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Continuous Mathematics

Computer Science Tripos Part IB, Michaelmas Term
4 lectures by J G Daugman

Aims

The aims of this course are to review some key concepts and operations de�ned in continuous
mathematics involving real- and complex-valued functions of real variables. Focus is on the use and
implementation of these notions in the discrete spaces we enter when computing. Topics include:
expansions and basis functions; orthogonality and projections; di�erential equations and their compu-
tational solution; linear operators and their eigenfunctions; wavelets and Fourier analysis.

Lectures

� Review of analysis. Real and complex-valued functions of a real variable. Power series and
transcendental functions. Expansions and basis functions. Smoothness, continuity, limits.

� Linear vector spaces and decompositions. Orthogonality, independence, and orthonor-
mality. Linear combinations. Projections, inner products and completeness. Linear subspaces.
Useful expansion bases for continuous functions.

� Di�erential and integral operators in computation. The in�nitesimal calculus. Taylor
series. Numerical integration. Di�erential equations and computational ways to solve them.
Complex exponentials. Introduction to Fourier analysis in one and two dimensions; useful theo-
rems. Convolution and �ltering.

� Signals and systems. Eigenfunctions of linear operators. Fourier analysis and series; con-
tinuous Fourier Transforms and their inverses. Representation in non-orthogonal functions, and
wavelets. The degrees-of-freedom in a signal. Sampling theorem. How to operate on continuous
signals computationally in order to extract their information.

Objectives

At the end of the course students should:

� Understand how data or functions can be represented in terms of their projections onto other
groups of functions.

� Be uent in the use of, and properties of, complex variables.

� Be able to implement and use, in discrete computational form, such continuous notions as
di�erentiation, integration, and convolution.

� Grasp key properties and uses of Fourier analysis, transforms, and wavelets.

Reference books

Kaplan, W. (1992). Advanced Calculus. Addison-Wesley (4th ed.).

Oppenheim, A.V. & Willsky, A.S. (1984). Signals and Systems. Prentice-Hall.
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1 Purposes of this Course

The discipline of computer science seems to draw mostly upon constructs and
operations from discrete mathematics, such as the propositional calculus (logic,
syllogisms, truth tables), set membership & relations, and combinatorics. The
fundamental notion of an algorithm is a discrete sequence of discrete operations.
The elementary hardware devices that implement algorithms are discrete gates,
governed by Boolean algebra, and the elementary entities that they manipulate
are bits, which are discrete states. Information is generated, transmitted, and
stored in discrete form, and everything that happens in computing happens at
discrete sequences of points in time { the edges of clock ticks.

So why study continuous mathematics?

Answer 1: Because the natural world is continuous. It is the discreteness of
digital computing that is unnatural! If we want to model a world that is
governed by the laws of physics, we must come to computational terms with
continuous processes.

Answer 2: Because the distinction between discrete and continuous processes is
illusory. Just as every continuous process can be approximated by discrete
ones, every discrete process can be modeled as a continuous one.

Answer 3: Because the two domains are inextricably intertwined, mathemati-
cally or physically. Semiconductor devices such as TTL logical gates really
operate through continuous quantities (voltage, current, conductance); con-
tinuous theoretical constructs such as di�erentials and derivatives are only
de�ned in terms of limits of discrete quantities (�nite di�erences); etc.

Answer 4: Because some of the most interesting and powerful computers that
we know about are continuous. Non-linear dynamical systems in continuous
time can be viewed as automata having great computational power; and
the most powerful known \computer," the human brain, has the following
properties that distinguish it from a digital computer: it lacks numerical
calculations; its communications media are stochastic; its components are
unreliable and widely distributed; it has no precise connectivity blueprints;
and its clocking is asynchronous and extremely slow (milliseconds). Yet its
performance in real-time tasks involving perception, learning, and motor
control, is unrivaled. As computer scientists we need to be able to study
neural processes, and at many levels this requires continuous mathematics.
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This short course is intended to be a refresher on some of the major ideas and
tools used in continuous mathematics. Its practical purpose within the CST cur-
riculum is to serve as groundwork for the following Pt. II and Diploma courses:
Information Theory and Coding; Neural Computing; and Computer Vision.

2 Analysis: Real- and Complex-Valued Functions of a Real Variable

Functions are mappings from some domain to some range. The domain might
be the real line (denoted R1), such as time, or the real plane (denoted R2), such
as an optical image. The range refers to the mapped value or values associated
with all the points in the domain. For example, the function might associate
to each point on the line or the plane just another real value (a scalar, such as
temperature), or an ordered set of real values (a vector). A weather map showing
wind velocity at each point in Britain exempli�es a vector-valued function of the
real plane; and so on.

Functions may also associate a complex-valued quantity to each point in the
domain. Complex variables are denoted Z = a+ ib where i =

p�1, and a is the
real part and b is the imaginary part of Z . For example, the Fourier Transform
of a musical melody associates a complex variable to every possible frequency,
each of which is represented by a point in the (real-valued) frequency domain.

The complex conjugate of Z is denoted by the asterisk (*), and it simply re-
quires changing the sign of the imaginary part. Thus, the complex conjugate of
Z = a+ ib is: Z� = a� ib.

The modulus of a complex variable Z is
p
a2 + b2 and it is denoted by kZk.

It is easy to see that kZk = pZZ�.

The angle of a complex variable Z = a+ ib is tan�1( ba) and it is denoted 6 Z .
A very important relation that we will use later is: Z = kZk exp(i6 Z). This can
be regarded simply as converting the complex variable Z from its \Cartesian"
form a+ ib (where the real part a and the imaginary part b form orthogonal axes
de�ning the complex plane), to polar form (r; �) in which r is the modulus, or
length kZk of the complex variable, and � is its angle 6 Z = tan�1( b

a
).

