Complexity Classes

A complexity class is a collection of languages. We determine a complexity class by specifying
three things:

1. A model of computation (such as a deterministic Turing machine, or a nondeterministic
Turing Machine, or a parallel Random Access Machine).

2. A resource (such as time, space or number of processors).

3. A set of bounds. This is a set of functions that are used to bound the amount of
resource we can use.

What resources it is reasonable to consider depends on the model of computation we have
chosen. We will, in general, consider Turing machines (either deterministic or nondetermin-
istic). The resources we are primarily concerned with are ¢#me (which means the number of
steps in a computation), and space, which means the maximum number of tape cells used in
a computation. Many other models of computation allow similar notions of time and space
to be defined. For instance, on a register machine, one could define space as the number
of registers used, though a more reasonable measure might be to count the number of bits
required to represent the numbers stored in the registers. Time could still be defined as the
number of steps in the computation.

As long as we are considering deterministic machines, if we choose our set of functions
(in item 3) to be broad enough, the languages that are included in the complexity class do
not depend on the particular model of computation. So, if we take the collection of functions
to be the set of all polynomials, it does not matter whether we consider Turing machines
or register machines, we get the same class of languages either way. This is not the case if
we take the class of all linear functions. So, whether or not a language is decidable in linear
time is not just a property of the language, but is sensitive to the model of computation.
However, it is reasonable to say that whether or not a language is decidable in polynomial
time is a property of the language itself, much like the property of being decidable itself.

Constructible Functions When choosing a function f to serve as a bound of resources,
for example in defining a complexity class such TIME(f(n)), we need to be careful. For one
thing, as we saw before, it makes sense to only consider computable functions. However,
there are some quite unnatural computable functions—for instance, a function that is 2"
for even n, and logn for odd numbers, which will naturally lead to quite unnatural classes
of languages if used in the definition of a complexity class. From now on, we restrict the
functions we use for bounds to what are called constructible functions.

Definition

A function f : IN — IN is constructible if:

e f is non-decreasing, i.e. f(n+ 1) > f(n) for all n; and

e there is a machine M which, on any input of length n, replaces the input with the
string 0/, and M runs in time O(n + f(n)) and uses O(f(n)) work space (recall we
do not count space on the input tape).

The intuition behind the second requirement is that computing the function f shouldn’t
require more resources than the limit imposed by f itself. This will, in particular, allow us to
compose the computation of f with any other computation that takes place within O(f(n))
time and space. Thus, we can prove results such as the following:

If L isin TIME(f(n)), then there is a machine M that accepts L, and which halts
on all inputs in O(f(n)) steps.

Ezamples All of the following functions are constructible:

e [logn];

e 2",

If f and g are constructible functions, then so are f + g, f - g, 2/ and f(g) (this last,
provided that f(n) > n). This, together with the above examples, allows us to generate all
the constructible functions we will ever need, including all polynomials p(n), all functions
27(") for polynomials p, and much else besides.

Nondeterministic Classes We have already defined TIME(f(n)) and SPACE(f(n)). We
can define similar classes for nondeterministic computation.

NTIME(f(n)) is defined as the class of those languages L which are accepted by
a nondeterministic Turing machine M, such that for every x € L, there is an
accepting computation of M on z of length at most f(n).

NSPACE(f(n)) is the class of languages accepted by a non-deterministic Turing
machine using at most f(n) work space.

Complexity Classes However, in general we are not interested in complexity classes
defined by single functions. We consider wider classes, in order to obtain robust definitions
of complexity classes that are independent of particular machine models. The classes we are
particularly interested in are the following:

P = U2, TIME(nk)
The class of languages decidable in polynomial time.

NP = U2, NTIME(n*)
The class of languages recognisable by a nondeterministic machine in polynomial time.

L = Up>, SPACE(k-logn) The class of languages decidable using logarithmic workspace.

NL = Ug2, NSPACE(k -logn) The class of languages recognisable by a nondeterministic
machine using logarithmic workspace.

10

PSPACE = U2, SPACE(nk)
The class of languages decidable in polynomial space.

e NPSPACE = |J;2, NSPACE(n*) The class of languages recognisable by a nondetermin-
istic machine using polynomial space.

Complement Classes For any language L C >*, the complement of L, sometimes written
L is the language X*\ L. For any of the classes P, L, PSPACE, defined in terms of deterministic
machines, if L is in the class, then so is L. We say that the classes P, L and PSPACE are
closed under complementation. To see why this is the case, note that if M is a deterministic
machine accepting a language L, and f is a constructible function bounding the running time
or space of M, then we can obtain a machine M’ which halts on all inputs within bounds
O(f). If we now define a machine M" which is the same as M’, but with the states acc and
rej interchanged, it is easily seen that M" accepts L within resource bounds given by f.

