

)XUWKHU�-DYD�

�

�

&RPSXWHU�/DERUDWRU\�

&RPSXWHU�6FLHQFH�7ULSRV�3DUW��%�

&RPSXWHU�6FLHQFH�7ULSRV�3DUW����*HQHUDO��

'LSORPD�LQ�&RPSXWHU�6FLHQFH�

7LPRWK\�+DUULV�

0LFKDHOPDV������

)XUWKHU�-DYD�
Computer Science Tripos Part 1B
Computer Science Tripos Part 2 (General)
Diploma in Computer Science
Original version © Peter Robinson, 1999.
This version incorporates revisions by Timothy Harris, 2000.
All rights reserved.

,QWURGXFWLRQ�

The course will develop an understanding of general
programming techniques using advanced features of the Java
programming language as a vehicle.

On completing the course, students should be able to:

n Understand and apply techniques for building applications
from classes, combined using inheritance, composition,
nested classes, reflection and interfaces

n Describe and use multi-threaded applications with
appropriate synchronisation

n Explain the rôle of abstraction and concurrency in a GUI
toolkit, using the AWT as an example

n Explain the components of a distributed program and its
implementation with RMI.

An elementary familiarity with Java will be assumed.

 �

6\OODEXV�

n Programming with objects. Inheritance and interfaces.
Exceptions. Nested classes. Reflection. [3 lectures]

n Concurrency. Creating multiple threads. Concurrency
control using locks and wait/notify operations. The volatile
modifier. [3 lectures]

n Graphical user interfaces. The Abstract Windowing
Toolkit, Java Beans, Java Studio. [3 lectures]

n Distributed computing. Sockets and remote method
invocation. [2 lectures]

n Application programming. Project management and
development environments, Java Workshop and Visual
Studio for Java. [1 lecture]

It should be pointed out that these notes do not constitute a
complete transcript of all the lectures and they are not a
substitute for text books. They are intended to give a
reasonable synopsis of the subjects discussed and include
fragments of programs that will be used for illustration, but they
do not give all the background material.

Separate material will be distributed containing the slides used
in the lectures. All of these documents are available on the
Laboratory’s Teaching Course Material web pages. The
example programs contained in these notes are available on
the thor teaching system (in /group/clteach/tlh20/further-java)
and available for download from the Laboratory’s web site for
use with the Cockroft 4 Linux installation.

 �

$SSURSULDWH�ERRNV�

The following reference books are relevant for the course:

n Arnold, K. & Gosling, J. (1997). The Java
Programming Language. Addison-Wesley (2nd ed.)

n Bracha, G., Gosling, J., Joy, B. & Steele, G. (2000).
The Java Language Specification. Addison-Wesley
(2nd ed.).

n Gosling, J. & Yellin, F. (1996). The Java Application
Programming Interface, vol. 1. Core Packages.
Addison-Wesley

n Gosling, J. & Yellin, F. (1996). The Java Application
Programming Interface, vol. 2. Window Toolkit and
Applets. Addison-Wesley

The following books take a more tutorial stance. They
are less suitable as reference texts, but are more
approachable to those with less practical
programming experience.

n Eckel, B. (1998). Thinking in Java. Prentice-Hall

n Flanagan, D. (1997). Java in a Nutshell. O’Reilly (2nd
ed.)

n Flanagan, D. (1997). Java Examples in a Nutshell.
O’Reilly (2nd ed.)

 �

The Java FAQ is a collection of questions that the
designers of the Java Programming Language have
been frequently asked. The answers provide insight
into the design of the language and how and why it
differs from other object-oriented languages.

n Kanerva, J. (1997). The Java FAQ. Addison-Wesley

The most comprehensive of these is The Java
Language Specification – it is the official definition of
the Java Programming Language, produced by its
designers at Sun Microsystems. It serves as a
thorough reference to the finer details of the language.

There is a substantial volume of material on the world
wide web concerning the Java Programming
Language. There are links to selected items from the
Laboratory’s Teaching Course Material web page – in
particular many of the Sun specification documents
are available free of charge over the web. The
Computing Service’s UNIX Support web site contains
further documentation, and local mirrors of the Sun
material, at http://www-uxsup.csx.cam.ac.uk/java/.

Beware of text found by casual web browsing or
FAQs: some of it is mis-informed and, although of
practical use, much of it misses the details or rationale
which will be covered in this course.

 �

3URJUDPPLQJ�LQ�-DYD�

This section presents a brief summary of the earlier Java
courses.

+HOOR�ZRUOG�

// It’s that "Hello world" program again!

class HelloWorld {
 public static void main (String [] args) {
 System.out.println ("Hello world!");
 }
}

This would be placed in a file HelloWorld.java and compiled
with the command

javac HelloWorld.java

This would create a file HelloWorld.class which could be run
with the command

java HelloWorld

 �

&RXQWLQJ�ZRUGV�

Here is a program to count words in files of text:

// Count words on named files or standard input

import java.io.*;

class WordCount {

 public static void main (String [] args)
 {
 try {
 if (args.length == 0) count ("Standard input",
 System.in);
 else {
 for (int a = 0; a < args.length; a++) {
 try {
 InputStream is =
 new FileInputStream (args [a]);
 count (args [a], is);
 }
 catch (FileNotFoundException e) {
 System.err.println ("Unable to open " +
 args [a]);
 };
 };
 };
 }
 catch (IOException e) {
 System.err.println ("IOException " +
 e.getMessage ());
 };
 };

 private static void count (String name, InputStream in)
 throws IOException
 {
 int words = 0, lines = 0;
 boolean inWord = false;
 DataInputStream dis = new DataInputStream (in);
 try {
 for (;;) {
 char ch = (char) dis.readByte ();
 switch (ch) {
 case ’\n’:
 lines++;
 case ’ ’:
 case ’\t’:
 if (inWord) {
 words++;

 �

 inWord = false;
 };
 break;
 default:
 inWord = true;
 break;
 };
 };
 }
 catch (EOFException e) {
 if (inWord) words++;
 System.out.println (name + " contains " + words +
 " words in " + lines + " lines.");
 };
 }

}

This looks for command line arguments, which it takes to be
the names of files to examined. In the absence of such
arguments it processes the standard input.

1RWDWLRQ�

Java programs are written in a free format using Version 2.0 of
the Unicode character set [http://www.unicode.org/].
Comments can be bracketed by /* and */ or prefixed by // in
which case they run to the end of the line. A special form of
the bracketed comments, starting /**, is used for
documentation. In this leading white space and * characters
are discarded. Moreover HTML markers (other than <Hn>
and <HR>) may be used together with tags:

@see cross-references to code or general URLs

@author

@version

@param parameters for methods

 �

@return result of method

@exception conditions for exceptions to be raised

Reserved words are written in lower case. Curly brackets {
and } are used to enclose blocks of code.

'HFODUDWLRQV�

There are two main forms of declaration in Java: variables and
classes (that is, object types). These share a similar syntax
consisting of optional qualifiers and the type name followed by
the identifier being declared. The results of methods precede
their declarations. Thus the procedure to count words
becomes a method:

private static void count (String name, InputStream in)
 throws IOException
{
 int words = 0, lines = 0;
 boolean inWord = false;
 DataInputStream dis = new DataInputStream (in);

Constants are represented as variables qualified by the
keyword final, which renders them immutable. By convention
identifers in upper case are used. Exceptions and constructed
types are represented as classes and procedures are
represented as methods. There are no equivalents of
enumerations, sets, subranges or records other than classes.
There are no explicit references; arrays and classes are
implicitly reference types.

5HVHUYHG�ZRUGV�

The reserved words in Java are: abstract, boolean, break,
byte, byvalue, case, cast, catch, char, class, const, continue,
default, do, double, else, extends, false, final, finally, float, for,
future, generic, goto, if, implements, import, inner, instanceof,
int, interface, long, native, new, null, operator, outer, package,

 �

private, protected, public, rest, return, short, static, super,
switch, synchronized, this, throw, throws, transient, true, try,
var, void, volatile and while. Some of these are currently
unused but reserved for future developments.

Every object has the following methods which should not be
overridden casually: clone, equals, finalize, getClass,
hashCode, notify, notifyAll, toString and wait.

%XLOW�LQ�W\SHV�

byte
short
int
long

8 bits
16 bits
32 bits
64 bits
Literals in decimal, octal (prefixed by 0) or
hexadecimal (prefixed by 0x) and followed
by l (or L) for long if appropriate.
So 42 = 052 = 0x2a = 0x2A.

boolean Literals true and false

char 16 bit Unicode with literals
\b, \t, \n, \f, \r, \”, \’, \\, \abc and \uabcd

float
double

Literals followed by f
or d (the default)

String Literals enclosed in double quotes, “This is a
String”.

The type void is used to represent the result of sub-routines
that do not return one.

 ��

([SUHVVLRQV�DQG�DVVLJQPHQW�

A single equal sign is used for assignment but the assignment
statement also returns its value; unwanted values are
discarded automatically. The operators in Java in order of
decreasing precedence are:

Prec. Operator Type Operation

1 +, - integral or real unary plus, minus

 ~ integral bitwise complement

 ++, -- integral or real pre- or post- increment,
decrement

 ! boolean logical complement

 (type) cast

2 *, /, % integral or real multiplication, division,
remainder

3 +, - integral or real addition, subtraction

 + string concatenation

4 << integral left shift

 >>, >>> integral arithmetic, logical right
shift

5 <, <=, >,
>=

integral or real comparison

 instanceof object comparison of types

 ��

6 ==, != equal, not equal

7 & integral or boolean bitwise or boolean
conjunction

8 ^ integral or boolean bitwise or boolean
symmetric difference

9 | integral or boolean bitwise or boolean
disjunction

10 && boolean conditional AND

11 || boolean conditional OR

12 ? : boolean ternary conditional
operator

13 = assignment

 *=, /=, %=,
+=, -=,
<<=, >>=,
>>>=,
&=, ^=, |=

 assignment with
operation

Operators of precedence 1, 12 and 13 are right associative; all
the others are left associative.

Casting converts representation where necessary, so (int)
3.14159 returns the value 3. This particular use applies
truncation towards 0.

Automatic conversions widen, narrow and generate string
representations of values when necessary in expressions. For
example, 1 / (1000 * n + Math.PI) yields a double (being the

 ��

type of Math.PI). If this was being assigned to a float, it would
have to be narrowed with an explicit cast.

If an object has a toString method, this will be invoked to
generate a textual representation for use in string
concatenation.

The bitwise and boolean logical operators (&, ^ and |) evaluate
both of their operands before combing them; the conditional
variants (&& and ||) do not evaluate the right-hand operand
when the result is fully determined by the left-hand operand.