These relations and constructions are central to Fourier analysis and harmonic
analysis, which in turn are the mathematical cornerstone of all of electrical engi-
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neering involving linear devices; optics; holography; broadcast communications;
electronic �lter theory; acoustics; quantummechanics; wave phenomena; much of
mechanical engineering, and most of physics! Indeed, the great Nobel Laureate
in Physics, Julian Schwinger, once said: \There are only two problems that we
can solve in Physics. One is the simple harmonic oscillator [described in terms
of the above complex variables]; and the second problem reduces to that one."

3 Power Series and Transcendental Functions

Imagine that you are an 18th-Century astronomer, hard at work on Celestial
Mechanics. Understanding and predicting planetary motions requires calculat-
ing huge numbers of trigonometric functions such as sine and cosine. Obviously,
this is before the age of computers or calculators, or mathematical tables.

How would you compute the sine, the cosine, or the tangent ..., of some angle???

(How did they do it??)

Functions such as sine, cosine, logarithm, exponential, hyperbolic cotangent,
and so forth, are called transcendental functions. They are de�ned in terms of
the limits of power series: in�nite series of terms involving the argument of the
function (the argument of f(x) is x; the argument of cos(�) is �), raised to an
integer power, with associated coe�cients in front. Here are some examples of
power series that de�ne transcendental functions:

exp(�) = 1 +
�

1!
+
�2

2!
+
�3

3!
+ � � �+ �n

n!
+ � � � ; (1)

log(1 + �) = � � �2

2
+
�3

3
� �4

4
+
�5

5
� � � � ; (2)

tan(�) = � +
�3

3
+ 2

�5

15
+ 17

�7

315
+ 62

�9

2835
+ � � � ; (3)

cos(�) = 1� �2

2!
+
�4

4!
� �6

6!
+ � � � ; (4)

sin(�) = � � �3

3!
+
�5

5!
� �7

7!
+ � � � ; (5)

coth(�) =
1

�
+
�

3
� �3

45
+ 2

�5

945
� �7

4725
+ � � � ; (6)

(7)
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Such expressions { truncated after a certain number of terms { are precisely how
computers and calculators evaluate these functions. There is no other way to
do it! That is why, if you were the Principal Assistant to the Astronomer Royal
in 1720, you spent all of your time with ink quill and paper calculating endless
power series such as the above.... :-(

4 Expansions and Basis Functions

The above power series express a function such as sin(x) in terms of an in�nite
series of power functions (like Axn) all added together. More generally, almost
any function f(x) can be represented perfectly as a linear combination of many
other types of functions besides power functions:

f(x) =
X
k

ak	k(x) (8)

where the chosen 	k(x) are called expansion basis functions. For example, in the
case of Fourier expansions in one dimension, the expansion basis functions are
the complex exponentials:

	k(x) = exp(i�kx) (9)

\Finding the representation of some function in a chosen basis" means �nding the
set of coe�cients ak which, when multiplied by their corresponding basis func-
tions 	k(x) and the resulting linear combination of basis functions are summed
together, will exactly reproduce the original function f(x) as per Eqt. (8).

This is a very powerful tool, because it allows one to choose some universal
set of functions in terms of which all other (well-behaved) functions can be rep-
resented just as a set of coe�cients! In the case of systems analysis, a major
bene�t of doing this is that knowledge about how members of the chosen univer-
sal set of basis functions behave in the system gives one omniscient knowledge
about how any possible input function will be treated by the system.

5 Orthogonality, Orthonormality, Inner Products, and Completeness

If the chosen basis functions satisfy the rule that the integral of the conjugate
product of any two di�erent members of the family equals zero,Z 1

�1
	�

k(x)	j(x)dx = 0 (k 6= j) (10)

then this family of functions is called orthogonal.
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The above integral is called an inner product, and it is often denoted by putting
the two functions inside angle brackets (conjugation of one of them is implied:)

< 	k(x);	j(x) > �
Z 1
�1

	�
k(x)	j(x)dx (11)

If it is also true that the inner product of any member of this family of func-
tions with itself is equal to 1,

< 	k(x);	j(x) > =
Z 1

�1
	�

k(x)	j(x)dx = 1 (k = j) (12)

then these functions are said to be orthonormal. If they form a complete basis,
then all of the coe�cients ak that are needed to represent some arbitrary function
f(x) exactly in terms of the chosen family of orthonormal basis functions 	k(x)
can be obtained just by taking the inner products of the original function f(x)
with each of the basis functions 	k(x):

ak = < 	k(x); f(x) > =
Z 1

�1
	�

k(x)f(x)dx (13)

One example of such a representation is the Fourier Transform, which we will
examine later.

6 Taylor Series

A particularly powerful and remarkable way to expand a function is simply to
use all of its derivatives at some �xed, known, point. It should seem surprising
to you that just having complete knowledge about the function at one point,
allows you to predict what its value will be at all other points!!

The terms of such an expansion of the function f(x) are based on the successive
derivatives of the function at the �xed known point a, denoted f 0(a), f 00(a), and
so forth, each of which is then multiplied by the corresponding power function
of the di�erence between a and the point x at which we desire to know the value
of f(x). This is called a Taylor series, and if we consider just the �rst n terms of
such an expansion, then we have an approximation up to order n of f(x), which
will be denoted fn(x):

fn(x) = f(a)+f 0(a)(x�a)+
f 00(a)

2!
(x�a)2+

f 000(a)

3!
(x�a)3+ :::+

f (n)(a)

n!
(x�a)n

(14)

7 Continuity and Limits; Derivatives and Anti-Derivatives

The most fundamental notion in continuous mathematics is the idea of a limit:
the value that an expression inexorably approaches, possibly from below, possi-
bly from above, possibly oscillating around it, tending always closer but possibly
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never actually reaching it. We have already encountered limits in the power
series de�nitions of transcendental functions. When computers try to calculate
something as seemingly straightforward as cos(37o), they merely approximate it
by truncating (considering a �nite number of terms in) an in�nite series whose
limit is cos(37o). The entire monumental edi�ce of The Calculus { invented in
the decades before 1700 independently by Isaac Newton and Gottfried Leibniz,
described by John von Neumann as \the �rst achievement of modern mathemat-
ics, and the greatest technical advance in exact thinking" { is built upon the
notion of the limit.

