Complexity Theory

Complexity Theory

Anuj Dawar

Computer Laboratory
University of Cambridge
Easter Term 2001

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

The main text for the course is:

Computational Complexity.
Christos H. Papadimitriou.

Other useful references include:

Computers and Intractability: A guide to the

theory of NP-completeness.
Michael R. Garey and David S. Johnson.

Structural Complexity. Vols I and I1.
J.L. Balcazar, J. Diaz and J. Gabarro.

Computability and Complexity from a
Programmaing Perspective.

Neil Jones.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

A rough lecture-by-lecture guide, with relevant
sections from the text by Papadimitriou.

Algorithms and problems. 1.1-1.3.
Time and space. 2.1-2.5, 2.7.
Complexity classes. Hierarchy. 7.1-7.2.
Reachability. 7.3

Boolean logic. 4.1-4.3
NP-completeness. 8.1-8.2, 9.1-9.2.
Graph-theoretic problems. 9.3

Sets, numbers and scheduling. 9.4
coNP. 10.1-10.2.

Cryptographic complexity. 12.1-12.2.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Complexity Theory

Complexity Theory seeks to understand what
makes certain problems algorithmically difficult to

solve.

In Data Structures and Algorithms, we saw how to
measure the complexity of specific algorithms, by

asymptotic measures of number of steps.

In Computation Theory, we saw that certain

problems were not solvable at all, algorithmically.

Both of these are prerequisites for the present

course.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Algorithms and Problems

Insertion Sort runs in time O(n?), while

Merge Sort is an O(nlogn) algorithm.

The first half of this statement is short for:

If we count the number of steps
performed by the Insertion Sort algorithm
on an input of size n, taking the largest
such number, from among all inputs of
that size, then the function of n so
defined is eventually bounded by a

constant multiple of n?.

It makes sense to compare the two algorithms,
because they seek to solve the same problem.

But, what is the complexity of the sorting
problem?

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Lower and Upper Bounds

What is the running time complexity of the
fastest algorithm that sorts a list?

By the analysis of the Merge Sort algorithm, we

know that this is no worse than O(nlogn).

The complexity of a particular algorithm
establishes an upper bound on the complexity of
the problem.

To establish a lower bound, we need to show that
no possible algorithm, including those as yet
undreamed of, can do better.

In the case of sorting, we can establish a lower
bound of Q2(nlogn), showing that Merge Sort is
asymptotically optimal.

Sorting is a rare example where known upper and
lower bounds match.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Review

The complexity of an algorithm (whether

measuring number of steps, or amount of

memory) is usually described asymptotically:

Definition
For functions f : IN — IN and g : IN — IN, we say
that:

o f=0(g), if there is an ng € IN and a
constant ¢ such that for all n > ng,

f(n) < cg(n);

o f=10(g), if there is an ng € IN and a constant
c such that for all n > ng, f(n) > cg(n).

e f=0(g9)if f=0(g) and f =Q(g).

Usually, O is used for upper bounds and {2 for

lower bounds.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Lower Bound on Sorting

An algorithm A sorting a list of n distinct

numbers a1, ..., ay,.

To work for all permutations of the input list, the
tree must have at least n! leaves and therefore
height at least log,(n!) = 0(nlogn).

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Travelling Salesman

Given
e IV — a set of vertices.
e ¢c:V XV — IN — a cost matrix.

Find an ordering vq,...,v, of V for which the

total cost:

n—1

c(vn,v1) + Y c(v, vit1)

1=1

is the smallest possible.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Complexity of TSP

Try all possible orderings of

V and find the one with lowest cost.

The worst case running time is (n!).

An analysis like that for sorting

shows a lower bound of Q(nlogn).

The currently fastest known

algorithm has a running time of O(n?2").

Between these two is the chasm of our

ignorance.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Turing Machines

In order to prove facts about all algorithms, we
need a mathematically precise definition of
algorithm.

For our purposes, a Turing Machine consists of:

K — a finite set of states;
>, — a finite set of symbols, disjoint from K;

s € K — an initial state;

0: (K xXY)— KU{a,r} xXx{L,R,S}

A transition function that specifies, for each
state and symbol a next state (or accept acc
or reject rej), a symbol to overwrite the
current symbol, and a direction for the tape
head to move (L — left, R — right, or S -
stationary)

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Configurations

A complete description of the configuration of a

machine can be given if we know what state it is
in, what are the contents of its tape, and what is
the position of its head. This can be summed up

in a simple triple:

Definition
A configuration is a triple (¢, w,u), where ¢ € K
and w,u € X*

The intuition is that (¢, w, u) represents a
machine in state ¢ with the string wu on its tape,
and the head pointing at the last symbol in w.