The ternary conditional operator b ? t : f evaluates the
boolean expression b and returns t if it is true and f otherwise.

6HTXHQWLDO�FRQWURO�VWUXFWXUHV�

Semi-colons are used to conclude statements rather than to
separate them.

LI��ERROHDQ��VWDWHPHQW�HOVH�VWDWHPHQW�

The boolean expression to be evaluated is enclosed in round
parentheses, the else clause is optional. Only single
statements are allowed; blocks must be enclosed in curly
braces. Each else binds to the most recent if that does not
already have one.

if (cholesterol > 6.5) status = “high risk”;
else if (cholesterol >= 5.5) status = “moderate”;
 else status = “acceptable”;

VZLWFK��H[SUHVVLRQ�� �̂«� �̀

The switch statement compares an ordinal value against a
series of templates. Labels are introduced by the keyword
case and control falls through until a break is reached.

 ��

dvsn = 0;
switch (marks) {
 case 1:
 case 2:
 case 3:
 clss = 3;
 break;
 case 4: case 5: case 6:
 dvsn++;
 case 7: case 8: case 9:
 dvsn++;
 clss = 2;
 break;
 case 10:
 clss = 1;
 break;
 default:
 Doom!
 break;
 };

If none of the cases match the expression, execution
continues after the closing brace.

ZKLOH��ERROHDQ��VWDWHPHQW�

The boolean expression is evaluated and the statement
executed repeatedly as long as it remains true. So an
approximation to log2 n could be calculated by:

int b = 0;
while (n > 1) {
 b++;
 n /= 2;
};

This example also shows how variables can be declared at
any point in a program and also the use of increment and
operators with assignment.

An infinite loop simply uses the constant value true as the
boolean expression. So the sum of an infinite series could be
calculated by:

while (true) {
 float next = sum + f (n);

 ��

 if (next == sum) break;
 sum = next;
 n++;
};

GR�VWDWHPHQW�ZKLOH��ERROHDQ��

The do statement is similar to a while, but always executes at
least once:

do {
 n++;
 prev = sum;
 sum = prev + f (n);
} while (sum != prev);

IRU��LQLWLDOL]DWLRQ��ERROHDQ��LQFUHPHQW��VWDWHPHQW�

The brackets enclose an initialization expression, which can
consist of several statements (including variable declarations)
separated by commas, a boolean expression and an
increment expression which can also consist of several
statements. The statement is equivalent to:

initialization;
while (boolean) {
 statement;
 increment;
};

For example, the terms of a series might be added as follows:

sum = 0.0f;
for (int t = n; t >= 0; t--)
 sum += 1 / (1000 * t + Math.PI);

Compound initialization and increment expressions could be
used to calculate the approximation to log2 n:

int i, b;
for (i = n, b = 0; i > 1; b++, i /= 2);

 ��

This example leaves no work to be done in the body of the
loop so it is omitted. All of the expressions in the for construct
are optional and the default boolean value is true. Thus the
idiomatic way to write an infinite loop in Java is:

for (;;) statement

7UDQVIHU�RI�FRQWURO�

A break statement transfers control to the end of the smallest
enclosing loop or switch statement.

A continue statement skips to the end of the smallest
enclosing loop and re-evaluates the boolean expression
controlling its execution.

Statements can be labelled by prefixing them with an identifier
followed by a colon. Both break and continue can be followed
by the label of an enclosing block (not necessarily the smallest
such), in which case control transfers to the appropriate point
in that block.

return is used to conclude the execution of a method and is
followed by an expression if the method returns a result.

,PSRUWLQJ�LGHQWLILHUV�

The naming scheme in Java aims to provide unique identifiers
across the Internet. A fully qualified name consists of a
package name, a class name and a method name, separated
by full stops. The package name itself can consist of several
components, starting with an Internet domain name (although
the components are written in decreasing order of
significance). The prefix java is used for standard packages.

Public names can always be used in fully qualified form without
being specifically imported. However, the import statement
allows shorter names to be used when this does not give rise

 ��

to any ambiguity. Importing a class allows that class name to
be used in unqualified form. All the classes in a package can
be imported by using an asterisk as the class name:

import uk.ac.cam.cl.tlh20.teaching.introduction.*

This simply saves typing. The actual package must still be
available via the CLASSPATH environment variable. This is a
list of directories (separated by colons) and the actual classes
will reside in a subdirectory whose path is derived from the
components in the package name.

The default package (with no name) and java.lang.* are always
imported implicitly.

([FHSWLRQV�

Exceptions in Java are just classes derived from the Exception
type. In fact Exception is a sub-type of Throwable which also
includes the Error type to represent system failures.

Signatures of methods include a list of exceptions that may
arise during the execution of the corresponding code. This
consists of the word throws followed by a comma-separated
list of exceptions.

An exception is raised in a statement consisting of the keyword
throw followed by an instance of the appropriate exception
type. This might well be created dynamically using new.

Exception handling takes place in a unified try statement:

try {
 main code to be executed
}
catch (ExceptionOne e) {
 deal with exceptions of type ExceptionOne possibly calling
 methods like e.getMessage()
}
catch (ExceptionTwo e) {

 ��

 deal with exceptions of type ExceptionTwo
}
finally {
 code to restore invariants always executed, even after catching exceptions
};

The hierarchy of exception classes has Throwable at its root,
with Error and Exception as the immediate descendants, so
catching Throwable t will pick up any exception.
RuntimeException is derived from Exception.

Object

Throwable

Error Exception

RuntimeExceptionIOException
&c

LinkageError
&c

NullPointerException
ArithmeticException

IndexOutOfBoundsException
 &c

Unlikely to want
to catch

Must be caught or
listed in signature

Can catch but
unlikely to be
useful

Instances of Error, RuntimeException and their subclasses are
known as unchecked exceptions and relate to major failures.
All other exceptions are checked, which means that they must
be caught or specified in throws clause of any methods in
which they might arise.

 ��

&RPSRXQG�GDWD�W\SHV�

Previous sections have described primitive types such as
integer and reference types that refer to instances of classes –
i.e. objects – these are the main data types in Java. One
further addition is arrays or, more strictly, references to open
arrays. An array type is written as the element type followed by
square brackets, []. They are reference types, so space has to
be allocated with new:

int [] ai = new int [10];

This allocates a vector of 10 consecutive locations capable of
holding integers and returns their address. Individual elements
of the array are accessed as ai [0] up to ai [9].

Every array has a field length that indicates how many entries it
has. Thus, in the example above, ai.length would be 10. Here
is another example:

static int dot (int [] a, int [] b) {
 int sum = 0;
 for (int i = 0;
 (i < a.length) && (i < b.length);
 i++) {
 sum += a[i] * b[i];
 };
 return sum;
 };

Another example is the array of strings that is passed to the
main method of a Java program. This contains the arguments
typed on the command line that invoked the program
(excluding the actual program name itself). Look back at the
word-counting program above.

It is also possible to initialise an array to a particular set of
values:

int [] primes = {2, 3, 5, 7, 11, 13, 17};

 ��

The brackets can be written after the identifier being declared:

int ai [] = new int [10];
int primes [] = {2, 3, 5, 7, 11, 13, 17};

0XOWL�GLPHQVLRQDO�DUUD\V�

Multi-dimensional arrays are just arrays of arrays:

int [] [] mi = new int [3] [3];

These can also be initialised:

int [] [] factors = {{2}, {3}, {2, 4}, {5}, {2, 3, 6}, {7}};

factors [4] [2] would be 6. The abbreviation factors [4, 2] is not
available. For example:

static void printMatrix (int [] [] m) {
 for (int i = 0; i < m.length; i++) {
 for (int j = 0; j < m[i].length; j++) {
 System.out.print (m[i][j] + "\t");
 };
 System.out.println ();
 };
 };
};

When allocating a multi-dimensional array, it is possible to omit
trailing dimensions:

int [] [] factors = new int [7] [];

The resulting arrays has 7 elements, each of type int []. These
could then be allocated and initialised (possibly with different
lengths) by assigning to them.

 ��

2EMHFWV�DQG�PHWKRGV�

Objects can be regarded as references to records containing
data fields and also methods. The word class is used for an
object type and object will usually refer to an instance of that
type.

The syntax for a class definition is:

[modifiers] class Name [extends Parent] {
 [modifiers] Type field = expression;
 …

 [modifiers] Name (T1 a1, T2 a2, …) {
 instance constructor code…
 };

 [modifiers] [Result] method (T1 a1, T2 a2, …)
 throws E1, E2, … {
 method code…
 };

 …

 static {
 class initialisation code…
 }
};

By convention, class names have an initial capital letter but
field and method names start in lower case.

It is possible to have several methods with the same name but
different signatures. When one is invoked, the system looks at
the pattern of actual arguments and calls the corresponding
method. This can be used to simulate default values for
parameters.

 ��

Code within methods can refer to fields in the object simply by
name or as this.name if there is ambiguity (as might arise if
field names were the same as argument names in a method).

A method with the same name as the class and returning no
result (not even void) can be provided as a constructor to
initialise objects in the class. Indeed, there can even be
several of these taking different patterns of arguments. This
can be invoked when an instance of the class is created using
new.

All classes have some methods provided by default, but which
it might make sense to override by redeclaring them. These
include:

n public boolean equals (Object o)
// compare contents rather than address

n public native int hashCode ()
// calculate a hash value for the object

n public String toString ()
// represent the object as text

n protected native Object clone ()
// manufacture a copy of the object

n protected void finalize ()
// tidy up before garbage collection

Here is an example of the use of classes to model complex
numbers:

 ��

class ComplexExample {
 public static void main (String [] args) {
 Complex one = new Complex (1.0f),
 i = new Complex (0.0f, 1.0f),
 two = one.add (one),
 m = i.multiply (i);
 System.out.println ("one = " + one); // (1.0, 0.0)
 System.out.println (" i = " + i); // (0.0, 1.0)
 System.out.println ("two = " + two); // (2.0, 0.0)
 System.out.println (" m = " + m); // (-1.0, 0.0)
 };

};

class Complex {
 private float real, imaginary;

 Complex (float real) {
 this.real = real;
 this.imaginary = 0.0f;
 };

 Complex (float real, float imaginary) {
 this.real = real;
 this.imaginary = imaginary;
 };

 Complex add (Complex c) {
 return new Complex (this.real + c.real,
 this.imaginary + c.imaginary);
 };

 Complex multiply (Complex c) {
 return new Complex (this.real * c.real –
 this.imaginary * c.imaginary,
 this.real * c.imaginary +
 this.imaginary * c.real);
 };

 public String toString () {
 return "(" + this.real + ", " + this.imaginary + ")";
 };
};

Including a toString method makes it simpler to print instances
of the class. This is used by the debugger.