Here are some properties of limits, for continuous functions f(x) and g(x):

lim
x!c

[f(x) + g(x)] = lim
x!c

[f(x)] + lim
x!c

[g(x)] (15)

lim
x!c

[f(x) � g(x)] = lim
x!c

[f(x)] � lim
x!c

[g(x)] (16)

lim
x!c

[f(x)g(x)] = lim
x!c

[f(x)] lim
x!c

[g(x)] (17)

lim
x!c

[kf(x)] = k lim
x!c

[f(x)] (18)

lim
x!c

f(x)

g(x)
=

limx!c[f(x)]

limx!c[g(x)]
assuming (lim

x!c
[g(x)] 6= 0) (19)

The basic concept of the derivative of a function f(x), denoted f 0(x) or df(x)
dx ,

signifying its instantaneous rate of change at a point x, is de�ned as the limit of
its Newton Quotient at that point:

f 0(x) � lim
�x!0

f(x +�x)� f(x)

�x
(20)

The derivative of f(x) exists wherever the above limit exists. It will exist near
any point where f(x) is continuous, i.e. if near any point c in the domain of f(x),
it is true that limx!c f(x) = f(c).

Review of Rules of Di�erentiation (material not lectured)

� The derivatives of power functions obey a simple rule about exponents:

d

dx
(xc) = cxc�1 (21)
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� For any di�erentiable function f(x) and some constant c,

d

dx
cf(x) = c

df(x)

dx
(22)

� If u and v are di�erentiable functions of x, then their sum u + v is a di�er-
entiable function of x and

d

dx
(u+ v) =

du

dx
+

dv

dx
(23)

� The product of two di�erentiable functions u and v is di�erentiable, and

d

dx
(uv) = u

dv

dx
+ v

du

dx
(24)

� If u is some di�erentiable function of x and c is a constant, then uc is
di�erentiable, and

d

dx
(uc) = cuc�1

du

dx
(25)

� At any point where v 6= 0, the quotient u=v of two di�erentiable functions
u and v is itself di�erentiable, and its derivative is equal to:

d

dx

 
u

v

!
=

v dudx � udv
dx

v2
(26)

� The Chain Rule: if y is a di�erentiable function of u, and u is a di�erentiable
function of x, then y is a di�erentiable function of x, and in particular:

dy

dx
=

dy

du

du

dx
(27)

In another form: if f(x) is di�erentiable at x, and g(f(x)) is di�erentiable
at f(x), then the composite g � f is di�erentiable at x and

d

dx
g(f(x)) = g0(f(x))f 0(x) (28)

For a continuous function f(x) that is sampled only at a set of discrete points
fx1; x2; :::; xng, an estimate of the derivative is called the �nite di�erence. It is
de�ned as you might expect:

f 0(x) =
f(xk)� f(xk�1)

(xk � xk�1)
(29)

When using a computer to calculate derivatives of continuous data or signals,
they must be sampled at a �nite number of points; then the above �nite di�er-
ence becomes an estimator of the instantaneous derivative. Clearly, the �nite
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di�erence approaches the instantaneous derivative in the limit that the sampling
interval becomes small: xk ! xk�1.

The areaA under a function between two de�nite points is called its de�nite integral,
and it can be calculated in several ways. Numerically, it can be estimated as the
limit of a sum of small rectangular areas inscribed under the function, each of
whose height is equal to the value of the function at that point, and whose width
�x shrinks to zero:

A = lim
n!1

nX
k=1

f(xk)�x (30)

Such a summation is the de�nite integral of the function over the domain covered
by the shrinking rectangles, and the origin of the integral sign

Z
is the letter S

in the Latin word Summa, for sum. Thus we denoteZ b

a
f(x)dx � lim

n!1

nX
k=1

f(xk)�x (31)

where the set of samples f(xk) is taken uniformly from x1 = a to xn = b, and so
�x = (b� a)=n. The above expression is also termed a Riemann Integral.

Many of the properties we noted earlier for limits obviously apply to de�nite
integrals, since they are themselves de�ned as limits. For example:Z b

a
kf(x)dx = k

Z b

a
f(x)dx (32)

Z b

a
[f(x) + g(x)]dx =

Z b

a
f(x)dx +

Z b

a
g(x)dx (33)

Z b

a
[f(x) � g(x)]dx =

Z b

a
f(x)dx �

Z b

a
g(x)dx (34)

Z b

a
f(x)dx �

Z b

a
g(x)dx if f(x) � g(x) on [a; b] (35)

Z b

a
f(x)dx +

Z c

b
f(x)dx =

Z c

a
f(x)dx (36)

The antiderivative of f(x) is denoted F (x) and it is the function whose derivative
is f(x), i.e. that function which satis�es

dF (x)

dx
= f(x) (37)

Often one can �nd the antiderivative of f(x) simply by applying the rules for
di�erentiation in reverse. For example, since we know that if n is a positive
integer

d

dx
(xn) = nxn�1 (38)
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we can infer that if f(x) = xn, then its antiderivative is:

F (x) =
1

n+ 1
xn+1 (39)

Because these are relatively simple symbol-manipulating rules, they can easily
be programmed into symbolic math packages such as Stephen Wolfram's famous
Mathematica, and also Macsym, to generate the antiderivatives of even very
complicated expressions.