This argument does not work for nondeterministic languages. Interchanging the accepting
and rejecting states of a nondeterministic machine accepting a language L does not result in a
machine that accepts L. For a particular input string 2, a nondeterministic machine may have
computations leading to both acc and rej. The machine with these two states interchanged
will still have computations to both of them, and will also accept z. Nondeterministic
complexity classes are not necessarily closed under complementation. We, therefore, define
some more complexity classes:

co-NL — the languages whose complements are in NL.
co-NP — the languages whose complements are in NP.
co-NPSPACE — the languages whose complements are in NPSPACE.

As it happens, we are able to show that NPSPACE = co-NPSPACE, and NL = co-NL,
or in other words, that NPSPACE and NL are closed under complementation. It remains
an open question whether NP is closed under complementation, though it is widely believed
that it is not.

Inclusions

We can show that the following inclusions hold among the complexity classes we have defined
above (some of these inclusions are easier to prove than others):

L C NL C P C NP C PSPACE C NPSPACE.

Moreover, since the classes L, P and PSPACE are all closed under complementation, we
can strengthen some of these to the following:

LC NLNco-NL,P C NPNco-NP and PSPACE C NPSPACE N co-NPSPACE.

To prove these inclusions, we show the following general inclusions hold for any con-
structible function f:

11

1. SPACE(f(n)) C NSPACE(f(n));

2. TIME(f(n)) C NTIME(f (n));

3. NTIME(f(n)) C SPACE(f(n));

4. NSPACE(f(n)) C TIME(k'*5™+/() for some constant k;

Of these, 1 and 2 are straightforward from the definitions, as any deterministic machine is
just a nondeterministic machine in which the transition relation § happens to be functional.

The inclusion in 3 is an easy simulation. A deterministic machine can simulate a non-
deterministic machine M by backtracking. In order to do this, it has to keep track of the
current configuration of M as well as all the choices taken wherever a nondeterministic choice
was available to M. The space required to record these choices is clearly no more than a
constant multiple of the length of the computation. Moreover, the space required to store
the configuration of M also cannot be more than the number of steps in the computation of
M so far. So, the total work space required by the simulating machine is at O(f), where f
is the time bound on M.

Inclusion 4 requires some more work to establish, and we will return to it later.

Hierarchy

While proving lower bounds for specific problems such as the travelling salesman problem
remains the holy grail of complexity theory, one instance where we know how to prove lower
bounds is for problems that are constructed specifically for this purpose. That is, we can
use diagonalisation to construct a language with a specific lower bound. This allows us to
show, in particular that increasing the time (or space) bounds on a complexity class does
give us the ability to recognise more languages.

One such hierarchy theorem we can show is:
Time Hierarchy Theorem
For any constructible function f with f(n) > n, TIME(f(n)) is properly contained in
TIME(f(2n + 1)3).

To see this, we define a version of the halting problem with time bound f. That is, define
the language:

Hy ={[M],z | M accepts z in f(|z|) steps}

We now make two observations. First:
H; e TIME(f(n)3).

This is actually a rather loose upper bound. A machine for recognising H; would first
compute f(|z]), and on a separate work tape, write out 0, f(|z|) times, to use as a clock for
the rest of the computation. It would then simulate machine M on input z for f(|z|) many
steps, at each step looking through the description of M given for the appropriate transition.
The calculation of the time bound is left as an exercise.

The second observation is:

Hy ¢ TIME(f(|n/2])).

12

The argument for this is similar to the argument that the halting problem H is undecid-
able. Suppose Hy € TIME(f(|n/2])). Then, we can construct a machine N which accepts
[M] if, and only if, [M],[M] ¢ H;. The machine simply copies [M], inserting a comma
between the two copies, and then runs the machine that accepts H;. Moreover, the running
time of N on an input of length n is f(|(2n +1)/2]|) = f(n). We can now as whether N
accepts the input [NV], and we see that we get a contradiction either way.

From these two observations, the Time Hierarchy Theorem immediately follows.

Among the consequences of the Time Hierarchy Theorem is that there is no fixed k such
that all languages in P can be decided in time O(n*). Another consequence is that the
complexity class EXP, defined by:

EXP = | TIME(2™),
k=1

is a proper extension of P. That is, P C EXP, but EXP ¢ P.
Similar results can be obtained for space complexity, by proving a Space Hierarchy The-
orem. See Exercise Sheet 2.