The configuration of a machine completely
determines the future behaviour of the machine.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Computations

Given a machine M = (K,3,s,d) we say that a
configuration (q,w,wu) yields in one step

(¢, w',u"), written

(¢, w,u) = (¢, u)

if
® W =G ;
e 0(¢g,a) = (¢',b, D); and

e cither D=L and w' =v v = bu
or D=5 and w =wvband v =u
or D = R and w’ = vbe and v/ = x, where

U = Cx.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Computations

The relation —7, is the reflexive and transitive

closure of — ;.

A sequence of configurations cq,...,c,, where for

each i, ¢; =7 cj11, 1s called a computation of M.

The language L(M) C ¥* accepted by the

machine M is the set of strings

x| (s,>,2) =3, (ace, w, u)for some w and u
M

A machine M is said to halt on input z if the set
of configurations (¢, w,u) such that

(s,>,) —M (g, w,u)

is finite.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Decidability

A language L C X* is recursiwvely enumerable if it
is L(M) for some M.

A language L is decidable if it is L(M) for some
machine M which halts on every input.

A language L is semi-decidable if it is recursively
enumerable but not decidable.

A function f : ¥* — X* is computable, if there is a
machine M, such that for all z,

(s,>,x) =3, (ace, f(x),€)

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Consider the machine with ¢ given by:

s,>, R s,0, R s, 1, R q,, L

acc,>, R q,, L rej, L, R q,, L

This machine will accept any string that contains
only Os before the first blank (but only after
replacing them all by blanks).

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Multi-Tape Machines

The formalisation of Turing machines extends in
a natural way to multi-tape machines. For
instance a machine with k tapes is specified by:

e K, >, s;and

o §: (K xX*) = KU{a,r} x (¥ x {L,R,S})*

Similarly, a configuration is of the form:

(CL w1, Uy, .. .,’lUk,Uk;)

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Complexity

For any function f : IN — IN, we say that a

language L is in TIME(f(n)) if there is a machine
M = (K,%,s,0), such that:

o L =L(M);and

e for each x € L with n symbols, there is a
computation of M, of length at most f(n)
starting with (s,>,z) and ending in an

accepting configuration.

Similarly, we define SPACE(f(n)) to be the

languages accepted by a machine which uses at
most f(n) tape cells on inputs of length n.

In defining space complexity, we assume a
machine M, which has a read-only input tape,
and a separate work tape. We only count cells on

the work tape towards the complexity.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Non-Determinism

If, in the definition of a Turing machine, we relax
the condition on ¢ being a function and instead
allow an arbitrary relation, we obtain a

non-deterministic Turing machine.

§C(KxY)x (KxXx{R,L,S}).

The yields relation —j; is also no longer

functional.

We still define the language accepted by M by:

x| (s,>,x2) =3, (acc, w, u) for some w and u
M

though, for some z, there may be computations
leading to accepting as well as rejecting states.

University of Cambridge Computer Laboratory, April 23, 2001

Computation Trees

With a non-deterministic machine, each

configuration gives rise to a tree of successive

configurations.

(s,>, x)

(q07u0’w0)(q17u1,w1) q2<w2)

(200, w00, wo (rej, us, ws)

(910, %10, w10) (11, w11, wi1)

(acc, ...

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Decidability and Complexity

For every decidable language L, there is a
computable function f such that

L € TIME(f(n))

If L is a semi-decidable language accepted by M,
then there is no computable function f such that
every accepting computation of M, on input of
length n is of length at most f(n).

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Complexity Classes

A complexity class is a collection of languages
determined by three things:

e A model of computation (such as a

deterministic Turing machine, or a
non-deterministic TM, or a parallel Random

Access Machine).

e A resource (such as time, space or number of

processors).

e A set of bounds. This is a set of functions
that are used to bound the amount of

resource we cCal use.

By making the bounds broad enough, we can
make our definitions fairly independent of the

model of computation.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Constructible Functions

A complexity class such as TIME(f(n)) can be

very unnatural, if f(n) is.