Remarkably, the First Fundamental Theorem of Integral Calculus asserts that
in order to calculate the integral of a function f(x) between two points a and b,
we need only evaluate its antiderivative F (x) at those two points, and subtract
them! Z b

a
f(x)dx = F (b)� F (a) (40)

8 Di�erential Equations and Computational Ways to Solve Them

A vast variety of phenomena that one may wish to model are described in terms
of di�erential equations: algebraic relationships among variables and various
orders of their derivatives. The goal is to �nd the function which satis�es a given
di�erential equation: that function for which the stated relationship among its
derivatives etc. is true. Such a function is called a solution to the di�erential
equation. For example, the �rst-order di�erential equation

d

dx
f(x) = ��f(x) (41)

has the general solution
f(x) = A exp(��x) (42)

(where � may be complex). The second-order di�erential equation

d2

dx2
f(x) = ��f(x) (43)

has solutions such as
f(x) = A cos(

p
�x); (44)

or
f(x) = B sin(

p
�x); (45)

or the more general combination of these sorts of solutions, the complex ex-
ponential:

f(x) = C exp(i
p
�x � i�); (46)
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where we may note that

exp(i
p
�x� i�) = cos(

p
�x� �) + i sin(

p
�x � �) (47)

Often the solution to a di�erential equation depends upon initial conditions,
or boundary conditions. Sometimes an exact analytic solution can be found, but
more generally there is no simple expression for the solution in terms of famil-
iar functions. Rather, one must numerically solve the di�erential equation by
writing a program which integrates it, step by step along its variables beginning
with the initial conditions. This is one of the major topics of Numerical Analysis.

Solving a di�erential equation (or a coupled family of di�erential equations)
numerically involves the same operations as computing a de�nite integral by
taking the limit of a sum of small rectangles. (That is called Euler's method.)
In this respect, computing numerical solutions to di�erential equations is essen-
tially an exercise in judicious extrapolation. The performance of an algorithm is
gauged by its accuracy and its stability when the true solution is rapidly chang-
ing; di�erent approaches are needed for di�erent classes of di�erential equations.
We can do better by using local estimators other than the rectangles that we
think about as underlying integration when we pass to the limit of in�nitesimals.
The key issue here is the trade-o� between round-o� error (which can propagate
nastily), and stepsize (i.e. the width of the rectangles), which is denoted h.

� Euler method: next value equals the previous value, plus some stepsize times
the derivative at the previous point:

f(xk+1) � f(xk) + hf 0(xk) (48)

The accumulated error � is proportional to stepsize: � � O(h).
� Improved Euler Method: next value equals the previous value, plus some
stepsize times the average of the previous value of the derivative and its
estimated next value. Error behaviour: accumulated error is proportional
to the square of the stepsize: � � O(h2).

� Simpson's Method: Use a linear combination of estimates at three points,
in an overlapping 1:4:1 sequence. Error behaviour: � � O(h3).

� Runge-Kutta Method: Propagate a solution over an interval by combining
the information from several Euler-style steps, and then use this information
to match a Taylor series expansion up to some speci�ed order (usually 2nd
or 4th order terms). Thus the estimate of the solution to the di�erential
equation at any point is a linear combination of these evaluated di�erentials.
Error behaviour: � � O(h4).
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� Hamming's Predictor-Corrector Method: Examine the recent behaviour of
the solution (up to the present point) to make a prediction about the near-
term future behaviour, and then correct this prediction using the di�erential
information. Error behaviour: � � O(h5).

Numerical instability is the bogey-man when integrating families of di�eren-
tial equations numerically, especially if they happen to be nonlinear or semi-
pathological (local behaviour resembling singularities). If the stepsize is too
large, then there is gross quantization error. If the stepsize is made too small,
then besides the greater computational cost of having to make many more cal-
culations, numerical instability can result from propagation of truncation errors,
and the solution is said to \blow-up" (i.e. become unbounded and fail to repre-
sent the true solution).

The relationship between the cumulative error � and the stepsize h varies from
linear dependence on h for the Euler method, to the �fth power of h for the
predictor-corrector method! This reveals the great advantage of choosing a clever
method for numerical integration: reducing the stepsize of integration by half can
yield a 32-fold reduction in the cumulative error.

To integrate numerically an entire family of coupled di�erential equations, cycle
iteratively through the family, one increment at a time to produce each new es-
timate of the solution for each member of the family. These new estimates for
the whole family at that point are then used in calculating the next di�eren-
tial increment to the solution for each member, and the cycle repeats in a new
iteration. Clearly, the fact that the solution to all the equations is required at
one point before any of them can be solved at the next point, implies that such
numerical solutions are profoundly serial and thus generally not amenable to
the exploitation of parallel computing architectures across the evolution of the
solution. However, parallelism can be exploited across the members of the family
of equations, with data sharing about the outcome of each successive solution
point for each member of the coupled family.

9 Signals and Systems

Many continuous processes or phenomena that one might wish to study or model
take the form of linear time-invariant input-output systems. Examples include
analog electronic circuits, wave phenomena, electromagnetism, optics, and major
classes of physical and mathematical systems. These may be represented by
a time-varying input s(t), a characteristic and stable \system function" h(t)
describing the properties of the system or medium, and a time-varying output
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response r(t) from the system:

s(t) �! h(t) �! r(t)

The study of such systems is called linear systems analysis, and it represents one
of the key (and most exhaustively understood) areas of continuous mathematics.
The next several sections describe the analysis of such systems.

10 Linear Operators and Their Eigenfunctions

The above system h(t) is linear if it obeys the properties of superposition and
proportionality:

� Superposition implies that if r1(t) is the system's response to any input s1(t),
and if r2(t) is the system's response to any input s2(t), then the system's
response to a third input s3(t) = s1(t)+ s2(t) which is the sum of the earlier
two inputs, must simply be the sum of its responses to those two inputs
separately: r3(t) = r1(t) + r2(t).

� Proportionality implies that if any input s(t) is changed just by multiplying
it by a constant k (which may be complex), then the system's original re-
sponse r(t) simply gets multiplied by the same (possibly complex) constant:
kr(t).

Linear systems are thus always described by some linear operator h(t). Examples
of such linear operators are:

� Any derivative, or combination of derivatives of any order; any linear di�er-
ential operator with constant coe�cients.

� An integral expression.

� A convolution with some �xed waveform.

� Any combination or concatenation of the above.