Reachability

To establish the fourth of the inclusions we claimed, namely that
NSPACE(f(n)) C TIME(El8n+/ ()

we analyse a particular problem on graphs, called the graph reachability problem. This
problem is central to our understanding of nondeterministic space complexity classes. Before
we begin its study, it is worth pointing out that the above mentioned inclusion implies that
NL C P. This is because if we let f(n) be logn in the inclusion, we have that:

NSPACE (logn) C TIME(k?'¢™) = TIME(n?"8%).

The class on the right is clearly contained in P.

The Reachability problem is defined as the problem where, given as input a directed graph
G = (V,E), and two nodes a,b € V we are to decide whether there is a path from a to b
in G. A straightforward algorithm for doing this searches through the graph, proceeding as
follows:

1. mark node a, leaving other nodes unmarked, and initialise set S to {a};

2. while S is not empty, choose node 7 in S: remove ¢ from S and for all 5 such that there
is an edge (i,7) and j is unmarked, mark j and add j to S;

3. if b is marked, accept else reject.

The algorithm as presented is somewhat vague in the details, but it can clearly be turned
into a working implementation. To give a more detailed specification, one would have to

13

state what data structure is used to implement S, and how the node ¢ is chosen in step 2.
For instance, S could be implemented as a stack, which would result in a depth-first search
of the graph G, or it could be a queue, resulting in a breadth-first search. However, it should
be reasonably clear that any implementation can be carried out on a Turing machine.

What is the time and space complexity of this algorithm? During the running of the
algorithm, every edge in G must be examined at least once. Moreover, it can be seen that
each edge is not examined more than once. This is because no vertex is added to S more
than once, since once it is added, it is marked, and each edge is examined only when the
vertex at its source is removed from S. So, we can safely say, if n is the number of vertices
in the graph, that the running time of the algorithm is O(n?). An actual implementation on
a Turing machine may require more time, but it can certainly be done in polynomial time,
a point that has been emphasised several time earlier.

In terms of space, the only requirements for work space are the two sets—S and the set
of marked vertices. Each can be implemented using n bits, one for each vertex. We may
need some additional counters, each of logn bits, but the total work space requirement can
be bounded by O(n).

So, the above algorithm establishes that Reachability is a problem in P, and in SPACE(O(n)).
However, the latter upper bound can be improved. We first demonstrate a nondeterministic
algorithm for solving the Reachability problem that shows that this problem is in NL. The
algorithm is the following:

1. write the index of node a in the work space;
2. if 4 is the index currently written on the work space:

(a) if 4 = b then accept, else
guess an index j (logn bits) and write it on the work space.

(b) if (¢,7) is not an edge, reject, else replace i by j and return to (2).

In the above description, to “guess an index j” means to perform logn steps, each of
which has a nondeterministic choice of either writing a 0 or a 1 on a work tape and moving
to the right. At the end of these steps, logn bits have been written. Moreover, for every
index j, there is a computation path that results in j being written on the tape. Essentially,
this algorithm can be seen as trying all possible indices j in parallel. For those j for which
there is is an edge (7, 7), the computation can continue. If there is any path from a to b in
the graph, there will be a computation of this machine which successively visits all the nodes
on that path.

The space requirements of the above algorithm are simple. It needs to store two indices,
each of logn bits, and therefore uses O(logn) space. Hence Reachability is in NL.

The significance of the fact that Reachability is in NL is in that this problem can stand in
for all problems in NL. There is a precise sense in which this is true. See Exercise sheet 2 for
details. Here, we will just note that the fact that there is a polynomial time deterministic
algorithm for Reachability can be used to show that all problems in NL are in P. In general,
we wish to show that for any constructible function f, NSPACE(logn) C TIME(k?'°s™),

Suppose M is a nondeterministic machine working with workspace bounded by f(n) for
inputs of length n. For a given input string x of length n there is a fixed finite number of

14

configurations of M that are possible. The finite state control can be in any of ¢ states,
where ¢ is a number which does not depend on z at all. The work tape can have one of s/(®
strings on it, where s is the number of distinct symbols in the tape alphabet. The head on
the input tape can be in one of n different positions, and the head on the work tape can
be in one of f(n) different positions. Thus, the total number of distinct configurations is no
more than ¢nf(n)s/(™. For some constant c, this is less than nc/™.