 ��

0RGLILHUV�

The modifiers restrict the use of classes, fields and methods:

n abstract means that the methods in the class
have no code. It simply specifies the signature of
a parent from which working classes can be
derived. Abstract methods can only be declared
in an abstract class.

n final means that a field or method can not be
overridden. This prevents the behaviour of a
class being perverted in a derived type. A final
field is effectively a constant. A final class can not
be sub-typed.

n native means that the code of a method is being
provided in a language other than Java.

By default, identifiers have the package modifier. Each file
of code can start with an optional package declaration to
name the package to which it belongs.

bpublic, protected, package and private limit the scope
of identifiers as follows:

 Modifier applied to identifier

Identifier visible in public protected package private

Class in which it
 is defined

á á á á

Another class in
 the same package

á á á

Derived class in
another package

á á

Anywhere else á

 ��

n static means that the field or method of the class
should be available even if no instance of the
class has been created. Static methods can be
used to provide subroutine libraries like Math.sqrt
or the main method of a class that is invoked as a
program.

Static variables are shared by all instances of a class and
can be initialised by including something that looks like a
method with a static modifier but no name or signature in
the class.

n synchronized means that the method acquires a
lock associated with its instance.

n transient fields are omitted from serialised
version of instances.

n volatile fields can be safely accessed
asynchronously in multi-threaded programs.

([FHSWLRQV�

Recall that exceptions are just classes derived from
Throwable. By convention any such class has two
constructors, one taking no arguments and one taking a string
argument giving some sort of explanation. This string is
returned by an instance’s getMessage method.

,QKHULWDQFH�

Java provides single inheritance through the extends Parent
part of a class signature. New methods can be added and old
methods overridden by providing a new method with the same
name, return type and arguments.

 ��

Suppose a class for hash tables had been written in a file
Table.java as follows:

package table;

public class Table {
 private class Entry {

 String key, value;
 Entry next;

 Entry (String key, String value, Entry next) {
 this.key = key;
 this.value = value;
 this.next = next;
 };

 public String toString () {
 return "(\"" + key + "\" => \"" + value + "\") " + next;
 };

 };

 private Entry [] table;

 public Table (int size) {
 table = new Entry [size];
 };

 public String toString () {
 String s = "";
 for (int i = 0; i < table.length; i++)
 s += "[" + i + "] = " + table [i] + "\n";
 return s;
 };

 public void store (String key, String value)
 throws DuplicateException
 {
 try {
 retrieve (key);
 throw new DuplicateException (key);
 }
 catch (MissingException e) {
 int h = key.hashCode() % table.length;
 table [h] = new Entry (key, value, table [h]);
 };
 };

 ��

 public String retrieve (String key)
 throws MissingException {
 Entry e = table [key.hashCode() % table.length];
 while (e != null) {
 if (key.equals (e.key)) return e.value;
 e = e.next;
 };
 throw new MissingException (key);
 };

};

Actually, this needs a couple of supporting classes to declare
the new exceptions:

package table;

public class DuplicateException extends Exception {

 public DuplicateException (String key) {
 super ("Key \"" + key + "\" already in use");
 };

}

package table;

public class MissingException extends Exception {

 public MissingException (String key) {
 super ("Key \"" + key + "\" not found");
 };

}

A test program, TableTest.java could then use these as
follows:

 ��

import table.*;

class TableTest {
 public static void main (String [] args) {
 TryTable table = new TryTable (2);

 table.tryStore ("lcp", "Larry");
 table.tryStore ("pr", "Peter");
 table.tryStore ("acn", "Arthur");
 table.tryRetrieve ("pr");
 table.tryRetrieve ("jcw");
 table.tryStore ("jwc", "Jenni");
 table.tryStore ("lcp", "Lawrence");
 table.tryRetrieve ("jwc");
 };

};

class TryTable extends Table {
 TryTable (int size) {
 super (size);
 };

 void tryStore (String key, String value) {
 try {
 store (key, value);
 System.out.println ("Successfully stored (" +
 key + ", " + value + ")");
 }
 catch (DuplicateException e) {
 System.out.println ("Failed: " + e.getMessage ());
 };
 };

 void tryRetrieve (String key) {
 try {
 System.out.println ("Successfully retrieved (" +
 key + ", " + retrieve (key) + ")");
 }
 catch (MissingException e) {
 System.out.println ("Failed: " + e.getMessage ());
 };
 };

};

Note how the identifier super is used to refer to the parent
class of this. Just as the first action of a constructor might be
to call super.constructor, the last action of a finalize method
might be to call super.finalize.

 ��

3URJUDPPLQJ�HQYLURQPHQW�

This section describes the basic facilities for compiling and
running Java programs, using both the basic commands in the
Java Development Kit (JDK) and a simple development
environment working within emacs.

More elaborate facilities are provided by Sun’s Java workshop
on Thor. However, that program is now somewhat old and
most people find it more convenient to use the JDK directly
and the emacs editor for source-code development.
Microsoft’s Visual Studio for Java is available on the Cockroft 4
PCs running Windows NT.

Java programs come in two forms: applications and applets.
Both are compiled into machine-independent byte codes in the
same way. The former are run from the console through the
Java interpreter and the latter are run within a World-Wide
Web browser or the applet viewer.

Applications must have a principal class that includes a
method with the signature:

public static void main (String [] args)

Applets must have principal class that is public, extends the
class java.applet.Applet and includes a method with the
signature:

public void paint (java.awt.Graphics g)

that is responsible for drawing to the screen.

&RPPDQG�OLQH�WRROV�LQ�-'.�

Note that versions of the JDK differ slightly between the Solaris
machine hammer.thor, the Linux machines belt.thor and

 ��

gloves.thor and the Cockroft 4 Linux installation. They are all
now JDK 1.2.x versions (aka Java 2). The behaviour of multi-
threaded programs in particular is likely to vary because of the
differences in the operating systems involved.

The following programs are available in /usr/java/bin on Thor:

DSSOHWYLHZHU�XUO�

Read the HTML document at the specified URL and display
any applets included in it.

MDYD�FODVV�

Run the Java program stored as the main method of the
specified class.

MDYDF�ILOH�

Compile the Java source code in the specified file. The –d
switch can be used to redirect the resulting class file to a
particular directory. If package names are used, the
components of the name will be mapped into a directory
structure under the named directory.

MDYDGRF�

Generate HTML documenting a Java package or source file.

MGE�FODVV�

Invoke the Java debugger for the specified class. Useful
commands include:

n stop at class:line

n stop in class:method

 ��

n run arguments

n locals

n up

n print identifier

Solaris (as run on hammer.thor) uses native threads if the
environment variable THREADS_FLAG is set to native.
However, this interferes with single stepping, so the
environment variable should be cleared before running jdb.
On that machine you can also obtain some status information
about the JVM, without invoking jdb, by interrupting Java with
Ctrl-\.

HPDFV�VXSSRUW�ZLWK�/-:�

A collection of emacs macros are available in
/opt/gnu/share/emacs/site-lisp on hammer.thor to support Java
programming. There are four files:

n ljw.el - the main menus for Lucian’s Java
Workshop.

n jde-run.el - support for executing Java programs.

n jde-db.el - support for debugging Java programs.

n anders1-java-font-lock.el - syntax highlighting.

Just put the command (load “ljw”) in the .emacs file in your
home directory to enable the system.

Whenever a Java source file is edited, this colours keywords
using the font lock system and helps retain the format of the

 ��

code whenever tab is used. The compiler can be invoked and
the program run within emacs. This uses the following keys:

n f5 - compile the source code in the current buffer.

n f6, f7 & f8 - parse the compiler’s output and jump
to the first, previous and next error respectively.

n f9 - run the program in the current buffer. The
first time this is run, the system will prompt for
details about how the source code is to be
handled.

There are also menu entries under the Java heading to run the
debugger, set breakpoints and run the program. These link
the source code of the program and jdb so it is possible to
specify breakpoints by pointing at them and see where
execution has reached at any time. Two more function keys
are relevant:

n f3 - step into the method at the current breakpoint.

n f4 - single step past the current breakpoint.

:::�VXSSRUW�RQ�7KRU�

It is possible to export HTML files and Java classes on Thor.
Create a directory public_html in your home directory; this will
then be available via the URL
http://www.thor.cam.ac.uk/~crsid/ on the World-Wide Web
(where crsid is your user identifer). Further sub-directories are
addressed in the obvious way.

Here is a revised version of the Hello world program that can
be run either as a program directly from the Java interpreter or
as an applet within the applet viewer:

 ��

public class HelloWorld extends java.applet.Applet {

 public static void main (String [] args) {
 System.out.println ("Hello console world!");
 };

 public void paint (java.awt.Graphics g) {
 g.drawString ("Hello applet world!", 50, 25);
 };

};

This would need a simple HTML wrapper to be invoked. Both
the compiled class file and the HTML would be placed in the
public_html directory for export on WWW.

<html>
<head>
<title>HelloWorld test</title>
</head>
<body>
<applet code="HelloWorld" width=500 height=300>
Sorry! Your browser does not support Java applets.
</applet>
</body>
</html>

The text between the <applet> and </applet> tags is only
displayed if the browser does not support Java applets (or has
them disabled).

3URJUDPPLQJ�ZLWK�REMHFWV�

Here is a program that models integer and floating point
numbers as objects:

public class NumberExample {

 public static void main (String [] args) {
 Number r = new Real (3.14159f),
 i = new Integer (42),
 s = r.add (i),
 j = i.add (new Integer (37));
 System.out.println ("r = " + r); // r = 3.14159: Real
 System.out.println ("i = " + i); // i = 42: Integer

 ��

 System.out.println ("s = " + s); // s = 45.14159: Real
 System.out.println ("j = " + j); // j = 79: Integer
 };

};

abstract class Number {
 abstract Number add (Number n);
};

class Integer extends Number {
 int i;

 Integer (int i) {
 this.i = i;
 };

 Number add (Number n) {
 return n instanceof Integer
 ? (Number) new Integer (i + ((Integer) n).i)
 : (Number) new Real (i + ((Real) n).r);
 };

 public String toString () {
 return i + ": Integer";
 };
};

class Real extends Number {
 float r;

 Real (float f) {
 r = f;
 };

 Number add (Number n) {
 return n instanceof Integer ? new Real (r + ((Integer) n).i)
 : new Real (r + ((Real) n).r);
 };

 public String toString () {
 return r + ": Real";
 };
};

 ��

,QWHUIDFHV�

This example used an abstract class to describe the interface
to objects in the class. Java also has a quite separate
construction called an interface which is used to specify
constraints on classes.