The eigenfunctions of a system are those inputs which emerge completely un-
changed at the output, except for multiplication by a constant (which may be
complex). A fundamental property of linear systems as described above is that
their eigenfunctions are the complex exponentials exp(i�kt):

exp(i�kt) �! h(t) �! A exp(i�kt)

That is, the only e�ect which a linear system h(t) can have on an input which
is a complex exponential is to multiply it by a complex constant A when gener-
ating a response to it. Obviously, other families of input signals would become
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quite dramatically changed when operated upon by the sorts of linear operators
ennumerated above. So, complex exponentials are a very special and important
class of functions. In fact, if one can learn how a linear system h(t) responds to
all possible complex exponentials (that is to say, if one can measure the complex
constant A associated with every possible frequency �k of an input complex ex-
ponential), then one has complete knowledge about how the system will respond
to any other possible input! This is an extraordinary kind of power.

The process works by representing any possible input as a superposition of com-
plex exponentials, and then applying the superposition principles described ear-
lier in order to calculate the output as another linear combination of those same
complex exponentials, since they are eigenfunctions. In order to understand and
apply this, we need to develop some of the tools of Fourier Analysis.

11 Fourier Analysis

It has been said that the most remarkable and far-reaching relationship in all of
mathematics is the simple Euler Relation,

e
i� + 1 = 0 (49)

which contains the �ve most important mathematical constants, as well as har-
monic analysis. This simple equation uni�es the four main branches of mathe-
matics: f0,1g represent arithmetic, � represents geometry, i represents algebra,
and e = 2:718::: represents analysis, since one way to de�ne e is to compute the
limit of (1 + 1

n
)n as n!1.

Fourier analysis is about the representation of functions (or of data, signals,
systems, ...) in terms of such complex exponentials. (Almost) any function f(x)
can be represented perfectly as a linear combination of basis functions:

f(x) =
X
k

ak	k(x) (50)

where many possible choices are available for the expansion basis functions 	k(x).
In the case of Fourier expansions in one dimension, the basis functions are the
complex exponentials:

	k(x) = exp(i�kx) (51)

where the complex constant i =
p�1. A complex exponential contains both a

real part and an imaginary part, both of which are simple (real-valued) harmonic
functions:

exp(i�) = cos(�) + i sin(�) (52)
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which you can easily con�rm by using the power-series de�nitions for the tran-
scendental functions exp, cos, and sin:

exp(�) = 1 +
�

1!
+
�2

2!
+
�3

3!
+ � � �+ �n

n!
+ � � � ; (53)

cos(�) = 1 � �2

2!
+
�4

4!
� �6

6!
+ � � � ; (54)

sin(�) = � � �3

3!
+
�5

5!
� �7

7!
+ � � � ; (55)

Fourier Analysis computes the complex coe�cients ak that yield an expansion of
some function f(x) in terms of complex exponentials:

f(x) =
k=nX
k=�n

ak exp(i�kx) (56)

where the parameter �k corresponds to frequency and n speci�es the number of
terms (which may be �nite or in�nite) used in the expansion.

Each Fourier coe�cient ak in f(x) is computed as the orthonormal projection
of the function f(x) onto one complex exponential exp(�i�kx) associated with
that coe�cient:

ak =
1

T

Z +T=2

�T=2
f(x) exp(�i�kx)dx (57)

where the integral is taken over one period (T ) of the function if it is periodic,
or from �1 to +1 if it is aperiodic. (An aperiodic function is regarded as
a periodic one whose period is 1). For periodic functions the frequencies �k
used are just all multiples of the repetition frequency; for aperiodic functions,
all frequencies must be used. Note that these computed Fourier coe�cients ak
are complex-valued. If the function f(x) is real-valued, then its representation in
the Fourier domain has two-fold redundancy. The real-parts of the ak have even-
symmetry: ak = a�k, and their imaginary-parts have odd-symmetry: ak = �a�k.
Given this \Hermitian" symmetry, only one half of the Fourier coe�cients for a
real-valued function f(x) need be computed, to obtain them all.

Useful Theorems of Fourier Analysis

Throughout, we will denote the Fourier representation of our original function
f(x) as F (�), where � is frequency. If f(x) is a continuous periodic function,
then F (�) is a discrete set of frequency components in a Fourier series. If f(x)
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Figure 1: Illustration of convergence of Fourier series for a square-wave.
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is a continuous but aperiodic function, then F (�) is also a continuous and ape-
riodic function, termed the Fourier Transform of f(x).

Shift Theorem: Shifting the original function f(x) by some displacement �
merely multiplies its Fourier Transform by exp(�i��).

Thus the Fourier Transform of the shifted pattern f(x � �) is simply:
F (�) exp(�i��).

Similarity Theorem: If the scale of the original function f(x) changes
(shrinks or expands along the abscissa) by a factor �, becoming f(�x), then
the Fourier Transform of the function also changes (shrinks or expands) by
the reciprocal of that factor: F (�)! 1

j�jF (�=�).

Convolution Theorem: Let function f(x) have Fourier Transform F (�), and
let function g(x) have Fourier Transform G(�). The convolution of f(x)
with g(x), which is denoted f � g, combines these two functions to generate
a third function h(x), whose value at location (x) is equal to the integral
of the product of functions f and g after they undergo a relative shift by
amount (x):

h(x) =
Z +1

�1
f(�)g(x � �)d� (58)

Thus, convolution is a way of combining two functions, in a sense using
each one to blur the other, making all possible relative shifts between the
two functions when computing the integral of their product to obtain the
corresponding output values.

Convolution is extremely important because it is one basis of describing
how any linear system h(t) acts on any input s(t) to generate the corre-
sponding output r(t). Speci�cally, the output is just the convolution of the
input with the characteristic system response function:

r(t) = h(t) � s(t) (59)

The Convolution Theorem states that convolving any two functions f(x)
and g(x) together simply multiplies their two Fourier Transforms together,
to generate the Fourier Transform of the result of the convolution:

H(�) = F (�)G(�) (60)

where H(�) is the Fourier Transform of the desired result h(x), and F (�)
and G(�) are the Fourier Transforms of f(x) and g(x), respectively.
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This is extremely useful since it is much easier to multiply two functions
F (�) and G(�) together, to obtain H(�), than to convolve f(x) and g(x)
together to obtain h(x). Of course, exploiting the Convolution Theorem
means going into the Fourier Domain and computing the Fourier Trans-
forms of f(x) and g(x), but with powerful and fast FFT algorithms, this is
very easy.