From now on, we restrict our bounding functions

f(n) to be proper functions:

Definition

A function f : IN — IN is constructible if:

e f is non-decreasing, i.e. f(n+ 1) > f(n) for
all n; and

e there is a machine M which, on any input of
length n, replaces the input with the string
0/(") and M runs in time O(n + f(n)) and

uses O(f(n)) work space.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

All of the following functions are constructible:

e [lognl;

If f and g are constructible functions, then so are
f+g, f-g, 27 and f(g) (this last, provided that

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Complexity Classes

We have already defined TIME(f(n)) and
SPACE(f(n)).

NTIME(f(n)) is defined as the class of those
languages L which are accepted by a
non-deterministic Turing machine M, such that
for every x € L, there is an accepting
computation of M on = of length at most f(n).

NSPACE(f(n)) is the class of languages accepted
by a non-deterministic Turing machine using at

most f(n) work space.

If f(n) is constructible, we can always choose M
so that it always halts (accepting or rejecting)
using only f(n) time (or space, as the case may

be).

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

P=U,—, TIME(nF)
The class of languages decidable in polynomial

time.

NP = U2, NTIME(n*)

L = Ur—; SPACE(k - log n)
NL = (2>, NSPACE(k - log n)

PSPACE = ;- , SPACE(n*)
The class of languages decidable in polynomial

space.

NPSPACE = (J2° , NSPACE(nk)

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Complement Classes

Also, define

co-NL — the languages whose complements are in
NL.

co-NP — the languages whose complements are in
NP.

co-NPSPACE — the languages whose complements

are in NPSPACE.

Complexity classes defined in terms of
non-deterministic machine models are not
necessarily closed under complementation of
languages.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Inclusions

We have the following inclusions:

L C NL C P C NP C PSPACE C NPSPACE

Moreover,

L € NL Nco-NL
P C NP N co-NP
PSPACE C NPSPACE N co-NPSPACE

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Hierarchy Theorems

For any constructible function f, with f(n) > n,
define the f-bounded halting language to be:

Hy = {[M]x | M accepts x in f(|z|) steps}

where [M] is a description of M in some fixed

encoding scheme.

Then, we can show

Hy € TIME(f(n)?) and H; ¢ TIME(£(|n/2]))

Time Hierarchy Theorem

For any constructible function f(n) > n,
TIME(f(n)) is properly contained in
TIME(f(2n 4+ 1)°).

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Establishing Inclusions

To establish the known inclusions between the

main complexity classes, we prove the following.

e SPACE(f(n)) € NSPACE(f(n));
e TIME(f(n)) € NTIME(f(n));

e NTIME(f(n)) C SPACE(f(n));
e NSPACE(f(n)) C TIME(klogn+f ().

The first two are straightforward from definitions.
The third is an easy simulation.

The last requires some more work.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Reachability

The Reachability decision problem is, given a
directed graph G = (V, FE) and two nodes a,b € V,
to determine whether there is a path from a to b

in (.

A simple search algorithm as follows solves it:

1. mark node a, leaving other nodes unmarked,
and initialise set S to {a};

. while S is not empty, choose node ¢ in S:
remove ¢ from S and for all § such that there
is an edge (7,7) and j is unmarked, mark j
and add j to S;

3. if b is marked, accept else reject.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

This algorithm requires O(n?) time and O(n)

space.

The description of the algorithm would have to be
refined for an implementation on a Turing
machine, but it is easy enough to show that
Reachability is in P.

In general, any polynomial time algorithm (on
any other model of computation) is still
polynomial time on a Turing machine, though the

specific polynomial bound may change.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

NL Reachability

We can construct an algorithm to show that the
Reachability problem is in NL:

1. write the index of node a in the work space;

2. if 7 is the index currently written on the work

space:

(a) if 4 = b then accept, else
guess an index j (logn bits) and write it
on the work space.

(b) if (4,7) is not an edge, reject, else replace i
by 7 and return to (2).

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

We can use the O(n?) algorithm for Reachability
to show that:

NSPACE(f(n)) C TIME(k'een+f(n)

for some constant k.

Let M be a non-deterministic machine working in

space bounds f(n).

For any input z of length n, there is a constant c
(depending on the number of states and alphabet
of M) such that the total number of possible
configurations of M within space bounds f(n) is
bounded by n - ¢f ().

()

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Configuration Graph

Define the configuration graph of M,z to be the
graph whose nodes are the possible

configurations, and there is an edge from ¢ to j if,

and only if, 1 —/ 7.

