7.0

B2 3.1 1.9 5.0

ä A database running on Type A system is

too slow

ä Type B1 system available immediately, and

a type B2 system in the future

ä Which option is best:

• Stick with A?
• Change to B1 immediately?
• Wait and change to B2?

ä What factors affect the correct choice?

Computer Systems Modelling, Nov 2001 Slide 5

How can modelling help?

Typical performance questions we might ask

include:

ä How long will a database request wait

before receiving CPU service?

ä What is the utilization of the resource

(CPU, disk, . . .)? (Utilization is the

proportion of time that the resource is

busy.)

ä What is the distribution of the number of

requests queued at some time t? What is

its mean, standard deviation, . . .

Computer Systems Modelling, Nov 2001 Slide 6

Techniques

Many different approaches:

ä Measurement — if the system already

exists then maybe it can be changed and

the effects analysed

ä Simulation — construct a computer

program that emulates the system under

study and study that instead

ä Operational analysis — analysis based on

directly measured quantities and

relationships between them: makes few

assumptions about the system

ä Queueing theory — stochastic processes,

analytical models of queueing systems

Computer Systems Modelling, Nov 2001 Slide 7

Techniques (2)

Choosing between these techniques depends

on. . .

ä Stage of development: can only measure an

existing system

ä Time available: measurements or

simulations can take a long time to

complete. How easily can different

trade-offs be evaluated?

ä Resources: systems with which to

experiment, people with the relevant skills,

cost

ä Desired accuracy: how do the assumptions

made in analytic techniques effect the

result? Are appropriate parameters and

workloads used during experimental work?

ä Creditable: will people believe (act on) the

results?

Computer Systems Modelling, Nov 2001 Slide 8

Little’s result

Begin with a simple derivation of Little’s Result

— a very general theorem relating the number

of jobs in a system with the time they spend

there.

¾

½

»

¼

e.g.: A disk server takes, on average, 10ms to

satisfy an I/O request. If the request rate is 100

per second, then how many requests are queued

at the server?

Computer Systems Modelling, Nov 2001 Slide 9

Little’s result (2)
N

um
be

r
of

 c
us

to
m

er
s

Time t

α()

δ()t

t

Completions

Arrivals

Ν()t

γ()t

α(t) = number of arrivals in (0, t)

δ(t) = number of departures in (0, t)

N(t) = α(t)− δ(t)is the number in the system at t

The area γ(t) between the curves α(t) and δ(t)

represents the total time all customers have

spent in system in (0, t).

Computer Systems Modelling, Nov 2001 Slide 10

Little’s result (3)

Let

λt = α(t)/t

Tt = γ(t)/α(t)

Nt = γ(t)/t

ä λt — the average arrival rate during (0, t)

ä Tt — system time per customer averaged

over all customers in (0, t)

ä Nt — average number of customers in

system during (0, t)

Combining these:

Nt = λtTt

Computer Systems Modelling, Nov 2001 Slide 11

Little’s result (4)

Assume the following limits exist

λ = lim
t→∞

λt

T = lim
t→∞

Tt

Then we have

N = λT

That is, the average number in the system

equals the average arrival rate × average time
in system.

This is Little’s result. The proof makes no

assumptions about the way that arrivals or

departures are distributed, the queueing

discipline or how many servers service the

queue.

First proved by Little in 1961.

Computer Systems Modelling, Nov 2001 Slide 12

Applications of Little’s result

We can re-state this for any boundary of our

queueing system.

We can split T (average time in the system)

into W (average time spent waiting) and x

(average time spent being served).

Similarly, we can split N (average number in

the system) into Nq (average number in the

queue) and Ns (average number being served).

Applying Little’s result separately to the queue

and to the server:

Nq = λW

Ns = λx

Computer Systems Modelling, Nov 2001 Slide 13

Probability theory refresher

We write the probability that an event occurs

as: P(event)

— e.g. P(X < 0.5): “the random variable X is

less than 0.5”

P(a, b) is the joint probability that both
events a and b occur

— e.g. P(X < 0.5, Y < 0.5): “both X and Y

are less than 0.5”

P(a | b) is the conditional probability that
event a occurs given that event b has occured.

— e.g. P(X < 0.5 |Y < 0.5) “X is less than 0.5

given that Y is less than 0.5”

P(a | b) := P(a, b)
P(b)

Computer Systems Modelling, Nov 2001 Slide 14

CDF and PDF

We can describe the distribution from which a

continuous random variable is drawn in two

ways: using the cumulative distribution

function (cdf) or the probability density

function (pdf).

For example, for a random variable X

uniformly distributed from 0 to 1, the cdf and

pdf would be
FX(x)

0

16

x
0 1

-¡
¡
¡

fX(x)

0

16

x
0 1

-

FX(x) := P(X ≤ x) fX(x) :=
dFX(x)

dx

Note that

FX(x) =

∫ x

−∞
fX(y) dy , and

∫ ∞

−∞
fX(y) dy = 1.

Computer Systems Modelling, Nov 2001 Slide 15

Expected value and moments

The expected value of X, E(X), is given by

E(X) := X :=

∫ ∞

−∞
xfX(x) dx

Also called the average, mean or first moment

of the distribution.

The nth moment is defined as

E(Xn) := Xn :=

∫ ∞

−∞
xnfX(x) dx

Take care to distinguish between Xn and X n.

The nth central moment is

(X −X)n =

∫ ∞

−∞
(x−X)nfX(x)dx

Computer Systems Modelling, Nov 2001 Slide 16

Variance and std dev

The 2nd central moment is known as the

variance,

σ2
X := (X −X)2 = X2 − (X)2

From this, we define:

σX :=
√

σ2
X the standard deviation

CX :=
σX

X
the coefficient of variation

Numerically higher values signify “more

variable” data.

For example, a coefficient of variation of 5

might be considered large, and 0.2 considered

small.

Computer Systems Modelling, Nov 2001 Slide 17

Example: uniform

The uniform distribution is used where a

continuous random variable takes values in

some bounded range and there is no reason to

favour one value over another

a = lower limit

b = upper limit, b > a

f(x) =
1

b− a

F (x) =































0 if x < a

x− a

b− a
if a ≤ x < b

1 if b ≤ x

The mean is 1
2
(a+ b), the variance is 1

12
(b− a)2.

Computer Systems Modelling, Nov 2001 Slide 18

Example: exponential

One scale parameter, λ > 0, with

f(x) = λ e−λx

F (x) = 1− e−λx

The mean is 1
λ , the variance is

1
λ2 .

Consequently λ may be viewed as the mean

event rate.

The exponential distribution is the only

continuous distribution with the Memoryless

Property that

P(X > t+ s |X > t) = P(X > s)

Intuitively, it may be used to model the

distribution of inter-event times in which the

time until the next event does not depend on

the time already waited.

Computer Systems Modelling, Nov 2001 Slide 19

Discrete distributions

The previous examples have concerned

continuous random variables whose

distributions have been defined by their cdf or,

equivalently, their pdf.

Similar definitions apply to the case of discrete

random variables, X, taking values xi (i ∈ I).

We have that
∑

i∈I
P[X = xi] = 1

The expected value of X is

E(X) :=
∑

i∈I
xiP[X = xi]

Similarly, for the other moments, where the

integration becomes a summation over the set

of possible values.

Computer Systems Modelling, Nov 2001 Slide 20

Example: Bernoulli

The Bernoulli distribution is used where a

discrete random variable can take only two

values, usually either 1 representing the success

or 0 representing the failure of some operation.

p = probability of success, 0 ≤ p ≤ 1

P(X = x) =



























1− p if x = 0

p if x = 1

0 otherwise

The mean is evidently p and the variance

is p(1− p).

Computer Systems Modelling, Nov 2001 Slide 21

Example: Binomial

The number of successes in a series of Bernoulli

trials is a discrete random variable that has a

distribution known as the Binomial

distribution.

p = probability of success, 0 ≤ p ≤ 1

n = number of trials, n ∈ N+

P(X = x) =

(

n

x

)

px(1− p)n−x

The mean is np and the variance is np(1− p).

Note that P(X = x) is the product of the

number of ways that x successes can occur in n

trials and the probability that exactly that

pattern of successes and failures will occur.

Computer Systems Modelling, Nov 2001 Slide 22

A simple queueing system

arrivals-

queue server(s)
±°² d̄epartures-

We characterise queueing systems by:

ä Arrival process

A(t) = P(inter-arrival time ≤ t)

ä Service process

B(x) = P(service time ≤ x)

ä Storage capacity available for waiting

customers

ä The number of servers/customers available

ä The different kinds of arriving customers

(big jobs, small jobs,. . .)

ä Queueing discipline used: FCFS, LCFS,

priority, . . .