Di�erentiation Theorem: Computing the derivatives of a function f(x) is
equivalent to multiplying its Fourier Transform, F (�), by frequency raised
to a power equal to the order of di�erentiation:

 
d

dx

!m
f(x)

FT
=) (i�)mF (�) (61)

We will now re-capitulate these theorems for the case of two-dimensional func-
tions f(x; y) because then all these these tools can be applied to computer vi-
sion, with f(x; y) being regarded as an image. Many underlying principles and
concepts from computer vision (such as scale; edge or motion energy; �ltering;
directional derivative; textural signature; statistical structure; etc.) must be un-
derstood in \spectral" (i.e. Fourier) terms.

In addition to this explanatory role, Fourier analysis can be used directly to con-
struct useful pattern representations that are invariant under translation (change
in position), rotation, and dilation (change in size). This is therefore the rep-
resentation underlying many pattern classi�cation and recognition applications,
such as optical character recognition (OCR).

Finally, many operations in practical computing that might not seem related
in any way to Fourier analysis, such as computing correlations, convolutions,
derivatives, di�erential equations, and di�usions, are much more easily imple-
mented in the Fourier domain. (Powerful algorithms like the FFT make it easy
to go back and forth rapidly between the image and Fourier domains).

Consider a pattern as a distribution over the (x; y) plane: a real-valued two-
dimensional function f(x; y).

Any such function can be represented perfectly as a linear combination of two-
dimensional basis functions

f(x; y) =
X
k

ak	k(x; y) (62)
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where many possible choices are available for the expansion basis functions
	k(x; y). In the case of Fourier expansions in two dimensions, the basis functions
are the bivariate complex exponentials:

	k(x; y) = exp(i(�kx + �ky)) (63)

Fourier Analysis computes the coe�cients ak that yield an expansion of the image
f(x; y) in terms of bivariate complex exponentials:

f(x; y) =
X
k

ak exp(i(�kx + �ky)) (64)

where the parameters �k and �k de�ne the coordinates of the 2D Fourier do-
main. These (�k; �k) coordinates are called spatial frequency vectors, and the
set of them must span the (�; �) Fourier plane in a uniform Cartesian lattice.

It is often useful to think of the (�; �) Fourier plane as resolved into polar coor-
dinates, where ! =

p
�2 + �2 is (scalar) spatial frequency and � = tan�1(�=�) is

(scalar) orientation.

Each Fourier coe�cient ak is computed as the orthonormal projection of the
entire function f(x; y) onto the vector frequency component exp(�i(�kx+ �ky))
associated with that coe�cient:

ak =
Z +1

�1

Z +1

�1
f(x; y) exp(�i(�kx+ �ky))dxdy (65)

Useful Theorems of Two-Dimensional Fourier Analysis

The following theorems describe what happens to F (�; �), the 2D Fourier Trans-
form of a function f(x; y), when various operations are applied to f(x; y) before
its Fourier Transform is taken.

Shift Theorem: Shifting the original pattern in (x; y) by some 2D displace-
ment (�; �) just multiplies its 2DFT by exp(�i(�� + ��)).

Thus the 2DFT of the shifted pattern f(x� �; y � �), is simply:
F (�; �) exp(�i(�� + ��)).

Practical Application: The power spectrum of any pattern is thus
translation-invariant: it does not depend on where the pattern is located
within the image, and so you don't have to �nd it �rst. The power spec-
trum is de�ned as the product of the pattern's 2DFT, F (�; �) times its
complex conjugate, F �(�; �), which just requires that the sign ({) of the
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imaginary part of F (�; �) gets reversed. You can easily see that the power
spectrum of the shifted pattern f(x � �; y � �), namely:

exp(�i(�� + ��))F (�; �) exp(i(��+ ��))F �(�; �)

is exactly equal to the power spectrum of the original, unshifted pattern:
F (�; �)F �(�; �).

Similarity Theorem: If the size of the original pattern f(x; y) changes
(shrinks/expands), say by a factor � in the x-direction, and by a factor
� in the y-direction, becoming f(�x; �y), then the 2DFT of the pattern,
F (�; �), also changes (expands/shrinks) by the reciprocal of those factors:
F (�; �)! 1

j��jF (
�
�;

�
� ).

Rotation Theorem: If the original pattern f(x; y) rotates through some angle
�, becoming f(x cos(�)+y sin(�);�x sin(�)+y cos(�)), then its 2DFT F (�; �)
also just rotates through the same angle:

F (�; �)! F (� cos(�) + � sin(�);�� sin(�) + � cos(�)).

Practical Application: Size- and orientation-invariant pattern representations
can be constructed by these relationships. Speci�cally, if the Fourier do-
main (�; �) is now mapped into log-polar coordinates (r; �) where r =
log(

p
�2 + �2) and � = tan�1(�=�), then any dilation (size change) in the

original pattern becomes simply a translation along the r-coordinate; and
any rotation of the original pattern becomes simply a translation along the
orthogonal �-coordinate in this log-polar Fourier domain. But we saw ear-
lier that translations become immaterial by taking a power spectrum, and
so these e�ects of dilation and rotation of the pattern are eliminated in such
a representation.

Combined with the translation-invariant property of the power spectrum,
we now see how it becomes possible to represent patterns in a manner that
is independent of their position in the image, their orientation, and their size
(i.e. the Poincar�e group of transformations) These principles are routinely
exploited in machine optical character recognition; in military recognition
of aircraft pro�les; and in \optical computing" generally.

Convolution Theorem: Let function f(x; y) have 2DFT F (�; �), and let func-
tion g(x; y) have 2DFT G(�; �). The convolution of f(x; y) with g(x; y),
which is denoted f � g, combines these two functions to generate a third
function h(x; y), whose value at location (x; y) is equal to the integral of the
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product of functions f and g after they undergo a relative shift by amount
(x; y):

h(x; y) =
Z +1

�1

Z +1

�1
f(�; �)g(x � �; y � �)d�d� (66)

Thus, convolution is a way of combining two functions, in a sense using
each one to blur the other, making all possible relative shifts between the
two functions when computing the integral of their product to obtain the
corresponding output values.