Then, M accepts z if, and only if, some accepting
configuration is reachable from the starting
configuration (s,>, x,¢,¢) in the configuration
graph of M, z.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Using the O(n?) algorithm for Reachability, we get
that M can be simulated by a deterministic

machine operating in time

c’(ncf("))2 — o 2(logn+f(n)) _ p.(logn+f(n))

In particular, this establishes that NL C P and
PSPACE C EXP.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Savitch’s Theorem

Further simulation results for nondeterministic
space are obtained by other algorithms for
Reachability.

We can show that Reachability can be solved by a

deterministic algorithm in O((logn)?) space.

Consider the following recursive algorithm for
determining whether there is a path from a to b of
length at most n (for n a power of 2):

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

O((logn)?) space Reachability algorithm:

if a = b then accept else, for each node x, check:
1. is there a path a — x of length n/2; and

2. is there a path = — b of length n /27

if such an zx is found, then accept, else reject.

The maximum depth of recursion is logn, and the
number of bits of information kept at each stage

is 3logn.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Savitch’s Theorem - 2

The space efficient algorithm for reachability used
on the configuration graph of a non-deterministic

machine shows:

NSPACE(f(n)) C SPACE(f(n)?)

for f(n) > logn.

This yields

PSPACE = NPSPACE = co-NPSPACE

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Complementation

A still more clever algorithm for Reachability has
been used to show that non-deterministic space

classes are closed under complementation:

If f(n) > logn, then

NSPACE(f(n)) = co-NSPACE(f(n))

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Boolean Expressions

Boolean expressions are built up from an infinite

set of variables

X:{xl,xg,...

and the two constants true and false by the

rules:

e a constant or variable by itself is an

expression;
o if ¢ is a Boolean expression, then so is (—¢);

e if ¢ and v are both Boolean expressions, then

so are (¢ A1) and (¢ V).

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

If an expression contains no variables, then it can

be evaluated to either true or false.

Otherwise, it can be evaluated, given a truth

assignment to its variables.

Examples:

(true V false) A (—false)
(x1 V false) A ((—x1) V z2)
(1 V false) A (—xq)

()) A true

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Boolean Evaluation

There is a deterministic Turing machine, which

given a Boolean expression without variables of

length n will determine, in time O(n?) whether

the expression evaluates to true.

The algorithm works be scanning the input,
rewriting formulas according to the following

rules:

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

true V ¢) = true
¢ V true) = true
false V false) = false

false A ¢) = false

true A true) = true

—true) = false

(
(
(
(
(¢ A false) = false
(
(
(

—false) = true

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Each scan of the input (O(n) steps) must find at
least one subexpression matching one of the rule
patterns.

Applying a rule always eliminates at least one
symbol from the formula.

Thus, there are at most O(n) scans required.

The algorithm works in O(n?) steps.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Satisfiability

For Boolean expressions that contain variables,
we can ask a different question:

The set of Boolean expressions for which this is
true is the language SAT of satisfiable expressions.

This can be decided by a deterministic Turing

machine in time O(n?2").

An expression of length n can contain at most n
variables.

For each of the 2™ possible truth assignments to
these variables, we check whether it results in a
Boolean expression that evaluates to true.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

We also define VAL—the set of valid
expressions—to be those Boolean expressions for
which every assignment of truth values to

variables yields an expression equivalent to true.

By an algorithm similar to SAT, we see VAL is in
TIME(n?2").

Neither SAT nor VAL is known to be in P.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Nondeterminism

There is a non-deterministic machine that will
accept SAT in time O(n?).

The algorithm guesses a truth assignment for the
variables (O(n) non-deterministic steps), and then
uses the deterministic O(n?) algorithm to check

that this assignment satisfies the given expression.

Thus, SAT is in NP.

Such an algorithm does not work for VAL.

In this case, we have to determine whether every
truth assignment results in true—a requirement
that does not sit as well with the definition of

acceptance by a nondeterministic machine.

However, we can show VAL is in co-NP, by
constructing a nondeterministic, O(n?) machine
which can determine whether a given Boolean
expression has a falsifying truth assignment.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

NP problems

SAT is paradigmatic of NP problems, in the sense
that every language L in NP can be characterised

by a search space.

For every candidate string x, there is a
(potentially exponential) search space of
solutions, each of whose lengths is bounded by a

polynomial in the length of z.

Many natural examples arise, whenever we have
to construct a solution to some design constraints

or specifications.