ä Defections, balking, bribing, . . .

Computer Systems Modelling, Nov 2001 Slide 23

Queueing systems notation

The Kendall notation describes a single

queueing system using the notation

A/B/m/k/l where:

ä A is the inter-arrival time distribution of

customers

ä B is the service time distribution

ä m is the number of parallel servers

ä k is the limit on the customers in this

system

ä l is the population size

If the population size or the limit on the queue

length are not specified then they are assumed

to be infinite.

Computer Systems Modelling, Nov 2001 Slide 24

Queueing notation (2)

Typical values for A,B include:

ä M – exponential distribution

ä Er – r stage Erlangian distribution

ä D – Deterministic

ä G – General

Examples:

ä M/M/1: exponential inter-arrival,

exponential service, single server

ä M/Er/1: exponential inter-arrival, r stage

Erlang service, single server

ä M/G/1: exponential inter-arrival, general

service time, single server

ä M/M/K/K: exponential inter-arrival,

exponential service, K servers and at

most K customers present

Computer Systems Modelling, Nov 2001 Slide 25

Queueing networks

1 2 3

45

-¾ -¾ -

- -
6?©©©*

HHHY

»»»
»»»

»»:

6

More generally, consider systems comprising

multiple inter-connected service centres,

forming a queueing network. Consider:

ä the properties of each node

— e.g. using Kendall notation

ä the way in which jobs move between the

nodes

— e.g. the links that exist between nodes

and the way in which a job leaving one

node selects between these links

ä the workload being analyzed

— e.g. disk-server workload comprises a

20 : 1 mix of small/large requests

Computer Systems Modelling, Nov 2001 Slide 26

Queueing networks (2)

We can classify queueing networks as either

ä closed networks in which a fixed set of jobs

circulate between nodes, but no new jobs

are introduced and no jobs leave the system

— e.g. a computer system with a fixed

number of terminals attached to it

ä open networks in which jobs may enter and

leave the system

— e.g. the network on the previous slide:

jobs arrive at 1 or 5 and leave from 1 or 3

Open networks may be further classified as

feed-forward if a single job visits each node at

most once.

Computer Systems Modelling, Nov 2001 Slide 27

Simulation

Simulation allows arbitrarily complex systems

to be evaluated

ä Able to capture the dynamic behaviour of

systems

ä Captures the dynamics of complex systems

by imitation

ä Tracks the evolution of the system over

time

ä Examples include communication network

design, road traffic modelling, studying

chemical reactions, fluid flow, etc.

Computer Systems Modelling, Nov 2001 Slide 28

Simulation (2)

Execution of simulation model consists of a

series of state space changes.

These closely follow the chronological order of

events in the system being modelled.

Consider simulation as a ‘set of equations’

describing evolution in time of system under

study.

The ‘equations’ are ‘solved’ by following their

evolution in time.

We always follow the dynamic evolution of the

system, even if we only want a mean value —

therefore, as well as techniques for

implementing simulators, it is necessary to

know how to analyse their results.

Simulation is of particular use when studying

systems which are not in a steady state

condition.

Computer Systems Modelling, Nov 2001 Slide 29

Types of simulation

Simulation studies may be classified as

ä Discrete state/event simulation in which

the state of the system is described by

discrete variables

— e.g. the number of jobs at different

stages on a production line

ä Continuous state/event simulation in which

the state is described by continuous

variables

— e.g. the quantities of various chemical

reagents in a vat

A similar distinction may be drawn between

discrete time and continous time simulations

depending on whether the system state is

defined at all times.

— e.g. a simulation of the number of students

attending these lectures would be discrete time

Computer Systems Modelling, Nov 2001 Slide 30

Types of simulation (2)

We will be concerned with discrete event

simulation because it applies most naturally to

computer systems in which state variables are

generally discrete, e.g.

ä the state of jobs in the system

ä the number of jobs of different kinds

ä the number or availability of devices

Computer Systems Modelling, Nov 2001 Slide 31

Pros and cons

The principal advantage of simulation is its

extreme generality: the programmer may add

arbitrary details. However,

ä The design, coding and debugging of a

simulation program is often time

consuming and difficult to understand — it

may even approach that of implementing

the system and measuring it directly

ä Generality can lead to complexity which

can obscure understanding of the model —

fine details may be irrelevant if the

simulated workload is a poor estimate

ä Execution of the simulation can be

computationally expensive

ä Statistical analysis of the output can be

problematic — e.g. how long should the

simulation run before taking an average of

the results?

Computer Systems Modelling, Nov 2001 Slide 32

Events

Each event contains a time stamp identifying

‘when it occurs’ and denotes some change in

the state of the system to be simulated e.g.

‘packet arrived’

Events are ordered in time in an event list

Initialize the clock to 0

Initialise the event list

WHILE termination criterion is not met

remove a smallest tuple (t,m) from the event list

simulate the effect of transmitting m at time t

update the clock to t

It is crucial that the simulator always selects

the event with the least time stamp

Frequently most of the simulation time is spent

maintaining the chronological order of the

event list.

Computer Systems Modelling, Nov 2001 Slide 33

Physical systems

Concerned with the problem of representing

so-called ‘physical systems’

A physical system consists of one or more

physical processes

Each physical process operates independently,

aside from interaction via messages (events)

All state changes are summarized in the event

exchanges

Note the similarity with object-oriented styles

of programming in which objects communicate

solely by method invocations. Older

object-oriented languages tended to refer to

these as message-send operations.

Computer Systems Modelling, Nov 2001 Slide 34

Example

incoming cars
attendant

CW1

CW2

cars leaving
waiting queue

An automatic car wash which is able to service

one car at a time — is it viable to install a

second car wash?

The model consists of an attendant (att), two

car washes, (cw1, cw2), the entrance to the

system (source) and the exit (sink)

ä The inter-arrival time of cars that need to

be washed is randomly distributed

ä If both car washes are busy, an arriving car

joins the queue

ä When a car wash becomes idle then the car

at the head of the queue is sent to it.

Computer Systems Modelling, Nov 2001 Slide 35

Example (2)

Events:

ä source→att: car arrives in the system

ä att→cw: car sent from the queue to the

car wash

ä cw→att: car wash becomes idle

ä cw→sink: car departs the system

Note how the departure of a car is modelled by

two events: one representing the car leaving the

system and the other that signals to the

attendant that the car wash is now idle.

Given that it takes cw1 8 minutes and cw2 10

minutes to wash a car, a possible sequence of

events is . . .

Computer Systems Modelling, Nov 2001 Slide 36

Sequence of events
message event time sender receiver content

1 - 0 cw1 att idle

2 - 0 cw2 att idle

3 1 6 source att car 1

4 2 6 att cw1 car 1

5 3 11 source att car 2

6 4 11 att cw2 car 2

7 5 12 source att car 3

8 6 14 cw1 sink car 1

9 - 14 cw1 att idle

10 7 14 att cw1 car 3

11 8 17 source att car 4

12 9 19 source att car 5

13 10 21 cw2 sink car 2

14 - 21 cw2 att idle

15 11 21 att cw2 car 4

16 12 22 cw1 sink car 3

17 - 22 cw1 att idle

18 13 22 att cw1 car 5

19 14 25 source att car 6

20 15 30 cw1 sink car 5

21 - 30 cw1 att idle

22 16 30 att cw1 car 6

Computer Systems Modelling, Nov 2001 Slide 37

Modelling stochastic systems

To represent the stochastic nature of the

systems being modelled, simulation requires

the use of random variables.

An input to the simulation may have a

stochastic distribution e.g. arrivals at a queue.

Simulation model needs to sample random

variables from the given distribution to

“re-create” the input process.

Random variables can be generated for a wide

range of theoretical and empirical distributions.

This process requires only a sequence of

independent random variables with a uniform

distribution!

Computer Systems Modelling, Nov 2001 Slide 38

Random number generation

Many random number generators in use today

are not particularly good.

It is important not to generate random

numbers with an ad hoc method — complex

algorithms do not necessarily generate random

outputs.

Some operating systems include support for

generating random numbers based on (e.g.)

key strokes or network inter-arrival times —

however, these mechanisms are not usually

suited to generating large volumes of random

data.

How can we generate a large random sequence

in a deterministic manner?

The answer is that the sequence is not random,

but appears random as far as can be

determined from statistical tests. They are

termed pseudo-random.