In the above integral de�nition, if the minus ({) signs were simply replaced
with (+) signs, the new expression would be the correlation integral.

The Convolution Theorem states that convolving two functions f(x; y) and
g(x; y) together in the image domain, simply multiplies their two 2DFT's
together in the 2D Fourier domain:

H(�; �) = F (�; �)G(�; �) (67)

where H(�; �) is the 2DFT of the desired result h(x; y).

This is extremely useful since it is much easier just to multiply two functions
F (�; �) and G(�; �) together, to obtain H(�; �), than to have to convolve
f(x; y) and g(x; y) together to obtain h(x; y). Of course, exploiting the Con-
volution Theorem means going into the 2D Fourier Domain and computing
the 2DFT's of f(x; y) and g(x; y), but with powerful and fast 2D-FFT algo-
rithms, this is very easy.

Practical Application: Filtering. The basis of all encoding, image process-
ing, and feature extraction operations is the �ltering of an image f(x; y) with
some family of �lters g(x; y). Filtering is a linear operation implemented by
the convolution of an image f(x; y) with �lter kernel(s) g(x; y), and the
resulting output \image" h(x; y) normally then undergoes non-linear oper-
ations of various kinds for image segmentation, motion detection, texture
classi�cation, pattern recognition, and image understanding.

Di�erentiation Theorem: Computing the derivatives of an image f(x; y) is
equivalent to multiplying its 2DFT, F (�; �), by the corresponding frequency
coordinate raised to a power equal to the order of di�erentiation:

 
d

dx

!m  
d

dy

!n
f(x; y) 2DFT=) (i�)m(i�)nF (�; �) (68)
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A particularly useful implication of this theorem is that isotropic di�eren-
tiation, which treats all directions equally (for which the lowest possible
order of di�erentiation is 2nd-order, known as the Laplacian operator r2)
is equivalent simply to multiplying the 2DFT of the image by a paraboloid:

r2f(x; y) �
0
@ d2

dx2
+

d2

dy2

1
A f(x; y) 2DFT=) �(�2 + �2)F (�; �) (69)

12 The Quantized Degrees-of-Freedom in a Continuous Signal

There are several important results in continuous mathematics expressing the
idea that even though a function (such as some time-varying signal) is continu-
ous and dense in time (i.e. the value of the signal is de�ned at each real-valued
moment in time), nevertheless a �nite and countable set of discrete numbers
su�ces to describe it completely, and thus to reconstruct it, provided that its
frequency bandwidth is limited.

Such theorems may seem counter-intuitive at �rst: How could a �nite sequence
of numbers, at discrete intervals, capture exhaustively the continuous and un-
countable stream of numbers that represent all the values taken by a signal over
some interval of time?

In general terms, the reason is that bandlimited continuous functions are not
as free to vary as they might at �rst seem. Consequently, specifying their values
at only certain points, su�ces to determine their values at all other points.

Some examples are:

� Nyquist's Sampling Theorem: If a signal f(x) is strictly bandlimited so
that it contains no frequency components higher than W , i.e. its Fourier
Transform F (�) satis�es the condition

F (�) = 0 for j�j > W (70)

then f(x) is completely determined just by sampling its values at a rate of at
least 2W . The signal f(x) can be exactly recovered by using each sampled
value to �x the amplitude of a sinc(x) function,

sinc(x) =
sin(�x)

�x
(71)

whose width is scaled by the bandwidth parameter W and whose location
corresponds to each of the sample points. The continuous signal f(x) can
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be perfectly recovered from its discrete samples fn(
n�
W
) just by adding all of

those displaced sinc(x) functions together, with their amplitudes equal to
the samples taken:

f(x) =
X
n
fn

 
n�

W

!
sin(Wx � n�)

(Wx � n�)
(72)

(The Figure illustrates this function.) Thus, any signal that is limited in
its bandwidth to W , during some duration T has at most 2WT degrees-of-
freedom. It can be completely speci�ed by just 2WT real numbers!

� The Information Diagram: The Similarity Theorem of Fourier Analysis
asserts that if a function becomes narrower in one domain by a factor a, it
necessarily becomes broader by the same factor a in the other domain:

f(x) �! F (�) (73)

f(ax) �! j1
a
jF (�

a
) (74)

The Hungarian Nobel-Laureate Dennis Gabor took this principle further
with great insight and with implications that are still revolutionizing the �eld
of signal processing (based upon wavelets), by noting that an Information
Diagram representation of signals in a plane de�ned by the axes of time
and frequency is fundamentally quantized. There is an irreducible, minimal,
volume that any signal can possibly occupy in this plane. Its uncertainty
(or spread) in frequency, times its uncertainty (or duration) in time, has an
inescapable lower bound.

12.1 Gabor-Heisenberg-Weyl Uncertainty Relation. \Logons."

12.1.1 The Uncertainty Principle

If we de�ne the \e�ective support" of a function f(x) by its normalized variance,
or the normalized second-moment

(�x)2 =

Z +1

�1
f(x)f�(x)(x� x0)

2dxZ +1

�1
f(x)f�(x)dx

(75)

where x0 is the mean value, or �rst-moment, of the function

x0 =

Z +1

�1
xf(x)f�(x)dxZ +1

�1
f(x)f�(x)dx

(76)
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and if we similarly de�ne the e�ective support of the Fourier Transform F (�) of
the function by its normalized variance in the Fourier domain

(��)2 =

Z +1

�1
F (�)F �(�)(�� �0)

2d�Z +1

�1
F (�)F �(�)d�

(77)

where �0 is the mean value, or �rst-moment, of the Fourier transform F (�)

�0 =

Z +1

�1
�F (�)F �(�)d�Z +1

�1
F (�)F �(�)d�

(78)

then it can be proven (by Schwartz Inequality arguments) that there exists a
fundamental lower bound on the product of these two \spreads," regardless of
the function f(x) !