An interface is rather like an abstract class, but all of its
methods are implicitly abstract. If it declares and fields, they
must be static and final (that is, constants). Interfaces are
classes and there can be an hierarchy of inheritance just as for
classes. Interfaces often have names ending -able or -ible to
indicate the constraint being imposed.

Any other class can implement the interface by adding
implements Interface1, Interface2 after any extends clause.
It must then provide code for all the methods specified in the
interface.

This is a bit like multiple inheritance. Although a class in Java
can only inherit actual code of methods from a single
superclass, it can satisfy the specifications in several different
interfaces.

If an abstract class implements an interface then any derived
class is required to implement the interface, but doesn’t have
to say so explicitly. If the derived class doesn’t provide the
methods for the interface, then it must be declared abstract so
that it can not be instantiated.

Here is an example of a program that uses an interface
Sortable to specify a constraint on objects that will make their
instances comparable. A general purpose sorting routine can
then be written for arrays of objects that implement the
interface.

 ��

public class SortExample {
 public static void main (String [] args) {
 try {
 sortints ();
 sortnums ();
 sortmixed ();
 } catch (IncompatibleTypeException e) {
 System.out.println ("Incompatible types: " +
 e.getMessage ());
 };
 };

 static void sortints () throws IncompatibleTypeException {
 Sortable [] d = {new SortableInt (3),
 new SortableInt (5),
 new SortableInt (2),
 new SortableInt (4),
 new SortableInt (3),
 new SortableInt (5)};
 print (d);
 sort (d);
 print (d);
 };

 static void sortnums () throws IncompatibleTypeException {
 Sortable [] d = {new Integer (3), new Integer (5),
 new Integer (2), new Real (4.0f),
 new Real (3.0f), new Real (5.0f)};
 print (d);
 sort (d);
 print (d);
 };

 static void sortmixed ()
 throws IncompatibleTypeException {
 Sortable [] d = {new SortableInt (3),
 new SortableInt (5),
 new Integer (2),
 new Integer (4),
 new Real (3.0f),
 new Real (5.0f)};
 print (d);
 sort (d);
 print (d);
 };

 static void print (Object [] data) {
 System.out.print ("[");
 if (data.length > 0) System.out.print (data [0]);
 for (int i = 1; i < data.length; i++)
 System.out.print (", " + data [i]);
 System.out.println ("]");

 };

 ��

static void sort (Sortable [] data)
 throws IncompatibleTypeException
 {
 for (int i = 1; i < data.length; i++) {
 for (int j = i;
 (j > 0) && (data [j] .compare (data [j-1]) < 0);
 j--) {
 // if (data [j] .compare (data [j-1]) >= 0) break;
 Sortable d = data [j];
 data [j] = data [j-1];
 data [j-1] = d;
 };
 };
 };
};

class IncompatibleTypeException extends Exception {
 IncompatibleTypeException (Object a, Object b) {
 super ("Can not compare " + a.getClass().getName() +
 " with " + b.getClass().getName());
 };
};

interface Sortable {
 public int compare (Sortable s) throws IncompatibleTypeException;
};

class SortableInt implements Sortable {
 int i;
 SortableInt (int i) {this.i = i;};
 public String toString () {return i + "";};
 public int compare (Sortable s)
 throws IncompatibleTypeException
 {
 if (s instanceof SortableInt)
 return i - ((SortableInt) s).i;
 else throw new IncompatibleTypeException (this, s);
 };
};

abstract class Number {
 abstract public Number add (Number n);
};

 ��

class Integer extends Number implements Sortable {
 int i;
 public Integer (int i) { this.i = i; };
 public Number add (Number n) {
 return n instanceof Integer ? (Number) new Integer (i +
 ((Integer) n).i)
 : (Number) new Real (i +
 ((Real) n).r);
 };
 public String toString () {return i + ": Integer";};
 public int compare (Sortable s)
 throws IncompatibleTypeException
 {
 if (s instanceof Integer)
 return i - ((Integer) s).i;
 else if (s instanceof Real)
 return i - ((Real) s).r > 0 ? +1 : -1;
 else throw new IncompatibleTypeException (this, s);
 };
};

class Real extends Number implements Sortable {
 float r;
 public Real (float f) {r = f;};
 public Number add (Number n) {
 return n instanceof Integer ?

 new Real (r + ((Integer) n).i)
 : new Real (r + ((Real) n).r);
 };
 public String toString () {return r + ": Real";};
 public int compare (Sortable s) throws IncompatibleTypeException {
 if (s instanceof Integer)
 return r - ((Integer) s).i > 0 ? +1 : -1;
 else if (s instanceof Real)
 return r - ((Real) s).r > 0 ? +1 : -1;
 else throw new IncompatibleTypeException (this, s);
 };
}

The resulting output would be:

[3, 5, 2, 4, 3, 5]
[2, 3, 3, 4, 5, 5]
[3: Integer, 5: Integer, 2: Integer, 4.0: Real,
3.0: Real, 5.0: Real]
[2: Integer, 3.0: Real, 3: Integer, 4.0: Real,
5.0: Real, 5: Integer]
[3, 5, 2: Integer, 4: Integer, 3.0: Real, 5.0: Real]
Incompatible types: Can not compare Integer with SortableInt

 ��

This can be pictured as follows:

The abstract class Number could have been made to
implement Sortable. There would still have been no code
provided for the methods such a compare although any
derived class would have been obliged to do so (or be
declared abstract itself).

Interfaces are used throughout the standard class libraries:

n Input and output – Cloneable, Serializable, DataInput and
DataOutput

n Concurrency - Runnable

n Graphical user interfaces - KeyListener, MouseListener,
WindowListener and many more.

Some of these (such as Cloneable and Serializable) do not
actually have any methods. Implementing the interface is just
part of the class’s specification.

implementations

extensions

Number

Integer Real

abstract class

SortableInt

Sortableinterface

 ��

&KRRVLQJ�EHWZHHQ�LQKHULWDQFH�DQG�LQWHUIDFHV�

There are three common idioms for combining classes in a
program.

The simplest is composition. A new class definition simply
includes fields for objects of some other class. If these are
made private, they will be hidden from users of the new class.
This may be particularly appropriate if the internal
representation is likely to change subsequently.

The second method is to extend an existing class to form a
new one that inherits all the fields and methods of the old class
and may add new ones. The behaviour of the old class may
be modified by overriding existing methods. It is also possible
to overload methods by using the same name as an existing
method but a different signature; this does not mask the old
method.

Finally, interfaces provide a mechanism for specification of
particular aspects of behaviour while the implementation is
deferred to particular classes.

5HIOHFWLRQ�

Reflection or introspection is the mechanism by which
programs obtain type information about objects at run time.
Every class defined in the source of a program gives rise to an
instance of a Class object in the executing program and, for
that matter, an associated .class file of compiled code.

Every instance of an Object (that is, every instance of every
class) has a public final native method getClass() returning its
Class. This is also available as the static field class of every
class. Alternatively the static method Class.forName(String)
yields the Class whose name is given.

 ��

Classes have many methods that can be used to investigate
objects:

n String getName () was used in the code of
IncompatibleTypeException in the program above to
determine the names of the two classes whose values
could not be compared.

n Field [] getFields () can be used to investigate data fields

n Method [] getMethods () can be used to investigate
methods

n Class getSuperclass () gives information about the class
hierarchy

n Class [] getInterfaces () returns an array of interfaces that
the class implements

6HSDUDWH�FRPSLODWLRQ�

Library classes that are intended for use in other programs
should be made public and have any externally visible fields
and methods also marked as public. Public classes have to
be stored in a file that has the same name as the class (with a
.java extension), so there can only be one public class in any
file of code. When a Java program is running, the directories
listed in the CLASSPATH environment variable will be
searched for library classes.

Each class belongs to a package. The package can be
specified in an optional first line of the file which simply consists
of the keyword package followed by the package name. By
convention, this is written entirely in lower case. Several
classes can be grouped in a single package and their fields
and methods are then visible across the package if no other
visibility modifier has been specified. The import statement

 ��

allows identifiers to be used in unqualified form. In the
absence of any explicit specification otherwise, classes belong
to an anonymous package.

The exact scheme for interpreting package names depends
on the particular system being used, but often the components
in a package name reflect an hierarchical directory structure
nested within one of the directories specified on the
CLASSPATH. That is how it works on the thor and Cockroft 4
Linux installations, in which the CLASSPATH names
directories separated by ‘:’ symbols.

&RQFXUUHQF\�

Java supports threads to lightweight concurrency within a
program running in a single address space. This is vital for
good interactive response and for distributed computing. It
also allows programs to exploit multi-processor architectures.

The steps are as follows:

n Specify an environment and a body of code whose
execution constitutes the asynchronous activity. This can
be done by deriving a subclass of Thread with new fields
to hold the environment and overriding the run () method
to provide the code. Alternatively, any class satisfying the
Runnable interface (that is, having a run () method) will
suffice.

n Make an instance of Thread by calling new and providing
appropriate arguments as desired. If a subclass of Thread
with a run () method is being instantiated, no further
arguments are necessary, but a ThreadGroup or a name
may be specified. If the code to be executed is in another
Runnable class, it should be passed as an argument to

 ��

the constructor for Thread together with either or both of
the other arguments.

n Initiate activity by invoking the start () method of the new
Thread. This will call the run () method to do the actual
work.

n The activity will continue until either run () concludes or the
Thread’s stop () method is called.

n Calling a Thread’s join () method blocks the calling thread
until activity in the called Thread has finished.

n Activity in a Thread can be paused and restarted by calling
its suspend () and resume () methods. The current thread
can pause for a fixed time by calling the static
Thread.sleep () method.

n Mutual exclusion can be established by placing the
relevant data in the fields of a class and only accessing
them via synchronized methods.

n A Thread calling the wait () method of an object will be
suspended until some other Thread calls the object’s notify
() or notifyAll () method. Any mutual exclusion locks held
by the Thread will be temporarily released; this does not
happen when a thread is blocked for synchronization, or
by sleep () or suspend (), or waiting for an input or output
operation to complete.

n Each object (that is, each instance of any class) has a
monitor which is a list of Threads that are blocked
because either they are waiting for synchronized mutual
exclusion or they are waiting explicitly.

n Activity in a Thread can be interrupted in two ways. Calling
the Thread’s interrupt () method causes a flag to be set,
which can be tested by calling the Thread’s isInterrupted ()

 ��

method. In any case, the InterruptedException will be
thrown when the thread next calls wait, which might also
be called by other methods such as sleep which also raise
the exception. The Thread can catch this and proceed in
whatever way is appropriate. Calling the Thread’s stop ()
method causes the ThreadDeath error to be thrown
immediately at the current point of execution. This may
also be caught in order to tidy up but should then be re-
thrown. Otherwise ThreadDeath is not checked.

n The use of stop (), suspend (), resume () and destroy () is
now deprecated to reduce the likelihood of deadlock in
threaded programs.