Computer Systems Modelling, Nov 2001 Slide 39

Random number generation
(2)

Important requirements include

ä The algorithm should be fast

ä The storage requirements should be low

ä The random sequence should only repeat

after a very long period

ä The sequence generated should possess two

important statistical properties: uniformity

and independence

For ease of implementation and speed, most

random number generators use integer

representation over an interval m

Given a value in this range, a desired value in

the range (0, 1) can be obtained by dividing by

m

Computer Systems Modelling, Nov 2001 Slide 40

Linear congruential method

Many successful random number generators are

special cases of the following scheme,

introduced by Lehmer in 1951

It is based on 4 magic numbers:

The starting value X0 X0 ≥ 0
The multiplier a a ≥ 0
The increment c c ≥ 0
The modulus m m ≥ X0,m > a,m > c

The desired sequence of random numbers, Xn

is then generated by setting

Xn+1 = (aXn + c) modulo m

Computer Systems Modelling, Nov 2001 Slide 41

Multiplicative congruential
method

The special case where c = 0 yields a purely

multiplicative method.

When c = 0 the period of the sequence is

reduced but, to our advantage, generation is a

little faster.

How do we choose the values?

The case a = 1 can be rejected immediately as

this would mean that

Xn = (X0 + nc) modulo m

The case a = 0 is even worse.

So a > 1 is necessary.

Computer Systems Modelling, Nov 2001 Slide 42

Choice of values

Since the period can never be greater than m

this should be chosen to be as large as possible.

The following values were chosen for efficient

computation of random numbers on the

IBM/370

a = 16807

m = 2147483647

c = 0

X0 = 314159

Knuth has observed that the value a should end

in the digits x21 where x is even e.g. 31415821

(Implementation problem: what about

overflow?)

Computer Systems Modelling, Nov 2001 Slide 43

Tests for randomness

Various statistical tests exist

These include tests for uniformity (such as the

Kolmogorov-Smirnov test and Chi-Square test)

Runs tests, which examine the arrangement of

numbers in a sequence (a run) to test the

hypothesis of independence.

These tests frequently check for the number of

“up runs”, the number of “down runs”, and the

runs above and below the mean.

Autocorrelation tests check the correlation

structure of the sequence of observations.

Computer Systems Modelling, Nov 2001 Slide 44

Random variable generation

We have a sequence of pseudo-random uniform

variables. How do we generate variables from

other distributions?

Random behaviour can be programmed so that

the random variables appear to have been

drawn from a particular probability

distribution

If f(x) is the desired pdf, then consider the

CDF

FX(x) =

∫ x

−∞
f(x)dx

This is non-decreasing and lies between 0 and 1.

Computer Systems Modelling, Nov 2001 Slide 45

Random variable generation
(2)

Given a sequence of random numbers ri

distributed over the same range (0, 1)

Then the corresponding value xi such

that ri = FX(xi) is uniquely determined by

xi = F−1
X (ri)

The sequence xi is randomly distributed with

the probability density function f(x) and

cummulative distribution function FX(x).

Computer Systems Modelling, Nov 2001 Slide 46

Uniform distribution (a, b)

Consider the uniform random variable on the

interval (a, b) where

ä a, b are arbitrary real numbers

ä a < b

The distribution function is

FX(xi) = (xi − a)/(b− a)

for xi in the interval (a, b)

Given ri on interval (0, 1) the problem is that

of obtaining xi

Starting with ri = (xi − a)/(b− a) we find that

xi = (b− a)ri + a.

Computer Systems Modelling, Nov 2001 Slide 47

Exponential distribution

For the exponential distribution

FX(xi) = 1− e−λxi

for positive xi

Thus

ri = 1− e−λxi

1− ri = e−λxi

ln(1− ri) = −λxi

xi = −
1

λ
ln(1− ri)

Note that ri has the same distribution as 1− ri

so we might as well use

xi = −
1

λ
ln(ri)

Other random variables can be derived in a

similar fashion.

Computer Systems Modelling, Nov 2001 Slide 48

Simulation performance
measures

As the simulation itself is stochastic, so too are

the observed outputs.

It is critical to realize that a simulation can

only yield estimates for performance measures

There will always be some statistical error in

the estimates

We can attempt to reduce the error by

ä running the simulation for longer until

sufficient samples have been taken

ä running the same simulation with a

different pseudo-random number generator,

and combining the results from multiple

runs

Computer Systems Modelling, Nov 2001 Slide 49

Utilization

The utilization is the proportion of time that a

server is busy.

An estimate can therefore be obtained by

taking the sum of the busy times of the server

and dividing by T , the simulation length.

In the case of a k-server, the busy times can be

estimated together and divided by kT .

There are two obvious ways to aggregate the

busy times:

ä Sample the system and observe whether

servers are busy or idle

ä When the server becomes busy the time is

saved, and when it becomes idle again the

difference in the two times is the busy

period.

Computer Systems Modelling, Nov 2001 Slide 50

Throughput, queue length

A simple count is kept of the number of

customers receiving service. The throughput is

this value divided by the total time.

There are at least two ways to estimate queue

length:

ä estimate the queue length distribution,

then use that to obtain the mean

ä View the queue length as a function of

time: the mean queue length is 1/T of

integral of this function.

Computer Systems Modelling, Nov 2001 Slide 51

Queue length

ä Each time the queue length changes the

time ti+1 is stored

ä subtract previous recorded time ti from

current time

ä multiply by previous queue length ni

Sum these areas to give mean queue length (for

M observations) by

N =
1

T

M
∑

i=1

ni(ti+1 − ti)

Computer Systems Modelling, Nov 2001 Slide 52

Queueing time

Two obvious ways to obtain queueing time

ä observe the queueing times and take their

average

ä simply use Little’s law

Computer Systems Modelling, Nov 2001 Slide 53

Statistical analysis of results

Each independent replication of a simulation

experiment will yield a different outcome.

To make a statement about the accuracy we

need to consider the distribution of our

estimator.

A typical method to incorporate the variability

of the estimates is to construct confidence

intervals.

Computer Systems Modelling, Nov 2001 Slide 54

Confidence intervals

Given some point estimate p we produce a

confidence interval (p− δ, p+ δ).

The “true” value is estimated to be contained

within the interval with some chosen

probability, e.g. 0.9, say.

The value δ depends on the confidence level —

the greater the confidence required the larger

the value of δ.

Let x1, x2, . . . , xn be the values of a random

sample from a population determined by the

random variable X.

Assume: either X is normally distributed or n

is large then

Law of large numbers: X ≈ normally
distributed.

Computer Systems Modelling, Nov 2001 Slide 55

Confidence intervals (2)

Given the variance, σ, of X the 100(1− α)%

confidence interval is

x± δ

where

δ =
zα/2σ√

n

and

x =

n
∑

i=1

xi

zα is defined to be the largest value of z such

that P(Z > z) = α where Z is the standard

normal random variable.

These values, zα, can be taken from tables of

the standard normal distribution.

For example, for a 95% confidence interval

α = 0.05 and zα/2 = z0.025 = 1.96

Computer Systems Modelling, Nov 2001 Slide 56

Using Student’s T

When we know neither µ nor σ we use the

observed sample mean x and sample standard

deviation s where

s2 =
1

n− 1

n
∑

i=1

(xi − x)2

If n is large then we simply use s for σ as

above.

If n is small then we may use

δ =
tα/2s√

n

tα/2 is defined by P(T > tα/2) = α/2

T has a Student-t distribution with n− 1
degrees of freedom.

This is the more frequently used formula in

simulation models.

Computer Systems Modelling, Nov 2001 Slide 57

Stopping rules

How do we know when a system has been run

‘long enough’ for performance measures to be

realistic?

We also need to be aware of transient

conditions at the start of the simulation

We can also repeat the simulation several times

to obtain many samples for the ensemble

average.

These multiple runs are called replications.

Given a performance measure L we can

approach the ensemble process by

L = lim
n→∞

n
∑

i=1

Li

n

Computer Systems Modelling, Nov 2001 Slide 58

Stopping rules (2)

Having repeated the experiment n times, we

can construct a confidence interval on our

measure L.

Although large numbers of replications reduce

the variance in the sample, each replication

requires re-stabilizing the simulation.

Can we avoid this?

If we use only a single, long run, and break up

our samples into n blocks, each of these can

form a sample Li.

Computer Systems Modelling, Nov 2001 Slide 59

Stopping rules (3)

What could go wrong with this?

Correlation between successive blocks could

mean that we have biased samples.

If the block size is large then the correlation

should be small.

Explicit techniques exist to estimate the

correlation and obtain the block size

The simulation can be stopped once the

estimate of L becomes stable, or once the

confidence interval around L becomes

sufficiently narrow

Computer Systems Modelling, Nov 2001 Slide 60

Operational Analysis

Based on the idea of observation rather than a

probabilistic description of system behaviour.

It is also concerned with quantities ‘directly

related’ to these observed quantities.