(�x)(��) � 1
4� (79)

This is the famous Gabor-Heisenberg-Weyl Uncertainty Principle. Mathemati-
cally it is exactly identical to the uncertainty relation in quantum physics, where
(�x) would be interpreted as the position of an electron or other particle, and
(��) would be interpreted as its momentum or deBroglie wavelength. We see
that this is not just a property of nature, but more abstractly a property of all
functions and their Fourier Transforms. It is thus a still further, and more lofty,
respect in which the information in continuous signals is quantized, since they
must occupy an area in the Information Diagram (time - frequency axes) that is
always greater than some irreducible lower bound.

12.1.2 Gabor \Logons"

Dennis Gabor named such minimal areas \logons" from the Greek word for in-
formation, or order: log�os. He thus established that the Information Diagram for
any continuous signal can contain only a �xed number of information \quanta."
Each such quantum constitutes an independent datum, and their total number
within a region of the Information Diagram represents the number of indepen-
dent degrees-of-freedom enjoyed by the signal.

The unique family of signals that actually achieve the lower bound in the Gabor-
Heisenberg-Weyl Uncertainty Relation are the complex exponentials multiplied
by Gaussians. These are sometimes referred to as \Gabor wavelets:"

f(x) = e�i�0xe�(x�x0)
2=a2 (80)

localized at \epoch" x0, modulated by frequency �0, and with size or spread con-
stant a. It is noteworthy that such wavelets have Fourier Transforms F (�) with
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exactly the same functional form, but with their parameters merely interchanged
or inverted:

F (�) = e�ix0�e�(���0)
2a2 (81)

Note that in the case of a wavelet (or wave-packet) centered on x0 = 0, its Fourier
Transform is simply a Gaussian centered at the modulation frequency �0, and
whose size is 1=a, the reciprocal of the wavelet's space constant.

Because of the optimality of such wavelets under the Uncertainty Principle, Ga-
bor (1946) proposed using them as an expansion basis to represent signals. In
particular, he wanted them to be used in broadcast telecommunications for en-
coding continuous-time information. He called them the \elementary functions"
for a signal. Unfortunately, because such functions are mutually non-orthogonal,
it is very di�cult to obtain the actual coe�cients needed as weights on the el-
ementary functions in order to expand a given signal in this basis! The �rst
constructive method for �nding such \Gabor coe�cients" was developed in 1981
by the Dutch physicist Martin Bastiaans, using a dual basis and a complicated
non-local in�nite series.

When a family of such functions are parameterized to be self-similar, i.e. they
are dilates and translates of each other so that they all have a common template
(\mother" and \daughter"), then they constitute a (non-orthogonal) wavelet ba-
sis. Today it is known that an in�nite class of wavelets exist which can be used
as the expansion basis for signals. Because of the self-similarity property, this
amounts to representing or analyzing a signal at di�erent scales. This general
�eld of investigation is called multi-resolution analysis.

Two-dimensional Gabor �lters over the image domain (x; y) have the functional
form

f(x; y) = e�[(x�x0)
2=�2+(y�y0)2=�2]e�i[u0(x�x0)+v0(y�y0)] (82)

where (x0; y0) specify position in the image, (�; �) specify e�ective width and
length, and (u0; v0) specify modulation, which has spatial frequency !0 =

q
u20 + v20

and direction �0 = arctan(v0=u0). (A further degree-of-freedom not included
above is the relative orientation of the elliptic Gaussian envelope, which creates
cross-terms in xy.) The 2-D Fourier transform F (u; v) of a 2-D Gabor �lter has
exactly the same functional form, with parameters just interchanged or inverted:

F (u; v) = e�[(u�u0)
2�2+(v�v0)

2�2]e�i[x0(u�u0)+y0(v�v0)] (83)

2-D Gabor functions can form a complete self-similar 2-D wavelet expansion
basis, with the requirements of orthogonality and strictly compact support re-
laxed, by appropriate parameterization for dilation, rotation, and translation. If
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we take 	(x; y) to be a chosen generic 2-D Gabor wavelet, then we can generate
from this one member a complete self-similar family of 2-D wavelets through the
generating function:

	mpq�(x; y) = 2�2m	(x0; y0) (84)

where the substituted variables (x0; y0) incorporate dilations in size by 2�m, trans-
lations in position (p; q), and rotations through orientation �:

x0 = 2�m[x cos(�) + y sin(�)]� p (85)

y0 = 2�m[�x sin(�) + y cos(�)]� q (86)

It is noteworthy that as consequences of the similarity theorem, shift theorem,
and modulation theorem of 2-D Fourier analysis, together with the rotation iso-
morphism of the 2-D Fourier transform, all of these e�ects of the generating
function applied to a 2-D Gabor mother wavelet 	(x; y) = f(x; y) have cor-
responding identical or reciprocal e�ects on its 2-D Fourier transform F (u; v).
These properties of self-similarity can be exploited when constructing e�cient,
compact, multi-scale codes for image structure.

12.1.3 Grand Uni�cation of Domains: an Entente Cordiale

Now we can see that the \Gabor domain" of representation actually embraces and
uni�es both the Fourier domain and the original signal domain! To compute the
representation of a signal or of data in the Gabor domain, we �nd its expansion
in terms of elementary functions having the form

f(x) = e�i�0xe�(x�x0)
2=a2 (87)

The single parameter a (the space-constant in the Gaussian term) actually builds
a continuous bridge between the two domains: if the parameter a is made very
large, then the second exponential above approaches 1.0, and so in the limit our
expansion basis becomes

lim
a!1

f(x) = e�i�0x (88)

the ordinary Fourier basis! If the parameter a is instead made very small, the
Gaussian term becomes the approximation to a delta function at location xo,
and so our expansion basis implements pure space-domain sampling:

lim
�0;a!0

f(x) = �(x� x0) (89)

Hence the Gabor expansion basis \contains" both domains at once. It allows us
to make a continuous deformation that selects a representation lying anywhere
on a one-parameter continuum between two domains that were hitherto distinct
and mutually unapproachable. A new Entente Cordiale, indeed.
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