University of Cambridge Computer Laboratory, April 23, 2001

Generate and Test

Another view of non-deterministic algorithms is

the generate-and test paradigm:

Gy

Where the generate component is
nondeterministic and the verify component is

deterministic.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Circuits

A circuit is a graph G = (V, E), with
V ={1,...,n} together with a labeling:
[V — {true, false, A, V, —}, satisfying:

o If F(i,7), then i < j;
e Every node in V' has indegree at most 2.

e A node v has
indegree 0 iff [(v) € {true, false};
indegree 1 iff [(v) = —;
indegree 2 iff [(v) € {true,false}

A circuit is a more compact way of representing a

Boolean expression.

The value of the expression is given by the value
at node n.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

CVP

CVP - the circuit value problem is, given a circuit,

determine the value of the result node n.

CVP is solvable in polynomial time, by the
algorithm which examines the nodes in increasing

order, assigning a value true or false to each

node.

CVP is complete for P under L reductions.

That is, for every language A in P,

A <p CVP

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Given two languages L1 C X7, and Lo C 333,

A reduction of Ly to Lo is a computable function

f:¥7 =33

such that for every string x € 3.7,

f(x) € Ly if, and only if, z € L

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Resource Bounded Reductions

If f is computable by a polynomial time

algorithm, we say that L4 is polynomial time

reducible to Lo.

If f is also computable in SPACE(logn), we write

L1 <y, Lo

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Reductions 2

It L1 <p Lo we understand that L is no more
difficult to solve than Lo, at least as far as

polynomial time computation is concerned.

That is to say,
It L1 <p Ly and Ly € P, then L; € P

We can get an algorithm to decide L; by first
computing f, and then using the polynomial time
algorithm for L.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Completeness

The usefulness of reductions is that they allow us

to establish the relative complexity of problems,

even when we cannot prove absolute lower

bounds.

Cook (1972) first showed that there are problems
in NP that are maximally difficult.

A language L is said to be NP-hard if for every
language A € NP, A <p L.

A language L is NP-complete if it is in NP and it
is NP-hard.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

SAT is NP-complete

Cook showed that the language SAT of satisfiable
Boolean expressions is NP-complete.

To establish this, we need to show that for every

language L in NP, there is a polynomial time
reduction from L to SAT.

Since L is in NP, there is a nondeterministic

Turing machine

M = (K,%,s,0)

and a bound n* such that a string z is in L if,
and only if, it is accepted by M within n* steps.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Boolean Formula

We need to give, for each = € X*, a Boolean

expression f(x) which is satisfiable if, and only if,

there is an accepting computation of M on input
x.

f(x) has the following variables:

Siq, foreachi<n*andqeK
T; ;o foreachi,j <n*andoeX
H;; for each i,j < n*

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Intuitively, these variables are intended to mean:

i ¢ — the state of the machine at time ¢ is q.

o T; ;o — at time ¢, the symbol at position j of

the tape is o.

e H,; — at time ¢, the tape head is pointing at
tape cell 3.

We now have to see how to write the formula
f(x), so that it enforces these meanings.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Initial state is s and the head is initially at the
beginning of the tape.

S1,s N Hip

The head is never in two places at once

/\/\(Hi,j — /\ (—~H; ;1))

J'#3

The machine is never in two states at once

AAGia— A 5

q' #q

Each tape cell contains only one symbol

/\/_\/\(Ti,j,a = N (T o))

o' #o

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

The initial tape contents are x

/\ T 5,0; N /\ T1 .0

j<n n<j

The tape does not change except under the head

/\ /\ /\ /\(Hw AT o) = Tig1,j 0

i j g o

Each step is according to J.

ANN/NH; ASig AT o)
T J o g

=V (Hivrg A Sivrg A Tivr5,00)
A

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

where A is the set of all triples (¢’, o', D) such
that ((¢,0), (¢, o', D)) € 0 and

i

j if D=9
j—1 ifD=1L
j+1 ifD=R

Finally, some accepting state is reached

\/ Si acc
i

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

A Boolean expression is in conjunctive normal
form if it is the conjunction of a set of clauses,
each of which is the disjunction of a set of literals,
each of these being either a variable or the

negation of a variable.

A Boolean expression is in 3CNF if it is in
conjunctive normal form and each clause contains

at most 3 literals.

3SAT is defined as the language consisting of
those expressions in 3CNF that are satisfiable.

3SAT is NP-complete.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Composing Reductions

Polynomial time reductions are clearly closed

under composition.

So, if L1 <p L and Ly <p L3, then we also have
Ly <, Ls.

Note, this is also true of <;,, though less

obvious.