Operational analysis makes very weak

assumptions about the system being modelled

— unlike simulation which requires detailed

system knowledge, or the techniques from

queuing theory (in the next section) which

depend extensively on the probability

distributions involved

We begin by examining some fundamental

quantities and operational laws.

Computer Systems Modelling, Nov 2001 Slide 61

Operational analysis (2)

We examine a system for some time recording

the customer arrivals and departures, and

define the quantities of interest:

ä T , the length of time we observe the system

ä A, the number of arrivals observed

ä C, the number of departures (or

completions of service) observed

ä W , the job-time product: the sum of the

durations of all customers over the

observation period

If the system is a single resource, then we can

also measure:

ä B, the time for which the resource was

busy.

Computer Systems Modelling, Nov 2001 Slide 62

Operational analysis (3)

From these we can define the following

quantities:

ä Arrival rate, λ := A
T

— the mean number of

arrivals per unit time

ä Throughput, X := C
T .

— the mean number of

departures per unit time

ä Mean number of customers, N := W
T

— the job-time product

in terms of N and T

ä Mean residence time, R := W
C

— the job-time product

in terms of R and C

Computer Systems Modelling, Nov 2001 Slide 63

Operational analysis (4)

For a single resource, we can also define:

ä Utilization, U := B
T

— the proportion of the time

that the resource is busy

ä Average service requirement, S := B
C

— the mean time that the

resource spends for each departure

Computer Systems Modelling, Nov 2001 Slide 64

The utilization law

Our first “law” is just an algebraic identity

U :=
B

T
=

C

T

B

C
= XS

This is termed the utilization law.

For example, if the throughput (X) is 5

departures/sec and the service demand (S) is

0.1 sec/departure then the utilization (U) is

50%.

Computer Systems Modelling, Nov 2001 Slide 65

Little’s law

Similarly, we can derive the familiar

Little’s Law

N :=
W

T
=

C

T

W

C
= XR

For example, if the throughput (X) is 5

customers/sec and the mean residence time is 1

sec then the average number in the system is 5.

ä Very weak assumptions about the system

ä Applicable to a wide range of systems

ä Can be applied recursively to subsystems

and to individual resources

— but take care that mutually-consistent

values are used for X and R; in particular,

whether they apply to the queue, the

server or the entire system

Computer Systems Modelling, Nov 2001 Slide 66

An example

Observe system for T = 10 sec

4 customers spend 10 s in the system

One customer spends 5 s in the system

Then we have W = 4× 10 + 1× 5 = 45 s.
If also A = C = 5 then

X = C/T = 5/10 = 0.5 customers per second

λ = 5/10 = 0.5 customers per second

N = 45/10 = 4.5 customers

R = 45/5 = 9.0 s per customer

Computer Systems Modelling, Nov 2001 Slide 67

A simple interactive system

Terminals

CPU

Disks

Central
Subsystem

Fixed number, M , of users logged on.

Customer is at the terminal whilst thinking.

The think time, Z, is the average time a user

spends between receiving a prompt and

responding.

A customer not thinking is somewhere inside

the central subsystem.

Computer Systems Modelling, Nov 2001 Slide 68

simple interactive system (2)

We can use Little’s Law to relate some

observable quantities in the central subsystem:

ä N is the number of customers in the

central subsystem 0 ≤ N ≤M

ä X is the rate at which customers complete

in the central subsystem

ä R is the average time a customer spends in

the central subsystem (intuitively

equivalent to “response time”)

If we observe that system throughput is 0.5

interactions per second and we find on average

7.5 users in the subsystem then

R =
N

X
=
7.5

0.5
= 15 s

from Little’s Law.

Computer Systems Modelling, Nov 2001 Slide 69

simple interactive system (3)

We can also apply Little’s law to the entire

system.

This is a closed system so the number of

customers is fixed as M .

We can split the time spent during an

interaction into the response time (R) and the

think time (Z). The residence time is R+ Z.

We consequently derive the interactive system

version of Little’s Law:

M = X(R+ Z)

Computer Systems Modelling, Nov 2001 Slide 70

simple interactive system (4)

With 10 users logged on, 5 s average think time

and an average response time of 15 s,

X =
M

R+ Z
=

10

15 + 5
= 0.5 interactions/sec

Under heavy load (M large or Z small)

U ≈ 1

Using the Utilization Law the throughput

X ≈ 1
S and hence

R =
M

X
− Z ≈MS − Z

²
±

¯
°

Thus, the response time grows approximately

linearly with the number of users M .

Computer Systems Modelling, Nov 2001 Slide 71

Visit counts and forced flow

We now extend our notation to allow the

modelling of multiple devices.

We will use subscripts i = 1, 2, . . . ,K to

identify each device, e.g. Xi is the throughput

at device i.

Assume that the service required by a customer

is an inherent property of the customer not of

the state of the system.

A visit count for a device is the number of

completions at that device for every completion

from the system

Vi :=
Ci

C

Where Ci is the number of completions at

device i.

Recall that in a feed-forward queueing network,

0 ≤ Vi ≤ 1 because each customer visits a given
device at most once.

Computer Systems Modelling, Nov 2001 Slide 72

The forced flow law

Since X = C
T , we have that

Xi =
Ci

T
=

Ci

C

C

T
= ViX

the Forced Flow Law.

For example, if the throughput from the entire

system is 20 customers per second and each

customer visits a given device 3 times then the

throughput of that device must be 60

completions per second.

If devices are load independent, then define the

service demand a customer makes on a device i

by

Di := ViSi

— be careful to distinguish the service

requirement (Si) from the service demand (Di)

Computer Systems Modelling, Nov 2001 Slide 73

Queue lengths at a server

Applying the utilization law at each device:

Ui = XiSi = (XVi)Si = X(ViSi) = XDi

Similarly, applying Little’s law at each device:

Ni = XiRi

Ri is the residence time at device i and can be

decomposed into the time spent queuing and

the time spent in service, approximated by R∗
i :

R∗
i = NiSi + Si

= R∗
iXiSi + Si

= R∗
iUi + Si

Computer Systems Modelling, Nov 2001 Slide 74

Queue lengths at a server (2)

Hence

R∗
i =

Si

1− Ui

So that

Ni = XiR
∗
i

=
XiSi

1− Ui

=
Ui

1− Ui

Observe that

ä Ni is zero when Ui is zero

ä Ni grows rapidly without bound as Ui

approaches one

Computer Systems Modelling, Nov 2001 Slide 75

Bottleneck analysis

A bottleneck in a system is a hindrance to

movement or progress.

Given the forced flow assumption, at high loads

system performance is determined by the device

with the highest utilization: the bottleneck.

The ratio of the completion rates of any two

devices is
Xi

Xj
=

ViX

VjX
=

Vi

Vj

Since Ui = XiSi, we have a similar property for

utilizations

Ui

Uj
=

XiSi

XjSj
=

ViSi

VjSj

Computer Systems Modelling, Nov 2001 Slide 76

Bottleneck analysis (2)

A system is load independent if

ä Vi are intrinsic properties of customers,

ä Si are independent of the queue length at i

In such cases, the throughput and utilization

ratios are the same for all loads.

This can be used to determine asymptotes for

X and R.

In general, Ui ≤ 1 and Xi ≤ 1
Si
.

A device i becomes saturated as Ui → 1

Thus, as Ui → 1, we have that Xi → 1
Si
: device

i is working as fast as it can and consequently

serves one customer every Si.

Computer Systems Modelling, Nov 2001 Slide 77

Bottleneck analysis (3)

We use the subscript b to denote a device

capable of saturating.

Since the utilization ratios are fixed, the

device i with the largest ViSi product will be

the first to achieve 100% utilization as N

increases:

VbSb = max{V1S1, ..., VKSK}

so the bottleneck is determined by both the

device and workload (the Vi and Si) properties.

Computer Systems Modelling, Nov 2001 Slide 78

Maximum throughput

1/V S

Load, N

System Throughput, X

bb

By the forced flow law

X =
Xb

Vb

So, as Ub → 1 and Xb → 1/Sb

Xmax =
Xb

Vb
→ 1

VbSb

Computer Systems Modelling, Nov 2001 Slide 79

Maximum throughput (2)

1

1/R

1/V S

Load, N

System Throughput, X

min

bb

The total per-customer service required is

Rmin =

K
∑

i=1

ViSi

⇒ X ≤ N

Rmin

Rmin denotes the smallest possible value of

mean response time, occurring when N = 1.

Computer Systems Modelling, Nov 2001 Slide 80

Maximum throughput (3)

N*1

1/R

1/V S

Load, N

System Throughput, X

min

bb

If k ≤ K jobs always avoid each other then

X =
k

Rmin

≤ 1

VbSb

k ≤ Rmin

VbSb
=

∑K
i=1 ViSi

VbSb
= N∗, say

So, beyond N∗ queueing is certain.