6XPPLQJ�D�VHULHV�LQ�SDUDOOHO�

public class ThreadExample {
 final static int count = 5;

 public static void main (String [] args) {
 Evaluator [] workers = new Evaluator [count];
 for (int i = 0; i < count; i++) {
 workers [i] = new Evaluator (i);
 workers [i].start ();
 };
 int sum = 0;
 for (int i = 0; i < count; i++) {
 try {
 workers [i].join ();
 sum += workers [i].result;
 }
 catch (InterruptedException e) {
 System.out.println ("Interrupted while
waiting for thread " + i);
 };
 };
 System.out.println ("Sum = " + sum);
 };

};

class Evaluator extends Thread {
 int argument, result;
 Evaluator (int a) {argument = a;};
 public void run () {result = argument * argument;};
};

 ��

6\QFKURQLVHG�DFFHVV�WR�D�EXIIHU�

public class BufferExample {
 public static void main (String [] args) {
 Buffer b = new Buffer ();
 Thread c = new Consumer (b);
 c.start ();
 try {
 for (int i = 1; i <= 7; i++) b.put (i);
 }
 catch (InterruptedException e) {
 System.out.println ("Producer interrupted!");
 };
 c.stop ();
 };
};

class Buffer {

 int value;
 boolean valid = false;

 synchronized void put (int i) throws
 InterruptedException {
 while (valid) wait ();
 value = i;
 valid = true;
 notify ();
 };

 synchronized int get () throws
 InterruptedException {
 while (! valid) wait ();
 valid = false;
 notify ();
 return value;
 };

};

 ��

class Consumer extends Thread {

 Buffer buffer;

 Consumer (Buffer b) {buffer = b;};

 public void run () {
 for (;;) {
 try {
 System.out.println ("Found " + buffer.get ());
 }
 catch (InterruptedException e) {
 System.out.println ("Interrupted while consuming!");
 };
 };
 };

};

7KH�+DPPLQJ�SUREOHP�

public class HammingExample {

 static final int [] primes = {2, 3, 5};
 static final int LIMIT = 100;

 public static void main (String [] args) {
 Minimum min = new Minimum (primes.length);
 Broadcast bc = new Broadcast (primes.length);
 Thread [] hammers = new Thread [primes.length];
 for (int p = 0; p < primes.length; p++) {
 hammers [p] = new Hammer (min, bc, primes [p]);
 hammers [p] .start ();
 };
 try {
 for (;;) {
 int next = min.get ();
 if (next > LIMIT) break;
 bc.put (next);
 System.out.println (next);
 };
 }
 catch (InterruptedException e) {};
 for (int p = 0; p < primes.length; p++) {
 hammers [p] .interrupt ();
 };
 };

};

 ��

class Minimum {

 static final int INFINITY = 0x7fffffff;

 int value;
 int samples;
 int remaining = 0;

 Minimum (int s) {samples = s;};

 synchronized void put (int v)
 throws InterruptedException {
 while (remaining == 0) wait ();
 if (v < value) value = v;
 remaining--;
 notify ();
 };

 synchronized int get ()
 throws InterruptedException {
 value = INFINITY;
 remaining = samples;
 notifyAll ();
 while (remaining > 0) wait ();
 return value;
 };

};

class Broadcast {

 int value;
 int clients;
 int remaining = 0;

 Broadcast (int c) {clients = c;};

 synchronized int get () throws InterruptedException {
 while (remaining == 0) wait ();
 remaining--;
 notify ();
 return value;
 };

 ��

 synchronized void put (int v) throws InterruptedException {
 value = v;
 remaining = clients;
 notifyAll ();
 while (remaining > 0) wait ();
 };

};

class Cell {
 int number;
 Cell rest = null;
 Cell (int i) {number = i;};
};

class Hammer extends Thread {
 Minimum min;
 Broadcast bc;
 int prime;
 Hammer (Minimum m, Broadcast b, int p) {min = m; bc = b;
prime = p;};
 public void run () {
 Cell first = new Cell (1);
 Cell last = first;
 try {
 for (;;) {
 min.put (first.number);
 int next = bc.get ();
 last.rest = new Cell (next * prime);
 last = last.rest;
 if (first.number == next) first = first.rest;
 };
 }
 catch (InterruptedException e) {};
 };
};

 ��

7KUHDG�JURXSV�DQG�SULRULW\�

Each thread has a priority used in scheduling. Higher priority
threads are usually scheduled before lower priority ones. A
thread inherits its priority from the thread that created it, but
can change it by calling its own setPriority () method.

The ThreadGroup class gathers together a collection of
threads, which can then have a collective maximum priority
imposed and can be suspended or resumed together.

*UDSKLFDO�LQWHUDFWLRQ�

The applet version of the Hello world program showed above
simply extended the java.applet.Applet class by overriding its
paint method to draw the String “Hello world!” on the applet’s
underlying java.awt.Graphics object. The paint method is
called whenever the applet’s window needs to be re-drawn, for
example when it has been obscured and revealed.

This is just one example of the call-back system used in
window systems and graphical user interfaces. The
programmer provides routines which will be called by the
program’s environment in response to occlusion and exposure
in the window system or to input from the keyboard and
mouse.

The underlying class for graphical input and output is
java.awt.Component. The line of descent passes from this via
Container and Panel to Applet. The paint method overridden
for an Applet is actually inherited from Component. It should
be able to recreate the image on screen completely, which
may involve retaining some data structure in private data fields.

 ��

When the paint method is called, it is provided with a
java.awt.Graphics object as an argument. This has methods
to draw lines, polygons, arcs, filled areas and text.

Graphical input is handled differently in versions 1.0 and 1.1 of
Java.

-DYD�����LQSXW�

In Java 1.0, input is handled via further methods in a
Component (and hence in an Applet). These are overridden
by the programmer and then called by the underlying run-time
system in response to mouse and keyboard input.

Here is a program that allows polygons to be drawn:

import java.applet.*;
import java.awt.*;

public class AppletExample extends Applet {

 private Polygon poly = null;

 public boolean mouseDown (Event e, int x, int y) {
 poly = new Polygon ();
 poly.addPoint (x, y);
 repaint ();
 return true;
 };

 public boolean mouseDrag (Event e, int x, int y) {
 poly.addPoint (x, y);
 repaint ();
 return true;
 };

 public void paint (Graphics g) {
 if (poly != null) g.drawPolygon (poly);
 };
};

This works, although with subtly different behaviour on the
appletviewer, Netscape and Internet Explorer. However, the
overridden methods are now deprecated.

 ��

-DYD�����LQSXW�

Java 1.1 has a different event model in which different events
are delivered to objects that implement different interfaces.
The MouseListener interface handles the delivery of mouse
button pushes and releases, the MouseMotionListener
interface handles mouse movement and so on. The objects
behind these interfaces will usually need to share state with the
main Applet but this is easily arranged by extending the Applet
with the required methods and implementing those interfaces.
It can then act as a listener itself.

Here is a Java 1.1 version of the polygon drawing program:

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class NewAppletExample extends Applet
 implements MouseListener,
MouseMotionListener {

 private Polygon poly = null;

 public void init () {
 this.addMouseListener (this);
 this.addMouseMotionListener (this);
 };

 public void paint (Graphics g) {
 if (poly != null) g.drawPolygon (poly);
 };

// Methods for the MouseListener interface:

 public void mousePressed (MouseEvent e) {
 poly = new Polygon ();
 poly.addPoint (e.getX (), e.getY ());
 repaint ();
 };

 public void mouseReleased (MouseEvent e) {};
 public void mouseClicked (MouseEvent e) {};
 public void mouseEntered (MouseEvent e) {};
 public void mouseExited (MouseEvent e) {};

// Methods for the MouseMotionListener interface:

 ��

 public void mouseDragged (MouseEvent e) {
 poly.addPoint (e.getX (), e.getY ());
 repaint ();
 };

 public void mouseMoved (MouseEvent e) {};

};

This uses no deprecated features but, unfortunately only runs
under the appletviewer, and not with Netscape Navigator 3.01
or Microsoft Internet Explorer 3.02 which complain about
security violations.

-DYD�����LQSXW�ZLWK�LQQHU�FODVVHV�

It is slightly tedious to have to write all of the method signatures
for the interfaces even when no bodies are being provided
because the events in question are not interesting. Java 1.1
avoids this by providing ready-made classes that satisfy the
listener interfaces but with null event handlers. These can be
sub-classed to provide just the behaviour required.

However, these new classes would normally be disjoint from
the Applet and so would not be able to share state. Java 1.1
also introduces a new feature called inner classes to solve this.
Inner classes allow overriding methods to be provided when a
class is being instantiated. The syntax is:

new ClassName (constructor arguments)
{overriding methods}

Here is the polygon drawing program with inner classes:

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class NewAppletExample2 extends Applet {

 private Polygon poly = null;

 ��

 public void init () {
 this.addMouseListener (new MouseAdapter () {
 public void mousePressed (MouseEvent e) {
 poly = new Polygon ();
 poly.addPoint (e.getX (), e.getY ());
 repaint ();
 };
 });
 this.addMouseMotionListener (new MouseMotionAdapter () {
 public void mouseDragged (MouseEvent e) {
 poly.addPoint (e.getX (), e.getY ());
 repaint ();
 };
 });
 };

 public void paint (Graphics g) {
 if (poly != null) g.drawPolygon (poly);
 };

};

This is the preferred way of handling events. Unfortunately it
fails to work not only with the older Web browsers but also with
the appletviewer for PCs under Windows which can not handle
inner classes. However, it does work with Sun’s appletviewer
for Solaris and PCs under Linux.

0RUH�HODERUDWH�LQWHUDFWLRQ�

There is a large hierarchy of graphical classes descended from
Component. Some of the key classes and their methods are
shown in the diagram below.

The full range of events presented in Java 1.1 handle actions,
adjustments, components, containers, focus, items, keys,
mice, text and windows. Each of these event classes has a
listener interface presenting suitable call-back methods. Many
of the classes also have adapters to simplify the use of inner
classes.