If we show, for some problem A in NP that

SAT <p A

3SAT <p A
it follows that A is also NP-complete.

University of Cambridge Computer Laboratory, April 23, 2001

Independent Set

Given a graph G = (V, E), a subset X C V of the
vertices is said to be an independent set, if there

are no edges (u,v) for u,v € X.

The natural algorithmic problem is, given a
graph, find the largest independent set?

To turn this optimisation problem into a decision

problem, we define IND as:

The set of pairs (G, K), where G is a
graph, and K is an integer, such that G
contains an independent set with K or

more vertices.

IND is clearly in NP. We now show it is
NP-complete.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

We can construct a reduction from 3SAT to IND.

A Boolean expression ¢ in 3CNF with m clauses is
mapped by the reduction to the pair (G, m),
where G is the graph obtained from ¢ as follows:

(G contains m triangles, one for each
clause of ¢, with each node representing
one of the literals in the clause.

Additionally, there is an edge between
two nodes in different triangles if they
represent literals where one is the
negation of the other

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

(5131 V L9 V _'51?3) N (333 V L9 V _'5131)

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Given a graph G = (V, E), a subset X C V of the
vertices is called a clique, if for every u,v € X,

(u,v) is an edge.

As with IND, we can define a decision problem

version:

CLIQUE is defined as:

The set of pairs (G, K), where G is a
graph, and K is an integer, such that G

contains a clique with K or more vertices.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

CLIQUE is in NP by the algorithm which guesses
a clique and then verifies it.

CLIQUE is NP-complete, since
IND <p CLIQUE

by the reduction that maps the pair (G, K) to
(G, K), where G is the complement graph of G.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Hamiltonian Graphs

Given a graph G = (V, E), a Hamiltonian cycle in

(7 is a path in the graph, starting and ending at
the same node, such that every node in V' appears

on the cycle exactly once.

A graph is called Hamzltonian if it contains a

Hamiltonian cycle.

The language HAM is the set of encodings of

Hamiltonian graphs.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

The first of these graphs is not Hamiltonian, but
the second one is.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

We can construct a reduction from 3SAT to HAM

Essentially, this involves coding up a Boolean
expression as a graph, so that every satisfying
truth assignment to the expression corresponds to
a Hamiltonian circuit of the graph.

This reduction is much more intricate than the
one for IND.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Travelling Salesman

As with other optimisation problems, we can
make a decision problem version of the Travelling

Salesman problem.

The problem TSP consists of the set of triples

(Vie: V xV — N, ¢

such that there is a tour of the set of vertices V/,
which under the cost matrix ¢, has cost ¢t or less.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

There is a simple reduction from HAM to TSP,
mapping a graph (V, E) to the triple
(V,c:V xV — IN,n), where

(u.v) 1 if (u,v) € F
clu,v) =
2 otherwise

and n is the size of V.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Sets, Numbers and Scheduling

It is not just problems about formulas and graphs
that turn out to be NP-complete.

Literally hundreds of naturally arising problems
have been proved NP-complete, in areas involving
network design, scheduling, optimisation, data

storage and retrieval, artificial intelligence and

many others.

Such problems arise naturally whenever we have
to construct a solution within constraints, and the
most effective way appears to be an exhaustive

search of an exponential solution space.

We now examine three more NP-complete
problems, whose significance lies in that they have
been used to prove a large number of other
problems NP-complete, through reductions.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

3D Matching

The decision problem of 3D Matching is defined

asS:

Given three disjoint sets X, Y and Z,
and a set of triples M C X xY x Z, does

M contain a matching?

I.e. is there a subset M’ C M, such that
each element of X, Y and Z appears in
exactly one triple of M'?

We can show that 3DM is NP-complete by a
reduction from 3SAT.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

If a Boolean expression ¢ in 3CNF has n
variables, and m clauses, we construct for each

variable v the following gadget.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

In addition, for every clause ¢, we have two

elements z. and y..

If the literal v occurs in ¢, we include the triple

(Zey Yey Zue)

in M.

Similarly, if ¥ occurs in ¢, we include the triple

(Zey Yey Zue)

in M.

Finally, we include extra dummy elements in X

and Y to make the numbers match up.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Exact Set Covering

Two other well known problems are proved
N P-complete by immediate reduction from 3DM.

FEzact Cover by 3-Sets is defined by:

Given a set U with 3n elements, and a
collection S = {51,...,n} of

three-element subsets of U, is there a sub
collection containing exactly n of these
sets whose union is all of U?