We define the configuration graph of the machine M on input x to be the graph whose
nodes are all possible configurations of M with z on the input tape, and the work tape
having at most f(|z|) symbols, and there is an edge between two configurations ¢ and j if,
and only if, i —,; 7, i.e. the machine M can make the transition from configuration 7 to
configuration j in one step.

Then, it is clear that M accepts x if, and only if, there is a path from the starting con-
figuration (s,>, z,>,€) to an accepting configuration (that is a configuration with state acc).
So, the problem of determining whether M accepts z is the same as the graph reachability
problem on the configuration graph of M on z. We have a deterministic algorithm that
solves the graph reachability problem in time O(n?). Thus, given any nondeterministic ma-
chine M that runs using workspace f(n), we can define a deterministic machine that accepts
the same language which runs by first generating the configuration graph of M on the given
input z, and then using the Reachability algorithm. The time taken by this deterministic
machine is O(g?), where g is the size of the configuration graph. That is the time is at most
d (ncf™)? for some constant ¢/. But this is £'°8™+/(*)_ for some constant k < ¢/c?.

In addition to establishing that NL C P, this also shows that NPSPACE C EXP.

Savitch’s Theorem

We can get more information about nondeterministic space complexity classes by examining
other algorithms for Reachability. In particular, we can show that Reachability is solvable by
a deterministic algorithm which uses only O((logn)?) space. If we are only concerned about
space, and not about time, this is an improvement on the deterministic algorithm we saw
before. Consider the following recursive algorithm for determining if there is a path in the
graph from a to b of length ¢ or less.

Path(a,b,i).

if i=1 and there is no edge (a,b)
then reject
else if there is an edge (a,b) or a=b
then accept
else for each vertex x
if Path(a,x,ceil(i/2)) and Path(x,b,ceil(i/2)) then accept

Where ceil(i/2) is [i/2].

There is a path from a to b in a graph G with n vertices if, and only if, there is a path
of length n or less. So, we can solve the reachability problem by checking if Path(a,b,n)
holds. To analyse the space complexity of this algorithm, observe that the recursion can

15

be implemented by keeping a stack of records, each of which contains a triple (a, b,4). The
candidate middle vertex x can be implemented as a counter that takes values between 1 and
n, and therefore requires logn bits. Each activation record on the stack can be represented
using 3logn bits (logn for each of the three components). The maximum depth of recursion
is at most logn, since the value of ¢ is halved at each nested recursive call. Moreover, for
each nested call, at most two activation records are placed on the stack. Thus, we need space
on the stack for at most 2logn records. It follows that 6(logn)? bits of space on the stack
suffice. The algorithm therefore used space O((logn)?).

We can use this algorithm to show that for any constructible function f such that f(n) >
logn, NSPACE(f(n)) € SPACE(f(n)?). The idea, once again, is to solve the Reachability
problem on the configuration graph of a nondeterministic machine M, which uses workspace
O(f(n)). The configuration graph has g = ¢'°™*+/(") nodes, for some constant c, and therefore
the reachability problem can be solved using space

O((log g)*) = O((logn + f(n))*) = O((f(n))*)

. The last of these equalities follows from the fact that f(n) > logn.

This would work, except that, in order to run the O((logn)?) algorithm for reachability,
we have to first produce the configuration graph on tape. And the tape that contains the
configuration graph is part of the work space of the machine that simulates M. However, the
configuration graph has 6"+ nodes, and therefore takes more than f(n)? space. The
solution is that we do not keep the entire configuration graph on tape. Rather, whenever we
need to look up the graph, that is, when we need to check for a pair (i, j) of configurations
whether there is an edge between them, we write out the pair of configurations and check,
by looking at the machine M, whether configuration j can be reached from i in one step. In
effect, the description of M serves as a compact description of the configuration graph. With
this, we can see that the total amount of work space needed is no more than O((f(n))?).

From the inclusion NSPACE(f(n)) C SPACE(f(n)?) follows Savitch’s theorem:
Theorem
PSPACE = NPSPACE.

From which it also follows that NPSPACE = co-NPSPACE, since PSPACE is closed under
complementation. However, a more general result about the closure of nondeterministic
space classes under complementation is known. Immerman and Szelepcsenyi proved that
for any constructible function f with f(n) > logn, NSPACE(f(n)) = co-NSPACE. The
proof is based on a still more clever algorithm for Reachability, which shows that there is a
nondeterministic machine, which with O(logn) work space determines the number of nodes
reachable from a node a.

16