Computer Systems Modelling, Nov 2001 Slide 81

Maximum throughput (4)

N*1

1/R

1/V S

Load, N

System Throughput, X

min

bb

ä It stays below 1/(VbSb) because, at that

point, a bottleneck will be operating at

maximum utilization

ä It stays below the straight line

X = N/Rmin because the throughput is

limited by the number of customers in

service

Computer Systems Modelling, Nov 2001 Slide 82

Interactive response time

ä X throughput

ä M terminals

ä Average think time Z

ä Recall the interactive system version of

Little’s law:

R =
M

X
− Z

By considering a bottleneck device b:

X ≤ 1

VbSb

⇒ R ≥MVbSb − Z

⇒ R ≥MViSi − Z ∀i ∈ {1..K}

Computer Systems Modelling, Nov 2001 Slide 83

Interactive response time (2)

1

R

Terminals, M

Response Time, R

min

M b

MV S - Zb b

The response time asymptote meets the

horizontal axis at

Mb =
Z

VbSb

It intersects the minimum response time Rmin

at M∗
b (say) where

M∗
b VbSb − Z = Rmin

Computer Systems Modelling, Nov 2001 Slide 84

Interactive response time (3)

1

R

Terminals, M

Response Time, R

min

M Mb i

MV S - Zb b

MV S - Zi i

Thus

M∗
b =

Rmin + Z

VbSb
= N∗ +Mb

When there are more than M∗
b terminals,

queueing is certain to exist.

Computer Systems Modelling, Nov 2001 Slide 85

Summary

ä The largest of the products ViSi

determines the bottleneck b.

ä The sum of these products determines the

smallest possible response time Rmin.

ä Queueing cannot be avoided when N

exceeds

N∗ =
Rmin

VbSb

ä Queueing cannot be avoided in an

interactive system when the number of

logged-on terminals exceeds

M∗
b = N∗ +

Z

VbSb

Computer Systems Modelling, Nov 2001 Slide 86

Example: interactive system

Terminals

CPU

Disks

Central
Subsystem

Suppose that Z = 20 s.

No. device Si (s) Vi Di = ViSi

1 CPU 0.05 20 1.00

2 disk 0.08 11 0.88

3 fast disk 0.04 8 0.32

Rmin 2.20

Question: Is a 8 second response time feasible

with 30 users logged on? If not, what changes

are required?

Computer Systems Modelling, Nov 2001 Slide 87

Example: interactive system
(2)

1 Terminals, M

Response Time, R
MV S - Z

MV S - Z

1 1

2 2
CPU

disc

fast disc

20 22 62.5

MV S - Z3 3

M 3M 2M1

Rmin = 2.2s

V1S1 = 1s (bottleneck)

V2S2 = 0.88s

V3S3 = 0.32s

⇒ Rmin =

3
∑

i=1

ViSi = 2.2s

For M = 30, the response time asymptote

requires R ≥ 30× 1− 20 = 10 s.

So the answer is no.

Computer Systems Modelling, Nov 2001 Slide 88

Example: interactive system
(3)

To make a 8 second response time feasible, we

need to speed up the CPU, so that the new

service time obeys the condition

MV1S
′
1 − Z ≤ 8

or

S′
1 ≤

20 + 8

30× 20 = .047 s

which is a 7% speed up in the CPU.

Then V1S
′
1 = 0.93 is still the largest product so

the CPU is still the bottleneck.

Computer Systems Modelling, Nov 2001 Slide 89

Example: interactive system
(4)

Question: Is a 10s response time feasible when

50 users are logged on? If not, how much CPU

speedup is required?

If S1 → 0, the disk will become bottleneck

R ≥MV2S2 − Z

For M = 50, this is

R ≥ 50× 0.88− 20 = 24 s

so a 10s response time is not feasible with

M = 50 and no amount of CPU speedup is

capable of achieving it.

Computer Systems Modelling, Nov 2001 Slide 90

Balanced system bounds

Balanced system bounds provide tighter bounds

at mid-range loads than bottleneck analysis

A system is balanced if for any load the

utilizations of all devices are equal.

Balanced systems exhibit the following

important property

Ui(N) =
N

N +K − 1

So the system throughput is given by

X(N) =
Ui

Di
=

N

N +K − 1 ×
1

Di

Computer Systems Modelling, Nov 2001 Slide 91

Balanced system bounds (2)

For example,

N = 1 K = 2 U1 = U2 =
1
2

N = 1 K = 100 U1 = . . . = U100 =
1

100

N = 100 K = 2 U1 = U2 =
100
101

N = 2 K = 2 U1 = U2 =
2
3

We observe the system to determine

ä Dmax — maximum demand at any device

ä Dmin — minimum device demand

ä Dav — average demand at each device

ä D = Dtot — total demand across all

devices

So, we have Dav = D/K

Computer Systems Modelling, Nov 2001 Slide 92

Balanced system bounds (3)

Consider imaginary balanced systems related

to our system

pess1: balanced system with K devices each

with a demand of Dmax

opt1: balanced system with K devices each

with a demand of Dmin

The throughput of system pess1 is

N

N +K − 1 ×
1

Dmax

The throughput of system opt1 is

N

N +K − 1 ×
1

Dmin

Computer Systems Modelling, Nov 2001 Slide 93

Balanced system bounds (4)

So for the system being modelled we have

N

N +K − 1×
1

Dmax

≤ X(N) ≤ N

N +K − 1×
1

Dmin

And since N = XR,

(N +K − 1)Dmax ≥ R(N) ≥ (N +K − 1)Dmin

This will give tighter bounds on the mid-range

performance than the bottleneck bounds.

Computer Systems Modelling, Nov 2001 Slide 94

Balanced system bounds (5)

1

1/R

1/V S

Load, N

System Throughput, X

min

bb

N
D+(N-1)DavN/D

We can do even better by considering the best

performance that the system can achieve which

occurs when the load is spread out evenly

among all the devices.

opt2: Dav at each of the K devices

X(N) =
N

N +K − 1×
1

Dav

=
N

D + (N − 1)Dav

Computer Systems Modelling, Nov 2001 Slide 95

Balanced system bounds (6)

1

1/R

1/V S

Load, N

System Throughput, X

min

bb

N
D+(N-1)Dmax

N/D

Now, what is the worst system subject to the

constraints that D and Dmax remain fixed?

Answer: place Dmax at as many devices as

possible and 0 at the rest

pess2: Dmax at each of the
D

Dmax
devices

X(N) =
N

N +K − 1×
1

Dmax

=
N

D + (N − 1)Dmax

Computer Systems Modelling, Nov 2001 Slide 96

Balanced system bounds (7)

1/R min

N/D N
D+(N-1)D av

N
D+(N-1)D max

System Throughput, X(N)

b1/V S b

Load, N1

N

D + (N − 1)Dmax

≤ X(N) ≤ N

D + (N − 1)Dav

D + (N − 1)Dmax ≥ R(N) ≥ D + (N − 1)Dav

Computer Systems Modelling, Nov 2001 Slide 97

Balanced system bounds (8)

As N →∞,
N

D + (N − 1)Dmax

→ 1

Dmax

Note that at high loads the bottleneck bounds

are the limiting high bound.

The asymptotic bottleneck bound 1
Dmax

and

the optimistic balanced bound intersect at N †

where

1

Dmax

=
N†

D + (N † − 1)Dav

So that

N† =
D −Dav

Dmax −Dav

Computer Systems Modelling, Nov 2001 Slide 98

Markov processes

A Markov process is a family of random

variables X(t) indexed by a time parameter t

in which

ä X(t) denotes the state at time t

ä The next state depends only on the current

state

We are concerned with the particular case of

Markov processes in which the state space is

discrete, termed Markov chains

If we denote successive states as x1, x2,. . . then

the Markov property says that

P(Xn+1 = xn+1|X1 = x1, . . . , Xn = xn) =

P(Xn+1 = xn+1|Xn = xn)

Computer Systems Modelling, Nov 2001 Slide 99

Other types of stochastic
process

A Markov process is a particular kind of

stochastic process

ä Birth death process (BDP): a Markov

process in which transitions occur only

between neighbouring states

ä Random Walks: refer to Probability 1A

notes

ä Renewal Process: X(t) counts state

transitions in (0, t)

Computer Systems Modelling, Nov 2001 Slide 100

Birth death processes

A birth death process is a special case of a

continuous-time Markov chain in which we

allow transitions only between neighbouring

states.

The state space is the set of non-negative

integers and we allow only a single birth or

death per transition. Thus given Xn = i

Xn+1 =







i+ 1 birth (or arrival)

i− 1 death (or departure)

We use λi to represent the birth rate in state i,

and µi to represent the death rate in state n.