 ��

 Component
void paint (Graphics g)
void setSize (int w, int h)

Fundamental graphical class

Container
Component add (Component c)

Encloses other components,
except Window and its subtypes

Window
void show ()
void dispose ()

Top-level displayable window

Dialog

Form for user input

TextComponent
String getText ()
void setText (string s)

Text display, optionally editable

Button
Canvas

CheckBox
Choice
Label
List

Scrollbar TextArea
TextField

Panel

Nested within another container

ScrollPane

For scrolling around a larger child

Frame
void setMenuBar ()

Application window with
d i

Applet
void init ()
void start ()
void stop ()
void destroy ()
String getAppletInfo ()
String [] [] getParameterInfo ()

Program to be run in a Web browser

FileDialog
String getDirectoy ()
String getFile ()

File selection

 ��

The general pattern for a graphical program is as follows:

n The main class will extend Applet. It may also
provide a main method so that it can be invoked
either as an applet or directly from the command
line. Different processing of the arguments will be
needed for the two cases - applets use
getParamater () and programs simple look at the
elements of the String [] passed as a parameter
to main.

n A complete window on the screen is modelled by
a class extending Frame. This sets up the
general layout of the window including a menu bar
with pull-down menus and a main working area
for the application. Call-backs relaying events
from the menu items may well be directed to the
working component.

n The main working are may well extend
Component and provide call-backs for interactive
input arising either directly or from menu items in
the surrounding frame.

*8,�FRPSRQHQWV�

Here is a simple program to square a number that uses a GUI:

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class GUIExample extends Applet {

 public void init () {

 final TextField number = new TextField ();
 final Button square = new Button ("Square");
 final TextField result = new TextField ();

 number.setColumns (10);

 ��

 square.addActionListener (new ActionListener () {
 public void actionPerformed (ActionEvent ae) {
 try {
 int n = Integer.decode (number.getText ()).
 intValue ();
 result.setText (n * n + "");
 }
 catch (NumberFormatException nfe) {
 result.setText ("Format error");
 };
 };
 });
 result.setColumns (10);
 result.setEditable (false);

 this.add (number);
 this.add (square);
 this.add (result);

 }

}

Here is the hash table program equipped with a GUI:

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class TableApplet extends Applet {

 public void init () {

 final TryTable table = new TryTable (2);

 final TextField key = new TextField ();
 final Button store = new Button ("Store");
 final Button retrieve = new Button ("Retrieve");
 final TextField value = new TextField ();
 final TextArea log = new TextArea
 ("Hash table testing\n", 10, 50,
TextArea.SCROLLBARS_VERTICAL_ONLY);

 key.setColumns (15);
 store.addActionListener (new ActionListener () {
 public void actionPerformed (ActionEvent ae) {
 log.append (table.tryStore (key.getText (),
 value.getText ()) + "\n");
 };
 });
 retrieve.addActionListener (new ActionListener () {
 public void actionPerformed (ActionEvent ae) {

 ��

 log.append (table.tryRetrieve (key.getText ()) +
 "\n");
 };
 });
 value.setColumns (15);
 log.setEditable (false);

 this.add (key);
 this.add (store);
 this.add (retrieve);
 this.add (value);
 this.add (log);

 };

};

class TryTable extends Table {

 TryTable (int size) {
 super (size);
 };

 String tryStore (String key, String value) {
 try {
 store (key, value);
 return "Successfully stored (" + key + ", " +
 value + ")";
 }
 catch (DuplicateException e) {
 return "Failed to store with duplicate key (" +
 key + ")";
 };
 };

 String tryRetrieve (String key) {
 try {
 return "Successfully retrieved (" + key +
 ", " + retrieve (key) + ")";
 }
 catch (MissingException e) {
 return "Failed to retrieve with key (" + key + ")";
 };
 };

};

 ��

7KH�FRPSOHWH�GUDZLQJ�SURJUDP�

Here is a more elaborate version of a drawing program that
uses several of these additional facilities:

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

public class Drawing extends Applet {
 public void init () {
 drawing (getParameter ("title"),
 getParameter ("width"),
 getParameter ("height"));
 };

 static private String appletInfo =
 "Simple sketching program\nPeter Robinson\nOctober 1997";

 public String getAppletInfo () {
 return appletInfo;
 };

 static private String [] [] parameterInfo = {
 {"title", "String", "Title for window banner"},
 {"width", "int", "Width of drawing area"},
 {"height", "int", "Height of drawing area"}
 };

 public String [] [] getParameterInfo () {
 return parameterInfo;
 };

 public void paint (Graphics g) {
 g.drawString ("Use the other frame!", 20, 30);
 };

 public static void main (String [] args) {
 System.out.println (appletInfo);
 drawing (args.length > 0 ? args [0] :
 "Drawing example program",
 args.length > 1 ? args [1] : null,
 args.length > 2 ? args [2] : null);
 };

 ��

 static void drawing (String title, String width, String height) {
 try {
 new DrawingFrame (title == null ? "Drawing example" : title,
 width == null ? 300 :
 new Integer (width).intValue (),
 height == null ? 250 :
 new Integer (height).intValue ());
 }
 catch (NumberFormatException e) {
 System.out.println (
 "Usage: java DrawingExample [title [width [height]]]");
 };
 };

};

 ��

class DrawingFrame extends Frame {

 private static String [] [] menus = {
 {"File", "New", null, "Load", "Save",
 ll, "Print", null, "Quit"},
 {"Colour", "Black", "Blue", "Red", "Green"},
 {"Fill", "On", "Off"}
 };

 private int width, height;

 DrawingFrame (String title, int width, int height) {
 super (title);

 this.width = width;
 this.height = height;
 ScrollPane pane = new ScrollPane
 ScrollPane.SCROLLBARS_ALWAYS);
 this.add (pane, "Center");
 DrawingCanvas canvas = new DrawingCanvas (this,
 * width, 2 * height);
 pane.add (canvas);

 MenuBar menubar = new MenuBar ();
 this.setMenuBar (menubar);

 for (int c = 0; c < menus.length; c++) {
 Menu m = new Menu (menus [c][0]);
 menubar.add (m);
 for (int r = 1; r < menus [c] .length; r++) {
 if (menus [c][r] == null) m.addSeparator ();
 else {
 MenuItem i = new MenuItem (menus [c][r]);
 m.add (i);
 i.setActionCommand (menus [c][r] .toLowerCase ());
 i.addActionListener (canvas);
 };
 };
 };
 this.pack ();
 this.show ();

 };

 public Dimension getPreferredSize () {
 return new Dimension (width, height);
 };

};

 ��

class DrawingCanvas extends Canvas
 implements ActionListener {

 private Frame frame;
 private int width, height;
 private Vector drawing = new Vector ();

 class Splodge implements Serializable {
 Color color;
 boolean filled;
 Polygon polygon;
 Splodge (Color c, boolean f, Polygon p) {
 color = c; filled = f; polygon = p;
 };
 };

 Color color = Color.black;
 boolean filled = false;
 Polygon polygon;

 void XORpolygon () {
 Graphics g = this.getGraphics ();
 g.setXORMode (this.getBackground ());
 g.setColor (color);
 if (filled) g.fillPolygon (polygon);
 else g.drawPolygon (polygon);
 };

class DCMouseAdapter extends MouseAdapter {
 public void mousePressed (MouseEvent e) {
 polygon = new Polygon ();
 polygon.addPoint (e.getX (), e.getY ());
 XORpolygon ();
 }
 public void mouseReleased (MouseEvent e) {
 XORpolygon ();
 polygon.addPoint (e.getX (), e.getY ());
 drawing.addElement (new Splodge (color,
 filled, polygon));
 repaint ();
 }
 }

 ��

 class DCMouseMotionAdapter extends MouseMotionAdapter {
 public void mouseDragged (MouseEvent e) {
 XORpolygon ();
 polygon.addPoint (e.getX (), e.getY ());
 XORpolygon ();
 }
 }

 DrawingCanvas (Frame frame, int width, int height) {
 this.frame = frame;
 this.width = width;
 this.height = height;
 this.addMouseListener (new DCMouseAdapter ());
 this.addMouseMotionListener (new DCMouseMotionAdapter ());
 }

 public Dimension getPreferredSize () {
 return new Dimension (width, height);
 };

 public void paint (Graphics g) {
 g.setPaintMode ();
 for (int d = 0; d < drawing.size (); d++) {
 Splodge s = (Splodge) drawing.elementAt (d);
 g.setColor (s.color);
 if (s.filled) g.fillPolygon (s.polygon);
 else g.drawPolygon (s.polygon);
 };
 };

 public void actionPerformed (ActionEvent e) {
 String s = e.getActionCommand ();
 if (s.equals ("new")) {
 drawing.removeAllElements ();
 this.repaint ();
 }
 else if (s.equals ("load")) load ();
 else if (s.equals ("save")) save ();
 else if (s.equals ("print")) print ();
 else if (s.equals ("quit")) System.exit (0);
 else if (s.equals ("black")) color = Color.black;
 else if (s.equals ("blue")) color = Color.blue;
 else if (s.equals ("red")) color = Color.red;
 else if (s.equals ("green")) color = Color.green;
 else if (s.equals ("on")) filled = true;
 else if (s.equals ("off")) filled = false;
 };

 ��

 private void load () {
 FileDialog fd = new FileDialog (frame,
 oad drawing", FileDialog.LOAD);
 fd.show ();
 String f = fd.getFile ();
 if (f != null) {
 try {
 FileInputStream s = new FileInputStream (f);
 ObjectInputStream o =
 w ObjectInputStream (s);
 Vector v = (Vector) o.readObject ();
 o.close ();
 drawing = v;
 this.repaint ();
 }
 catch (Exception e) {System.out.println (e);};
 };
 };

 private void save () {
 FileDialog fd = new FileDialog (frame,
 "Save drawing",
 FileDialog.SAVE);
 fd.show ();
 String f = fd.getFile ();
 if (f != null) {
 try {
 FileOutputStream s = new FileOutputStream (f);
 ObjectOutputStream o = new ObjectOutputStream (s);
 o.writeObject (drawing);
 o.flush ();
 o.close ();
 }
 catch (Exception e) {System.out.println (e);};
 };
 };

 private static Properties preferences = new Properties ();

 private void print () {
 Toolkit toolkit = this.getToolkit ();
 PrintJob printjob = toolkit.getPrintJob (frame,
 "Print drawing",
 preferences);
 if (printjob == null) return;
 Graphics sheet = printjob.getGraphics ();
 Dimension canvassize = this.getSize ();
 Dimension pagesize = printjob.getPageDimension ();
 sheet.translate ((pagesize.width - canvassize.width) / 2,
 (pagesize.height - canvassize.height) / 2);
 sheet.drawRect (-1, -1,
 canvassize.width + 1,
 canvassize.height + 1);

 ��

 sheet.setClip (0, 0, canvassize.width, canvassize.height);
 this.print (sheet);
 sheet.dispose ();
 printjob.end ();
 };

}

The parameters are supplied to the applet via <param> tags
within the <applet> block of HTML:

<applet code="DrawingExample" width=500 height=300>
 <param name=title value=”Drawing example applet”>
 <param name=width value=250>
 <param name=height value=150>
Sorry! Your browser does not support Java applets.
</applet>

-DYD�%HDQV�

Beans are library classes whose methods conform to a special
naming convention. :

n The classes are general purpose and may be tailored to a
specific use by giving particular values to properties. The
convention dictates that a property called xyz will be set by
a setXyz () method and the value will then be available
through a getXyz () method. (Boolean properties can also
be checked by an isXyz () method.)

n The classes may well be used in GUIs, in which case they
use the Java 1.1 input model with listeners. A listener for
the AlphaEvent would be installed with a call to the
addAlpha|EventListener () method and cancelled by the
removeAlphaEventListener () method.

n Other methods specific to the class have whatever names
they like, but should be public.

