Wide Area Networks:

Backbone Infrastructure

Ian Pratt
University of Cambridge
Computer Laboratory

Outline

- Demands for backbone b/w
- Fibre technology
 - DWDM
- Long-haul link design
- Current Backbone technology
- The near future : reducing layering
- Longer term: transparent networks

Internet Backbone growth

- ~50 million Internet hosts, ~200 million users
 - Host/user growth rate at 40-80% p.a.
 - Metcalfe's Law: "the utility of a network is proportional to the number of users squared"
- Access bandwidth increasing at 25%p.a.
 - Set to jump with DSL & Cable Modem
 - The "Internet Generation" will soon be salaried
- High percentage of long-haul traffic
 - Unlike phone service where call freq. $\propto 1/\sqrt{\text{distance}}$
 - Web caches & real media exploders may help
 - Huge future requirements for backbone b/w

Fibre Optics

- Multi-mode fibre : 62.5/125μm
 - Requires less precision hence cheaper: LANs
- Single-mode fibre: 8-10/125μm
 - Minimum attenuation at 1550nm
 - Better dispersion properties
 - Normally best at 1310nm, can be shifted
 - 1310nm typically used in Metropolitan area
 - NZDSF at 1550nm used for long-haul
- Fibre capacity increasing at 110%p.a.!

Transceiver Technology

- Currently at 100Gb/s for 1 channel
- Wavelength Division Multiplexing (CWDM)
 - 1310&1550nm fused fibre couplers for de/mux
 - 4 channel 20nm spacing around 1310nm
- Dense WDM (DWDM)
 - use multiple 'colours' (λ 's) simultaneously
 - e.g. 100x10Gb/s at 50GHz spacing
 - need very stable (expensive) lasers
 - wavelength tuneable lasers useful
 - gratings for demux

Optical Amplifiers

- Erbium Doped Fibre Amplifiers (EDFA)
 - few m's of Erbium doped fibre & pump laser
 - Wide bandwidth, relatively flat gain
 - 1550 'L' band, 1585 'C' band, also 'S' band
- Raman amplification
 - counter-propagating pump laser
 - Improve S/N on long-haul links

Long-haul links

- E.g. as installed by "Level (3) Inc.":
 - NZDSF fibre (1550nm)
 - 32x10Gb/s = 320Gb/s per fibre
 - 12 ducts, 96 cables/duct, 64 fibres/cable
 - 100km spans between optical amplification
 - Renting sites for equipment is expensive
 - 8 channel add/drop at each site, O/E terminated
 - 600km between signal regeneration
 - Expensive transceiver equipment
- US backbone capacity up 8000% in 5 years!
 - Level 3, Williams, Frontier, Qwest, GTE, IXC, Sprint, MCI, AT&T,...

SONET/SDH

- SONET US standard, SDH European
 - OC-3 / STM-1 155Mbp/s
 - OC-12 / STM-4 622Mbp/s
 - OC-48 / STM-16 2.4Gbp/s
 - OC-192 / STM-64 10Gbp/s
- bi-directional TDM rings with ADMs
- 50ms protection switch-over to other ring
 - "wastes" bandwidth, particularly for meshes
 - SONET/SDH switches under development
- Perceived as expensive
- Provisioning relatively slow

IP over ATM over SONET

- Uses SONET to provide point-to-point links between ATM switches
- Hang ATM switches off SONET ADMs
 - VC/VPs used to build a densely connected mesh
 - I flexible traffic shaping/policing to provision paths
 - Can provide restoration capability ~100ms
- Hang IP routers off ATM switches
 - Routers see dense mesh of pt-to-pt links
 - Reduces # of high-performance routers required
 - Don't carry "through traffic"
 - IP capable of relatively slow restoration
 - MPLS to better exploit underlying ATM in the future

Near future: IP over SONET

- "Packet over SONET" (PoS)
- Build traffic shaping into routers/tag switches
- tag-switching to make routing more efficient
 - CDIR routing tricky, especially if packet classification for QoS required
 - Virtual circuit identifier pre-pended to packets
 - soft-state" only
- Route at the edges, tag switch in the core
- Use MPLS to fix paths for flows
 - provision alternate paths
 - provide QoS etc.

Near future: IP over "not SONET"

- CISCO "Dynamic Packet Transport"
 - Replace SONET higher layers with something more amenable to packet transfer mode
 - still uses SONET physical layer (allows tunnelling)
 - Ring based architecture
 - Rapid self-healing through ring wrapping
 - Don't over commit critical traffic!
 - Flow-through and Local TX FIFOs in each station
 - Spatial Reuse Protocol (SRP) is bandwidth efficient
 - Uses 802.3 (Ethernet) 48 bit station addresses
 - Rudimentary QoS with two priority classes
 - Watermarks on FIFOs with back-pressure to other stations

All Optical Networks

- Really fast routers and ATM switches difficult and expensive
 - Variable buffering tricky
 - Optical-electrical-optical (OEO) conversion expensive
 - "only" on the semiconductor performance curve...
- Exploit DWDM: "transparent optical networks"
 - Use DWDM to build a network rather than a fat pipe
 - Use λ 's like ATM Virtual Paths

Optical Components

- λ Add-Drop Multiplexers (ADMs)
 - Fibre Bragg Gratings in common use
 - Tuneable lasers available
 - Tuneable filters getting there
- Optical Cross Connects (OXCs)
 - Beam steering devices
 - holographic devices typically very lossy
 - micro-mirrors
- λ converters? some promising technologies
- TDM ? looks do-able
- packet routing ? why bother...