±°²¯0
® ©-λ0

­ ª¾
µ1

±°²¯1
® ©-λ1

­ ª¾
µ2

±°²¯2
®-λ2

­ ¾
µ3

...

©-λi−1

ª¾
µi

±°²¯i
® ©-λi

­ ª¾
µi+1

±°²¯i+1

®-λi+1

­¾
µi+2

...

Computer Systems Modelling, Nov 2001 Slide 101

Time dependent solution of
BDP

We denote by Pi(t) the probability of being in

state i at time t.

Probability of a birth in an interval ∆t when

the system starts in state i is assumed to be

λi∆t+ o(∆t).

Probability of a death in ∆t when the system

starts in state i is µi∆t+ o(∆t).

Probability of > 1 event in ∆t is o(∆t).

o(∆t) denotes a quantity which becomes

negligible when compared with ∆t as ∆t→ 0.

To solve for Pi(t) we write a set of difference

equations called the Chapman Kolmogorov

equations.

Computer Systems Modelling, Nov 2001 Slide 102

Chapman Kolmogorov
equations

For i ≥ 1:

Pi(t+∆t) = Pi(t)(1− λi∆t)(1− µi∆t)

+ Pi+1(t)(µi+1∆t)(1− λi+1∆t)

+ Pi−1(t)(λi−1∆t)(1− µi−1∆t)

+ o(∆t)

For i = 0:

P0(t+∆t) =P0(t)(1− λ0∆t)

+ P1(t)(µ1∆t)(1− λ1∆t)

+ o(∆t)

Computer Systems Modelling, Nov 2001 Slide 103

Chapman Kolmogorov
equations (2)

We derive differential-difference equations from

these by dividing through by ∆t and taking the

limit as ∆t→ 0

dPi(t)

dt
= −(λi + µi)Pi(t)

+ µi+1Pi+1(t)

+ λi−1Pi−1(t)

for i ≥ 1 and
dP0(t)

dt
= −λ0P0(t) + µ1P1(t)

The time dependent solution is difficult for

systems of interest, so we will study the

stationary solution.

Computer Systems Modelling, Nov 2001 Slide 104

Stationary solution

We are interested in the long term probabilities

after the system has reached an equilibrium.

These probabilities are independent of the

initial conditions.

System reaches equilibrium if, for all i,

lim
t→∞

Pi(t) = pi exists .

The quantities pi solve the Chapman

Kolmogorov equations with dPi(t)/dt = 0 so

that

0 = −(λi + µi)pi + µi+1pi+1 + λi−1pi−1

0 = −λ0p0 + µ1p1

Rewriting gives

pi+1 =
λi + µi

µi+1

pi −
λi−1

µi+1

pi−1 (i ≥ 1)

p1 =
λ0

µ1

p0

Computer Systems Modelling, Nov 2001 Slide 105

Stochastic balance

Under steady-state conditions we require total

flow into a state to equal total flow out of a

state.

The total flow is the product of the steady

state probabilities and the flow rates.

We enter state i at rate pi−1λi−1 + pi+1µi+1.

We exit state i at rate piλi + piµi.

The equation

pi−1λi−1 + pi+1µi+1 = piλi + piµi (i ≥ 1)

equates the flow into and out of state i.

This is called the global balance equation.

Computer Systems Modelling, Nov 2001 Slide 106

Stochastic balance (2)

The two equations

piλi = pi+1µi+1 (i ≥ 0)

describing flow from state i to state i+ 1, and

piµi = pi−1λi−1 (i ≥ 1)

describing flow from state i to state i− 1 are
the detailed balance equations.

Rewriting gives

pi+1 =
λi

µi+1

pi

which gives us the product solution

pk = p0

k−1
∏

i=0

λi

µi+1

for k ≥ 1

for pk (k ≥ 1) in terms of p0.

Computer Systems Modelling, Nov 2001 Slide 107

Stochastic balance (3)

Since the sum of state probabilities must be

unity,

p0 +

∞
∑

k=1

pk = 1

p0 +

∞
∑

k=1

p0

k−1
∏

i=0

λi

µi+1

= 1

p0

[

1 +

∞
∑

k=1

k−1
∏

i=0

λi

µi+1

]

= 1

so that

p0 =

[

1 +

∞
∑

k=1

k−1
∏

i=0

λi

µi+1

]−1

pk = p0

k−1
∏

i=0

λi

µi+1

which are known as the general flow balance

equations.

Computer Systems Modelling, Nov 2001 Slide 108

The M/M/1 queue

The BDP maps well onto our domain of study

— queueing systems.

Births represent arrivals to queue, deaths

represent departures as customers finish

service.

The M/M/1 queue is an infinite customer

system, with infinite waiting room, and a state

independent service rate.

This means that λi = λ and µi = µ for all i

and we can solve the balance equations as

pk = p0

k−1
∏

i=0

λ

µ

= p0

(

λ

µ

)k

.

Computer Systems Modelling, Nov 2001 Slide 109

The M/M/1 queue (2)

Writing ρ =
λ

µ

p0 =
1

1 +
∑∞

k=1 ρk

=
1

1 + ρ
∑∞

k=0 ρk

=
1

1 + ρ
(

1
1−ρ

)

= 1− ρ

Consequently, the number in the system is

geometrically distributed

pk = (1− ρ)ρk, k = 0, 1, 2, . . .

If ρ > 1, i.e. if λ > µ the system will not reach

equilibrium.

Computer Systems Modelling, Nov 2001 Slide 110

The M/M/1 queue (3)

What is the average number of customers, N ,

in the system?

N =
∞
∑

k=0

kpk

=
∞
∑

k=0

k(1− ρ)ρk

= (1− ρ)ρ
∂

∂ρ

(∞
∑

k=0

ρk

)

= (1− ρ)ρ
∂

∂ρ

(

1

1− ρ

)

=
ρ

1− ρ

Computer Systems Modelling, Nov 2001 Slide 111

The M/M/1 queue (4)

An arriving customer will find, on average N in

the system, and will spend a time, say T , in the

system. During T there will be, on average λT

arrivals, leaving N customers in the queue.

Thus

N = λT

which is Little’s result restated. In our case

T =
N

λ

=
ρ

λ(1− ρ)

=
1

µ(1− ρ)
=

1

µ− λ

which is the M/M/1 average response time.

Note that

ä 1
µ is the average service time

ä ρ is the utilization

Computer Systems Modelling, Nov 2001 Slide 112

Performance at high load

At high utilizations ρ approaches one and the

response time and queue lengths are

unbounded.

Expected number in the system

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
5

10
15

20
25

30
35

Computer Systems Modelling, Nov 2001 Slide 113

Response time

Consider the effect on response time by

increasing the utilization by a constant load

of 0.1.

utilization (ρ) response time (T)

old new % ↑ old new % ↑
0.1 0.2 100.0 1.11 1

µ 1.25 1
µ 13

0.5 0.6 20.0 2 1
µ 2.5 1

µ 25

0.8 0.9 12.5 5 1
µ 10 1

µ 100

Predicting response times is very difficult at

high loads.

Running systems at maximum utilization may

please the providers, but it doesn’t please the

users.

Computer Systems Modelling, Nov 2001 Slide 114

M/M/1 — an example

H.R Cutt barber shop, no appointment needed!

Customers served FCFS.

On Saturday mornings he is very busy and is

considering hiring a helper.

Measures the (Poisson) arrival rate of

customers to be 5 per hour.

Customers are prepared to wait, and he spends

on average 10 min per cut.

What are the average number of customers in

the shop, the average number of customers

waiting? What percentage of time can a

customer receive a cut without waiting?

He has 4 seats in his waiting room. What is

the probability that an arriving customer will

find no seat and have to stand?

Computer Systems Modelling, Nov 2001 Slide 115

M/M/1 example solution

The average number of customers in the shop:

λ = 5 per hour, µ = 6 per hour So

ρ = 5/6, and hence N = 5 .

Since the average number of customers in

service is ρ, the utilization, the average number

of customers waiting is

Nq = N − ρ = 4
1

6

How likely is the barber to be idle?

p0 = 1− ρ =
1

6

How often is no seat free?

P(no seat) = P(N ≥ 5)
= ρ5

≈ 0.402

Computer Systems Modelling, Nov 2001 Slide 116

M/M/m — m servers

This is just like the M/M/1 system, except

that there are m servers.

For all k, λk = λ, but now the service rate is a

function of the number of customers in the

system

µk =







kµ if 0 < k ≤ m

mµ if k ≥ m

For an equilibrium distribution to exist we

require that λ
mµ < 1.