GUI design systems can then use reflection to determine the
specification of beans and control their composition on screen.

 ��

Java Studio (available on hammer.thor as /opt/java/java-
tools/bin/js) is one such system, allowing GUIs to be designed
interactively.

6ZLQJ�

The Swing library provides a higher level mechanism for
building GUIs. Swing is built on top of AWT and its
components are beans. Indeed, most of the components
provided by AWT are available as Swing components simply
by prefixing their names with J. There is a whole new class
hierarchy descended from JComponent, which is itself derived
from Container. However, there is an important difference:
any JComponent can be nested within another JComponent.
So, for example, scrolling can be added to a component simply
by wrapping it in a JScrollPane.

The other important feature of the Swing library is that its
components separate the structure of an application’s window
(its model) from its appearance on the screen (its view). The
actual interpretation of a model as a view is controlled by a
look-and-feel manager and, by default, conforms to that of the
window system being used. A single program will have a
different look-and-feel depending on where it is run.
Alternatively, a completely new idiom can be enforced.

Graphical input is also managed in a standard way so pop-up
tool-tips for buttons and keyboard alternatives for mouse
actions are provided automatically.

'LVWULEXWHG�FRPSXWLQJ�

Java Remote Method Invocation (RMI) allows type-safe
communication between Java programs running on different
machines.

 ��

It is convenient to package names and a particular directory
structure for such programs. The diagram below shows how
this might be achieved on Thor.

/home/tlh20/

java/ public_html
/

classes/

tlh20/

rmi/

java/

classes/

tlh20/

rmi/

rmi/

PhoneticServer
.java

Phonetic
.java

PhoneticClient
.java

security.policy

PhoneticServer
.class

PhoneticClient
.class

PhoneticServer
_Skel.class

Phonetic
.class

PhoneticServer
_Stub.class

$CLASSES

$PUBCLASSES

On hammer.thor the steps are as follows:

n Set up environment variables for the Java compiler and
interpreter to locate the compiled class files both in the
local filing system and on the Web.

$ export CLASSES=/home/tlh20/java/classes/
$ export PUBCLASSES=/home/tlh20/public_html/java/classes/
$ export CLASSPATH=$CLASSES:$PUBCLASSES
$ export CODEBASE=http://hammer.thor.cam.ac.uk/~tlh20/java/classes/

n Write a public interface extending java.rmi.Remote that
specifies the signatures of the remote methods [say,
Phonetic.java]. Each method should declare

 ��

java.rmi.RemoteException in its throws clause. Any
arguments and results must implement Serializable. This
is also a good place to specify a unique name for the
service and the machine through which it will be made
available.

package tlh20.rmi;

import java.rmi.*;

public interface Phonetic extends Remote {

 public final static String URL =
 "rmi://hammer.thor.cam.ac.uk/~tlh20/java/classes/";
 public final static String NAME = "tlh20-Phonetic-1.1";

 public String [] spell (String s) throws RemoteException;
 public String [] spell (String s, boolean b)
 throws RemoteException;

}

n Compile it [giving, say, Phonetic.class] and put the
compiled class file in a package sub-directory of the public
directory to make available through the WWW server.

$ javac –d $PUBCLASSES Phonetic.java

n Write a server program extending the
java.rmi.UnicastRemoteObject class and implementing
the interface [say, PhoneticServer.java]. The constructor
will have to be written explicitly to accommodate the
possibility of RemoteException being thrown. The main
method must install a security manager.and then export
the service via the RMI registry.

 ��

package tlh20.rmi;

import java.net.*;
import java.rmi.*;
import java.rmi.server.*;

public class PhoneticServer
 extends UnicastRemoteObject
 implements Phonetic {

 public static void main (String [] args) {
 try {
 System.setSecurityManager (new RMISecurityManager ());
 PhoneticServer s = new PhoneticServer ();
 Naming.rebind (Phonetic.URL + Phonetic.NAME, s);
 System.out.println (Phonetic.NAME + " server running");
 }
 catch (Exception e) {
 System.out.println ("Exception: " + e);
 };
 }

 public PhoneticServer () throws RemoteException {
 // super ();
 }

 public String [] spell (String s)
 throws RemoteException
 {
 return spell (s, false);
 }

 private final static String [] [] WORDS = {
 {"alfa", "aesthetic"},
 {"bravo", "bdellometer"},
 {"charlie", "ctenoid"},
 {"delta", "djibbah"},
 {"echo", "ewe"},
 {"foxtrot", "fnese"},
 {"golf", "gnome"},
 {"hotel", "heir"},
 {"India", "iero"},
 {"Juliet", "Jugoslavia"},
 {"kilo", "know"},
 {"Lima", "pounds, shillings and pence"},
 {"Mike", "mnemonic"},
 {"November", "Nzima"},
 {"Oscar", "oesophagus"},
 {"papa", "pneumonia"},
 {"Quebec", "Qatar"},
 {"Romeo", "’rithmetic"},
 {"sierra", "sdeath"},
 {"tango", "tsar"},

 ��

 {"uniform", "Uigur"},
 {"victor", "veldt"},
 {"whiskey", "write"},
 {"x-ray", "xylophone"},
 {"yankee", "yggdrasil"},
 {"zulu", "zucchetto"}
 };

 public String [] spell (String s, boolean silly)
 throws RemoteException {
 System.out.println ("Spelling ’" + s +"’");
 String source = s.toUpperCase ();
 int length = s.length ();
 String [] reply = new String [length];
 for (int i = 0; i < length; i++) {
 try {
 int w = (int) source.charAt (i) - (int) ’A’;
 reply [i] = source.substring (i, i+1)
 + " as in " + WORDS [w] [silly ? 1 : 0];
 }
 catch (ArrayIndexOutOfBoundsException e)
 {reply [i] = "?";}
 catch (StringIndexOutOfBoundsException e)
 {reply [i] = "?";};
 };
 return reply;
 }
}

n Compile it [giving, say, PhoneticServer.class].

$ javac –d $CLASSES PhoneticServer.java

n Run the RMI compiler rmic on the server class [producing,
in this case, PhoneticServer_Skel.class and
PhoneticServer_Stub.class]:

$ rmic –d $PUBCLASSES tlh20.rmi.PhoneticServer

Be careful that there are not any old versions of the class
accessible on the CLASSPATH.

 ��

n Create a file specifying the security policy [called, say,
security.policy] in the current directory.

grant {
 permission java.net.SocketPermission
 "*:1024-65535", "connect,accept";
 permission java.net.SocketPermission
 "*:80", "connect";
 permission java.util.PropertyPermission
 "java.rmi.server.codebase", "read";
 permission java.util.PropertyPermission
 "user.name", "read,write";
};

n Run the server with the codebase defined to be the URL
of the Java class sub-directory of your home URL and the
security policy the file just created.

$ java -Djava.rmi.server.codebase=$CODEBASE \
 –Djava.security.policy=security.policy \
 tlh20.rmi.PhoneticServer

The service is advertised through the RMI Registry (essentially
a name look-up service) running on the same machine as the
server.

 ��

n Write a client program [say, PhoneticClient.java].

package tlh20.rmi;

import java.rmi.*;

public class PhoneticClient {

 public static void main (String [] args) {
 if (args.length > 0) {
 try {
 System.setSecurityManager (new RMISecurityManager ());
 Phonetic p = (Phonetic)
 Naming.lookup (Phonetic.URL + Phonetic.NAME);
 String [] results = args.length > 1
 ? p.spell (args [0], true)
 : p.spell (args [0]);
 for (int r = 0; r < results.length; r++)
 System.out.println (results [r]);
 }
 catch (Exception e) {
 System.out.println ("Exception: " + e);
 };
 } else System.out.println ("Usage: java " +
 "PhoneticClient word [silly]");
 };

};

n Compile it [giving, say, PhoneticClient.class].

$ javac –d $CLASSES PhoneticClient.java

n Run the client program with some security policy (quite
possibly the same).

$ java –Djava.security.policy=security.policy \
 tlh20.rmi.PhoneticClient "Phonetics is phun"

If the convention suggested above of putting the service name
and base URL in the interface specifying the service, it will be
necessary to have the associated class file available when the
client (or server) is run.

 ��

5HPRWH�0HWKRG�,QYRFDWLRQ�RQ�7KRU�

Java RMI must be used carefully if it is to avoid adversely
affecting other users in a shared environment. Care must also
be taken to avoid opening any security loopholes through its
use. The following guidelines circumscribe the use of network
objects on the Computing Service’s Unix teaching system,
Thor.

n The RMI registry is run automatically as part of the system
on hammer.thor.cam.ac.uk, but not on belt or gloves. It
should not be run by individual users. Operations staff
should be consulted if it is not available.

n All classes exported through RMI have to be on a path
descending from a known URL. Users should make sure
that any classes that they with to export are in a
subdirectory, say java/classes, of the public_html directory
in their home directories. The URL must be passed to the
Java interpreter by defining the symbol
java.rmi.server.codebase.

n The name-space in the RMI Registry is flat, so users
should make sure that any services exported through it
are prefixed by their CRSIDs. It also makes sense to
append a version number to the name. The entire name
can be specified conveniently in the interface for the
remote service.

n All programs using RMI, both servers and clients, should
only run under the control of a logged-in user while
reporting their operation to standard output or to a
graphical user interface. It is strongly advisable that they
should also copy this logging output to a file for
subsequent analysis in the event of a failure.

 ��

n The user running such a program is, of course,
responsible for its actions and any resources that it
consumes. It is therefore prudent to limit the external
operations of the program severely.