The reduction from 3DM simply takes
U=XUY UZ, and S to be the collection of
three-element subsets resulting from M.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Set Covering

More generally, we have the Set Covering

problem:

Given a set U, a collection of
S ={S1,...,Sm} subsets of U and an
integer budget B, is there a collection of

B sets in S whose union is U?

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

KNAPSACK is a problem which generalises many
natural scheduling and optimisation problems,
and through reductions has been used to show

many such problems NP-complete.

In the problem, we are given n items, each with a

positive integer value v; and weight w;.

We are also given a maximum total weight W,

and a minimum total value V.

Can we select a subset of the items whose
total weight does not exceed W, and

whose total value exceeds V7

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

The proof that KNAPSACK is NP-complete is by
a reduction from the problem of Exact Cover by
3-Sets.

Given a set U = {1,...,3n} and a collection of
3-element subsets of U, S = {51,...,5n}.

We map this to an instance of KNAPSACK with
m elements each corresponding to one of the §;,

and having weight and value
EjESi (3n + 1)3n—j
and set the target weight and value both to

2oy (3n 4 1)%n

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Scheduling

Some examples of the kinds of scheduling tasks
that have been proved NP-complete include:

Timetable Design

Given a set H of work periods, a set W of
workers each with an associated subset of

H (available periods), a set T of tasks

and an assignment r : W x T' — IN of
required work, is there a mapping
f:WxTxH — {0,1} which completes
all tasks?

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Scheduling

Sequencing with Deadlines

Given a set 1" of tasks and for each task a
length | € IN, a release time r € IN and a
deadline d € IN, is there a work schedule
which completes each task between its

release time and its deadline?

Job Scheduling

Given a set T of tasks, a number m € IN
of processors a length [€ IN for each
task, and an overall deadline D € IN, is
there a multi-processor schedule which
completes all tasks by the deadline?

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Succinct Certificates

The complexity class NP can be characterised as
the collection of languages of the form:

L={z|3yR(z,y)}

Where R is a relation on strings satisfying two

key conditions
1. R is decidable in polynomial time.

2. R is polynomially balanced. That is, there is a
polynomial p such that if R(x,y) and the
length of x is n, then the length of ¥ is no
more than p(n).

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Succinct Certificates

y is a certificate for the membership of x in L.

Example: If L is SAT, then for a satisfiable
expression x, a certificate would be a satisfying

truth assignment.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

As co-NP is the collection of complements of
languages in NP, and P is closed under
complementation, co-NP can also be characterised
as the collection of languages of the form:

L= {z|Vyly| <p(z|) = R(z,y)}

NP — the collection of languages with succinct

certificates of membership.

co-NP — the collection of languages with succinct

certificates of disqualification.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Any of the situations is consistent with our

present state of knowledge:
e P=NP =co-NP
e P =NP Nco-NP # NP # co-NP
e P # NP Nco-NP = NP = co-NP
e P # NP Nco-NP # NP # co-NP

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

co-NP-complete

VAL — the collection of Boolean expressions that
are valid is a co-NP-complete.

Any language L that is the complement of an
NP-complete language is co-NP-complete.

Any reduction of a language Lq to Lo is also a

reduction of L;—the complement of L;—to Lo—the

complement of Ls.

There is an easy reduction from the complement
of SAT to VAL, namely the map that takes an

expression to its negation.

VAL € P = P = NP = co-NP
VAL € NP = NP = co-NP

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Prime Numbers

Consider the decision problem PRIME:

Given a number n, is it prime?

This problem is in co-NP.

Vy(y <z — (y =1V =(div(y,))))

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Primality

Another way of putting this is that the problem of
checking whether a number is composite is in NP.

As it happens, PRIME is also in NP.

Pratt (1976) showed how to construct succinct
certificates of primality. They are based on the
following number theoretic fact:

A number p > 2 is prime if, and only if,
there is a number r, 1 < r < p, such that
—1

rP—1 —1 modp and TPT 75 1 modp for

all prime divisors q of p — 1.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Certificates

A certificate C'(p) that p is prime consists of the

following:

(’I“, qi, C(q1)7 ooy 4k, C(Qk))

To complete the proof that PRIME is in NP, we

need to prove two things.

1. C(p) is succinct — that is there is a
polynomial bound on the length of C(p), in
terms of the length of p.

. There is a polynomial time algorithm that
will check that C(p) is a valid certificate of
the primality of p.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

For the first part, we can show by induction on p
that:

[C(p)] < 4(log p)?