±°²¯0
® ©-λ

­ ª¾
µ
±°²¯1
® ©-λ

­ ª¾
2µ

±°²¯2
® ©-λ

­ ª¾
3µ

±°²¯3
®-λ
­ ¾
4µ

...

©-λ

ª¾
(m− 1)µ
±°²¯m−1
® ©-λ

­ ª¾
mµ
±°²¯m
®-λ
­ ¾
mµ

Computer Systems Modelling, Nov 2001 Slide 117

M/M/1/K — finite capacity

The system can hold up to K customers.

Now for k ≥ K, λk = 0 and for k > K, pk = 0.

Using the equations from the M/M/1 queueing

system, but limiting the summation, and again

writing ρ = λ
µ ,

pk = p0ρ
k for k ≤ K

p0 =
1

1 +
∑K

k=1 ρk

=
1

1 + ρ−ρK+1

1−ρ

=
1− ρ

1− ρK+1

Note that p0 is greater than in the M/M/1

case.

For this system with a finite state space an

equilibrium distribution always exists whatever

the arrival and departure rates.

Computer Systems Modelling, Nov 2001 Slide 118

M/M/1//N — finite
population

Single server, unbounded queue capacity and a

population of N customers.

We solve this system by modifying the λk to

model the arrival rate.

Instead of having an arrival rate for the

population as a whole, we assign an arrival rate

to each customer, say λ.

If there are no customers in the system, then

all of them are eligible to be born, so that

λ0 = Nλ .

As we have more customers in the system, we

have less eligible to be born. So that,

λk = (N − k)λ, for 0 ≤ k ≤ N .

With a single server the service rate is constant

µk = µ, for k ≥ 1 .

Computer Systems Modelling, Nov 2001 Slide 119

M/M/m/m — m server loss
system

An application of this system is to model a link

in a telephone network.

Such a link contains m circuits each of which

carries a single call.

Suppose that calls arrive at the link according

to a Poisson process of rate λ.

If there is a free circuit the call is connected

and holds the circuit for an exponentially

distributed length of time, with mean 1
µ .

At the end of this holding period the call

terminates and the circuit is freed.

If there are no free circuits then the call is lost.

Computer Systems Modelling, Nov 2001 Slide 120

M/M/m/m

±°²¯0
® ©-λ

­ ª¾
µ
±°²¯1
® ©-λ

­ ª¾
2µ

±°²¯2
® ©-λ

­ ª¾
3µ

±°²¯3
®-λ
­ ¾
4µ

...

©-λ

ª¾
(m− 1)µ
±°²¯m−1
® ©-λ

­ ª¾
mµ
±°²¯m

λk =







λ k < m

0 k ≥ m

µk = kµ for 1 ≤ k ≤ m

The flow balance equations give for k ≤ m

pk = p0

k−1
∏

i=0

λi

µi+1

= p0

k−1
∏

i=0

λ

(i+ 1)µ

= p0

(

λ

µ

)k
1

k!

Computer Systems Modelling, Nov 2001 Slide 121

M/M/m/m (2)

Solving for p0 gives

m
∑

k=0

pk = p0

m
∑

k=0

(

λ

µ

)k
1

k!
= 1

⇒ p0 =

[

m
∑

k=0

(

λ

µ

)k
1

k!

]−1

The probability that an arriving call finds all

circuits occupied, pm, is called the loss

probability for the telephone link. Thus,

pm = p0

(

λ

µ

)m
1

m!

=

(

λ

µ

)m
1

m!

[

m
∑

k=0

(

λ

µ

)k
1

k!

]−1

This expression for the loss probability is

known as Erlang’s formula.

Computer Systems Modelling, Nov 2001 Slide 122

BDM extensions

First we relax our constraints on the arrival

process distribution.

We want to model systems in which the

coefficient of variation of the interarrival time

is less than one.

Consider a system in which a birth occurs in

two stages.

¾
½

»
¼µ´¶³2λ µ´¶³2λ- -

Each stage has an exponentially distributed

residence time.

Computer Systems Modelling, Nov 2001 Slide 123

BDM extensions (2)

If the desired birth rate is λ, then let each

stage have a rate 2λ.

The average time to get through the combined

birth process will be

τ =
1

2λ
+
1

2λ
=
1

λ
.

Since each stage has exponentially distributed

residence times, the variance of each stage is

σ2
single =

1

(2λ)2
.

The two stages are independent, so the variance

of τ , the time to get through both stages is

σ2
τ =

1

(2λ)2
+

1

(2λ)2
=

1

2λ2

Computer Systems Modelling, Nov 2001 Slide 124

BDM extensions (3)

So the coefficient of variation is

Cτ =

√

1
2λ2

1
λ

=
1√
2
.

In general, if we use r stages each with rate rλ

we get an average time through all stages of 1
λ

and a coefficient of variation of 1√
r
.

The distribution that describes this r-stage

process is the Erlangian distribution,

denoted Er.

Computer Systems Modelling, Nov 2001 Slide 125

Example, M/E2/1

Allow the state of the process to represent the

number of stages remaining to be served.

An arrival increases the number of stages

remaining to be served by 2 and occurs at

rate λ.

A departure from a stage reduces the number of

stages to be served by 1 and occurs at rate 2µ.

±°²¯0
® ©-λ

­ ª¾
2µ

±°²¯1
² ¯-λ

­ ª¾
2µ

±°²¯2
® -

­ ª¾
2µ

±°²¯3
² -λ

­ ¾
2µ

...

Computer Systems Modelling, Nov 2001 Slide 126

Parallel Servers

Combining stages in series reduces the

coefficient of variation.

If, instead, we combine them in parallel with a

probability αi of choosing the ith parallel stage

we get a service distribution with coefficient of

variation larger than 1.

'

&

$

%
nµ1

nµ2

-©©
©©*

HHHHj

α1

α2

HHHHj
©©
©©* -

The coefficient of variation is given (see

Kleinrock) by

Cτ =
2
∑r

i=1
αi

µ2
i

(

∑r
i=1

αi

µi

)2
− 1 ≥ 1 .

Computer Systems Modelling, Nov 2001 Slide 127

Queueing Networks

We have seen the solution of several queueing

systems of interest.

In general we want to solve a system of such

queues representing a real world performance

problem e.g. a distributed computing system.

We represent the system under study as a

network of connected queues.

Customers move (instantaneously) between

service centres where they receive service.

1 2 3

45

-¾ -¾ -

- -
6?©©

©*
HH

HY

»»»
»»»

»»»:

6

Computer Systems Modelling, Nov 2001 Slide 128

Model definition

ä customers: typically these represent

programs or data packets etc

ä service centres: the resources in the system

e.g. disks, CPU, transmission links

ä service time distributions: may vary

according to customer type and visit

ä load dependence: multi-processor systems

have load dependent service rates

ä waiting lines and scheduling: may have

limited capacity and various scheduling

algorithms

ä customer types: multiple customer classes

may exist

Computer Systems Modelling, Nov 2001 Slide 129

Open Queueing Networks

Allow customers to arrive from an external

source, with rate γ.

Customers may leave the network on

completion.

Assume we have N nodes, each a single server

queue with infinite waiting room.

Each server i has exponential service time with

mean 1/µi.

Customers arrive as a Poisson stream at node i

at rate γi.

A customer completing at node i moves to node

j with probability qij for (i, j = 1, 2, . . . , N).

Note that
N
∑

j=1

qij ≤ 1

Computer Systems Modelling, Nov 2001 Slide 130

Open Queueing Networks (2)

A job leaves the network from node i with

probability

qi0 = 1−
N
∑

j=1

qij .

The probabilities qij are called the routing

probabilities.

Written as an N ×N matrix this is called the

routing matrix Q = (qij).

An open network with parameters γi, µi and Q

is called a Jackson network.

The system state is (k1, k2, . . . , kN), where ki is

the number of jobs present at node i.

Computer Systems Modelling, Nov 2001 Slide 131

Steady state solution

Let λj be the average number of arrivals to

node j per unit time.

On average the departure count per unit time

is therefore λj .

A fraction qji go to node i.

The rate of traffic from node j to node i is thus

λjqji.

i- -
@
@@R

HHHj
©©
©*

¡
¡¡µ

¡
¡¡µ
©©
©*

HHHj@
@@R

γi

λ1q1i

λ2q2i

λNqNi

λiqi0
λiqi1

λiqi2
λiqiN

...
...

λi λi

Computer Systems Modelling, Nov 2001 Slide 132

Traffic equations

Adding together all contributions,

λi = γi +

N
∑

j=1

λjqji i = 1, 2, . . . , N .

These are known as the traffic equations.