5HPRWH�0HWKRG�,QYRFDWLRQ�RQ�&RFNURIW���/LQX[�

If you use RMI on the Cockroft 4 Linux machines then you
need to start the RMI registry yourself. This is done by
executing the program rmiregistry from a shell. If you wish to
use the example programs on those machines then you need
to convert the codebase and RMI URLs to refer to the machine
in question. Typically the machine’s address is of the form
‘pc???.cl.pwf.cam.ac.uk’. If you wish to use your own Linux
machine then you will need to make similar changes to the
examples and configure a web server to distribute the code.

In either case, you should take the same care when exporting
services through RMI as you would on hammer.thor.

&ODVV�OLEUDULHV�

The standard Java development kit includes extensive class
libraries. The Application Programming Interfaces are
documented in two volumes in Sun’s Java Series describing
the core packages and the Abstract Window Toolkit (AWT)
respectively. Further details and examples are given in the
class libraries volume in the same series. Most of this material
is available on-line at http://www-uxsup.csx.cam.ac.uk/java/jdk-
1.2.2/docs/api/packages.html. There is a lot of it; read and
enjoy.

 ��

7H[W�LQSXW�

Reading and parsing textual input is not particularly obvious.
For general conversion from a String to a value, use the static
methods decode in the classes Byte, Short, Integer, Long,
Boolean, Float, Double and so on to manufacture an instance
of the class and then call its intValue or realValue method. So:

int i = Integer.decode (“42”) .intValue ()

assigns the value 42 to i.

For more complicated examples, the StreamTokenizer class
can be used to pick words and numbers off the standard input:

import java.io.*;
import java.lang.*;

public class IOExample {

 public static void main (String [] args) {
 StreamTokenizer st = new StreamTokenizer
 (new InputStreamReader (System.in));
 try {
 for (;;) {
 int t = st.nextToken ();
 try {
 switch (t) {
 case StreamTokenizer.TT_EOF:
 throw new EOFException ();
 case StreamTokenizer.TT_EOL: break;
 case StreamTokenizer.TT_NUMBER:
 System.out.println ("Number = " +
 (int) st.nval);
 break;
 case StreamTokenizer.TT_WORD:
 System.out.println ("Word = " +
 st.sval);
 break;
 default:
 System.out.println ("Character = '" +
 (char) t + "'");
 break;
 };
 }
 catch (NumberFormatException e) {
 System.out.println ("Format error: " +

 ��

 e.getMessage ());
 };
 };
 } catch (EOFException e) {
 System.out.println ("End of file");
 }
 catch (IOException e) {
 System.out.println ("IO exception: " + e.getMessage ());
 };
 };
}

)RXQGDWLRQ�FODVVHV�

A number of competing libraries known as foundation classes
are being released:

n The Abstract Window Tookit, AWT, is the basic,
low-level kit.

n Microsoft has developed the Abstract Foundation
Classes, AFC, which offer special support for
things like DirectX.

n Netscape’s Internet Foundation Classes, IFC,
encapsulates AWT. It is available, it works and it
is being phased out.

n Sun and Netscape are collaborating on the Java
Foundation Classes, JFC, which will work with
AWT. The Swing libraries for GUIs are part of
this.

None are particularly stable yet.

'HYHORSPHQW�HQYLURQPHQWV�

There appear to be at least 20 development environments
available for Java. Some of the more significant ones are:

n Borland JavaBuilder.

 ��

n IBM’s ADK.

n Microsoft’s Visual Studio for Java.

n Sun’s Java Workshop - which is available for
Sun/Solaris, PC/Windows and (allegedly, soon,
…) PC/Linux. It is available as /opt/java/java-
tools/bin/jws on Thor.

n Symantec Café.

None are particularly stable yet.

([HUFLVHV�

This is a practical course and the only way to understand its
material is to write lots of programs. Here are some ideas to
try.

+HOOR�ZRUOG�

Type in the Hello world program, and compile and run it.

Once the program has worked, try damaging it by making
small changes -- putting a reserved word in lower case,
misspelling a name, omitting an import and so on. Compile
the program and understand the error messages. (It is much
easier to understand the diagnostic messages when you know
what the errors are. This practice should help when you make
unintentional errors in the future!)

 ��

:RUG�FRXQWLQJ�

Repeat this procedure with the word counting program and
practice using the emacs environment and the symbolic
debugger.

Now modify the program to accumulate further statistics such
as the number of lines, sentences and paragraphs. You may
need to think a little about how these are defined.

6XPPLQJ�D�VHULHV�

Write a program to sum the series 1
1000

0
()n

n
+

=

∞

∑ π and

print the result.

This should work by computing successive terms from n = 0
upwards and accumulating their sum until the action of adding
in the term makes no difference to the total. This will probably
involve a while loop of some sort. Print out the number of
terms and the partial sum.

Then recompute the answer by accumulating the sum of the
same terms running back down from the limit just discovered
to zero; this will probably involve a for loop. Are the answers
the same? Why? What answer would a mathematician have
given for the sum?

3DVFDO·V�WULDQJOH�

Write a program to print out Pascal’s triangle, that is, a table of

binomial coefficients:
n

r

n

r n r







 =

−
!

!()!

 ��

&DHVDU�FLSKHU�

Given an integer n as a key, Caesar’s cipher encodes each
letter in the alphabet as the letter n after it, where all the letters
are considered as cyclic so A follows Z.

Write a program to encode text using this algorithm.

&RGH�EUHDNLQJ�

Write a program to help an interceptor decode a message that
has encoded using the simple cipher program just written.
This should accumulate statistics on the frequency of
occurrences of various letters (ignoring their case). Gather
data by running it on various pieces of plain text and then run it
on an encoded message and try to deduce the key that must
have been used from the shift in the distribution.

You could even automate this inference by finding the key that
gives the least mean square difference between the two
frequency distributions. There is a dictionary of some 25 000
English words in /usr/dict/words on Thor which can be used for
calibration.

��TXHHQV�SUREOHP�

This involves placing 8 queens on a chess board in such a way
that no one of them can take any of the others. That is, there
may only be at most one queen in any row, column or diagonal
line of squares.

The main data structure should be an array to store the board
recording the presence or absence of a queen in each square:

boolean [] [] board = new boolean [8] [8]

 ��

Initially all the values would be set false to show the complete
absence of queens.

Clearly each row must contain precisely one queen. It makes
sense to structure the program around a class containing the
board and a method that takes a row number as an argument
and tries in turn to place a queen in each column in that row. If
it manages to do this without conflicting with any of the queens
in earlier rows (either vertically or diagonally), it calls itself
recursively to place a queen in the next row. When it finds
itself called past the last row, it knows that a solution has been
found and can print it out.

%LJ�QXPEHUV�

Design a data structure based on a linked list for storing
arbitrarily large natural numbers; each cell in the list should
contain one decimal digit. Encapsulate this in a class with a
constructor to create such a number from a positive integer
and methods to add two such numbers and to convert one to
text.

3ULPHV�

Calculate how many primes there are less than a million. A
useful technique is the sieve of Eratosthenes: Write down a
list of all the numbers between 2 and a million. The first
number is prime, so strike out all of its multiples in the list. The
next number now left in the list must also be prime, so strike
out all of its multiples and so on. Finally you are left with a list
containing only prime numbers. The arithmetic is simple; the
real problem is devising a data structure and algorithm that
balance the time and space requirements.

 ��

6RUWLQJ�

Rewrite the sorting program used to illustrate interfaces with a
different algorithm. QuickSort or Shell’s sort are likely to be
promising.

Implement a new Sortable type to hold Strings and combine
these parts to make a program that sorts the lines of text in a
file into alphabetic order.

6SHOOLQJ�FKHFNHU�

Write a program to help with checking spelling in text files.
This should separate out individual words in the source text file
and sort them by incrementally storing them in a binary tree. A
separate routine can then walk over this tree, meeting all the
words in the original file in alphabetical order, and compare
them with words in a dictionary stored as a separate text file,
drawing the user's attention to any discrepancies.

5HIOHFWLRQ�

Write a method that takes an arbitrary Object as an argument
and uses reflection to produce an approximation to the its
source as Java code.

&DFKLQJ�IXQFWLRQV�

Write an abstract class to model functions. This should have
an apply method that takes an int argument and returns an int
result. Derive a subclass that implements a particular function.

Derive another subclass that caches values calculated by
functions. This should have a constructor that takes an
existing function as its argument and caches its values by
saving pairs of arguments and results in a table.

 ��

Test it by calculating Fibonacci numbers naïvely and with
caching.

/D]\�OLVWV�

A list can be considered as an object with two methods: head,
which yields the first element of the list, and tail, which yields a
new list consisting of all the elements except the first one. In
the normal scheme of things, both of these methods would
have to be able to raise an exception if they were invoked on
an empty list. This requirement goes away if we restrict our
attention to streams, that is, lists with infinitely many elements.
However, there may be some difficulty representing the
contents of an infinite list.

Lazy lists handle this by representing a list as a pair consisting
of the first value and a function that returns a new list for the tail
(which will itself be a pair...). Devise a representation for lazy
lists as objects in Java and write a program to generate a
stream of primes as a lazy list.

3DUDOOHO�SULPHV�

Another technique for generating primes is the sieve of
Eratosthenes mentioned above. Implement a parallel version
of this algorithm, passing the natural numbers along a chain of
threads, each of which filters out multiples of a particular prime.
Any number reaching the end of the chain must be a new
prime which can be printed. A new thread must then be added
to the chain to filter out multiples of that prime as well.
(Observant readers will have noticed that this is more-or-less
what was happening in the lazy list approach.)

 ��

)RXU�IXQFWLRQ�FDOFXODWRU�

Implement a four-function calculator as a graphical applet.

'LQLQJ�SKLORVRSKHUV�

Write a simulator for the dining philosophers problem:

Five philosophers spend their time thinking and eating.
They share a common, circular table, surrounded by five
chairs, each belonging to one philosopher. In the centre
of the table is a bowl of spaghetti and the table is laid
with five forks. When a philosopher thinks, she does not
interact with her colleagues. From time to time, a
philosopher gets hungry and tries to pick up the two
forks that are closest to her (between her and her left
and right neighbours). A philosopher may only pick up
one fork at a time. When a hungry philosopher has both
her forks at the same time, she eats without releasing
her forks. When she has finished eating, she puts down
both of her forks and starts thinking again.

Each philosopher should be represented by a separate thread
and each fork by a separate instance of a synchronized class.
Your applet should display the results of the simulation in a
graphical form, where there should be a control to switch the
philosophers between a naïve algorithm resulting in deadlock
and a more intelligent one.