For the second part, note that r* mod p can be
computed with O(log k) multiplications.

Since each of the multiplications is done modp,
we know that it involves only O(log p)-bit
numbers, and can be done in O((logp)?) time.

Finally, »* mod p has to be computed for fewer
than O(logp) distinct numbers k.

Overall, our verification algorithm is O((logp)®) —
polynomial in the length of p.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Optimisation

The Travelling Salesman Problem was originally

conceived of as an optimisation problem

We forced it into the mould of a decision problem
— TSP — in order to fit it into our theory of

NP-completeness.

Similar arguments can be made about the
problems CLIQUE and IND.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

This is still reasonable, as we are establishing the
difficulty of the problems.

A polynomial time solution to the optimisation
version would give a polynomial time solution to

the decision problem.

Also, a polynomial time solution to the decision
problem would allow a polynomial time algorithm
for finding the optimal value, using binary search,

if necessary.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Function Problems

Still, there is something interesting to be said for

function problems arising from NP problems.

Suppose

L={z|3yR(z,y)}
where R is a polynomially-balanced, polynomial
time decidable relation.

A witness function for L is any function f such
that:

o if z € L, then f(z) =y for some y such that
R(z,y);

o f(x)= “no” otherwise.

The class FNP is the collection of all witness

functions for languages in NP.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

FNP and FP

A function which, for any given Boolean
expression ¢, gives a satisfying truth assignment
if ¢ is satisfiable, and returns “no” otherwise, is a
witness function for SAT.

If any witness function for SAT is computable in
polynomial time, then P = NP.

If P = NP, then every function in FNP is

computable in polynomial time, by a binary
search algorithm.

P = NP if, and only ifFNP = FP

Under a suitable definition of reduction, the
witness functions for SAT are FNP-complete.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Factorisation

The factorisation function maps a number n to its

prime factorisation:

ok1gkz ... plm

m

along with certificates of primality for all the

primes involved.

This function is in FNP.

The corresponding decision problem (for which it
is a witness function) is trivial - it is the set of all

numbers.

Still, it is not known whether this function can be

computed in polynomial time.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory

Cryptography

Alice wishes to communicate with Bob without

Eve eavesdropping.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory 100

Private Key

In a private key system, there are two secret keys

e — the encryption key
d — the decryption key

and two functions D and E such that:

for any =,

D(E(z,e),d) ==

For instance, taking d = e and both D and E as

exclusive or, we have the one time pad:

(rde)De==x

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory 101

One Time Pad

The one time pad is provably secure, in that the
only way Eve can decode a message is by knowing
the key.

If the original message x and the encrypted

message y are known, then so is the key:

e=xrxDYyY

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory 102

Public Key

In public key cryptography, the encryption key e

is public, and the decryption key d is private.
We still have,

for any x,

D(E(z,e),d) ==

If F is polynomial time computable (and it must
be if communication is not to be painfully slow),
then the function that takes y = F(x,e) to x
(without knowing d), must be in FNP.

Thus, public key cryptography is not provably
secure in the way that the one time pad is. It
relies on the existence of functions in FNP — FP.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory 103

One Way Functions

A function f is called a one way function if it

satisfies the following conditions:
1. f is one-to-one.
2. for each z, |z|Y/* < |f(x)| < |z|* for some k.
3. f € FP.
4. f~1 ¢ FP.

We cannot hope to prove the existence of one-way

functions without at the same time proving
P £ NP.

It is strongly believed that the RSA function:

f(z,e,p,C(p),q,C(q)) = (z° mod pq, pq, e)

is a one-way function.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory 104

Though one cannot hope to prove that the RSA
function is one-way without separating P and NP,
we might hope to make it as secure as a proof of
NP-completeness.

Definition

A nondeterministic machine is unambiguous if, for
any input z, there is at most one accepting
computation of the machine.

UP is the class of languages accepted by

unambiguous machines in polynomial time.

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory 105

Equivalently, UP is the class of languages of the

form

{z | IyR(z,y)}

Where R is polynomial time computable,
polynomially balanced, and for each z, there is at
most one y such that R(x,y).

University of Cambridge Computer Laboratory, April 23, 2001

Complexity Theory 106

UP One-way Functions

We have

It seems unlikely that there are any NP-complete
problems in UP.

One-way functions exist if, and only if, P # UP.

University of Cambridge Computer Laboratory, April 23, 2001