A necessary and sufficient condition for the

existence of an equilibrium distribution is that

ρi :=
λi

µi
< 1

where λi is the solution of the traffic equations.

Computer Systems Modelling, Nov 2001 Slide 133

Jackson’s Theorem

Let p(k1, k2, . . . , kN) be the steady state

equilibrium distribution. Then Jackson’s

Theorem states that

p(k1, k2, . . . , kN) = p1(k1)p2(k2) · · · pN (kN)

where pi(ki) is the equilibrium distribution

that there are ki jobs in an M/M/1 queue with

traffic intensity ρi.

Jackson’s theorem has some important

implications.

ä The numbers of jobs at the various nodes

are independent.

ä Node i behaves as if subjected to a Poisson

stream with rate λi.

Jackson’s theorem may be generalized to the

case where node i has ni servers and so the

nodes behave as independent M/M/ni queues.

Computer Systems Modelling, Nov 2001 Slide 134

Closed Queueing Networks

Frequently used to model systems at high load

or where a limited, constant number of jobs is

admitted to service.

No external arrivals or departures.

Now the routing probabilities satisfy

N
∑

j=1

qij = 1 , i = 1, 2, . . . , N

The number of jobs in the system is always a

constant, denoted by K.

The states of the system, described by the

vector (k1, k2, . . . , kN), thus satisfy the

constraint,
N
∑

i=1

ki = K .

Computer Systems Modelling, Nov 2001 Slide 135

Closed Queueing Networks
(2)

The state space, S, is then finite. The number

of states is
(

K +N − 1
N − 1

)

The traffic equations become

λi =

N
∑

j=1

λjqji , i = 1, 2, . . . , N .

With a finite state space there always exists an

equilibrium distribution.

Analogous to Jackson’s theorem for the open

network case it may be shown that

p(k1, k2, . . . , kN) =
1

G
r1(k1)r2(k2) · · · rN (kN)

where ri(ki) is the probability that there are ki

jobs in an M/M/1 queue with traffic intensity

given by a solution to the traffic equations.

Computer Systems Modelling, Nov 2001 Slide 136

Open vs closed networks

The normalization constant G has to be

determined by

G =
∑

s∈S
r1(k1)r2(k2) · · · rN (kN)

obtained by summing over all

states s = (k1, k2, . . . , kn) in the state space S.

With closed networks need to compute the

normalization constant G — a computationally

hard problem.

The constraint
∑N

i=1 ki = K means that the

numbers of jobs in the various queues are no

longer independent.

For instance, consider the extreme case where

all K jobs are at one node.

Computer Systems Modelling, Nov 2001 Slide 137

Derivation of the size of S

We require to show that

p(K,N) :=

(

K +N − 1
N − 1

)

is the number of (ordered) partitions of a

positive integer K into N integer summands

K =

N
∑

i=1

ki .

Proof

Consider K +N − 1 boxes aligned in a row and
select N − 1 of these boxes (without
replacement) which can be done in p(K,N)

ways. Place a “/” symbol in each of the boxes

and a “1” in each of the other boxes. The

boxes now represent an (ordered) partition

of K into N groups of “1” which when added

together give the ki summands.

Computer Systems Modelling, Nov 2001 Slide 138

Aside: application to
balanced systems

Recall that in a balanced system with N jobs

and K devices the common utilization at each

device is given by

Ui(N) =
N

N +K − 1 for i = 1, . . . ,K .

But using the function p(K,N) we can see

that, by symmetry, the utilization is given by

Ui(N) = 1−
p(N,K − 1)
p(N,K)

= 1−
(

N+K−2
K−1

)

(

N+K−1
k−1

)

= 1− (N +K − 2)!
(K − 2)!N !

N !(K − 1)!
(N +K − 1)!

= 1− K − 1
N +K − 1

=
N

N +K − 1 .

Computer Systems Modelling, Nov 2001 Slide 139

The M/G/1 queue

It is usually easier to justify the memoryless

property for arrivals than for service times.

For arrivals, we can appeal to asymptotic

results on the merging of large numbers of

independent streams to help justify the

memoryless property for arrivals.

For service times, it is easy to think of

examples where the service times have a quite

different distribution to the exponential. For

example, the service times might be constant

corresponding to certain packet lengths in a

communication network.

This leads to an interest in the M/G/1 queue

with general service times given by

CDF B(x) = P(service time ≤ x).

Computer Systems Modelling, Nov 2001 Slide 140

(Lack of) Markov property

With general service times we no longer find

that X(t), the number of customers in the

system at time t, has the Markov property.

This follows since the future evolution of X(t)

now depends not just on the number present

but on the remaining service time of the

customer (if any) currently in service.

Recall, that in the ·/M/· case the remaining
service time always has the same memoryless

distribution whenever we observe the queue.

Computer Systems Modelling, Nov 2001 Slide 141

Embedded Markov Chain

It would be possible to formulate a model for

the M/G/1 queue using a state variable with

two components (n, x) where n is the number

present and x is the remaining service time, if

any, of the customer in service. This

augmented model does have the Markov

property and can be analyzed directly.

Instead, it is possible to pick out a discrete set

of times where the Markov property holds and

build a model on this discrete time Markov

Chain. Such a set of times is given by ti

(i = 1, 2, . . .) where ti is the time of the ith

departure from the queue. There is no

remaining service time to worry us at these

time instants.

Thus, X(ti), i = 1, 2, . . . is a Markov Chain

embedded in the stochastic process X(t).

Computer Systems Modelling, Nov 2001 Slide 142

Performance measures

The determination of a full description of

the M/G/1 model is possible but difficult.

Instead, we shall look at some steady state

performance measures.

Let 1/µ be the mean service time of a customer

in the M/G/1 queue, obtained from the CDF

of the service time distribution B(·), say.
Then the mean queueing time, Tq, of a

customer before it receives service is given by

Tq = Nq
1

µ
+ ρx

where Nq is the average number of customers

waiting in the queue at the time of arrival, x is

the average remaining service time of the

customer, if any, in service and ρ = λ/µ is the

traffic intensity which is also the utilization of

the server.

Computer Systems Modelling, Nov 2001 Slide 143

Remaining service time

A result from renewal theory is that x = µs2/2.

Notice that this involves the 2nd central

moment of the service time distribution, s2.

For the exponential case, s2 = 1/µ2 so

that x = 1/(2µ) as might be intuitively

expected.

Computer Systems Modelling, Nov 2001 Slide 144

Performance measures (2)

From Little’s law,

Nq = λTq

and so

Tq = λTq
1

µ
+ ρx

=
ρx

(1− ρ)

=
ρµs2

2(1− ρ)

=
λs2

2(1− ρ)
.

Computer Systems Modelling, Nov 2001 Slide 145

Performance measures (3)

Let Cs be the coefficient of variation of the

service time distribution then

C2
s =

s2

(E(s))2
− 1

where E(s) = 1/µ so

s2 =
(1 + C2

s)

µ2

Hence,

Tq =
λ(1 + C2

s)

µ22(1− ρ)

=
ρ(1 + C2

s)

2µ(1− ρ)
.

Computer Systems Modelling, Nov 2001 Slide 146

Pollaczek-Khintchine formula

Consider now the total time, T , for a customer

to pass through the system given by their

waiting time in the queue and their own service

time.

Thus,

T = Tq +
1

µ

=
1

µ

(

1 +
ρ(1 + C2

s)

2(1− ρ)

)

.

Using Little’s law for the entire system we can

now find, N , the mean number of customers in

an M/G/1 queueing system by

N = λT

= ρ+
ρ2(1 + C2

s)

2(1− ρ)

This is known as the Pollaczek-Khintchine

(PK) formula.

Computer Systems Modelling, Nov 2001 Slide 147

PK formula

The Pollaczek-Khintchine formula tells us that

the mean number of customers is determined

not only by the mean interarrival and mean

service times but also by the coefficient of

variation of the service time distribution, Cs.

There are several cases.

ä Cs = 0: this is the case of constant service

times. For example, in ATM networks

where the cells (that is, the packets) are of

fixed length (53 bytes).

ä Cs < 1: this is the case where the

variability is less than in the case of

exponential service times, thus the M/M/1

model will be conservative in its

performance estimates.

Computer Systems Modelling, Nov 2001 Slide 148

PK formula (2)

ä Cs ≈ 1: this is where the M/M/1 model

works best and many systems correspond

to this model. For example, batch jobs on

a mainframe.

ä Cs > 1: this is the case where the M/G/1

model is required. An example, is the

observed packet lengths in Internet traffic.

The distribution of packet sizes (and hence

service times) is often found to be bimodal

with many small packets and many longer

packets of length determined by the MTU.

Computer Systems Modelling, Nov 2001 Slide 149

