Complexity Theory

Easter 2001 Suggested Exercises 1

- 1. In the lecture, a proof was sketched showing a $\Omega(n \log n)$ lower bound on the complexity of the sorting problem. It was also stated that a similar analysis could be used to establish the same bound for the Travelling Salesman Problem. Give a detailed sketch of such an argument.
- 2. On slide 24 of the notes, a number of functions are listed as being constructible. Show that this is the case by giving, for each one, a description of an appropriate Turing machine.

Prove that if f and g are constructible functions and $f(n) \ge n$, then so are f(g), f + g, $f \cdot g$ and 2^f .

- 3. For any constructible function f, and any language $L \in \mathsf{TIME}(\mathsf{f}(\mathsf{n}))$, there is a machine M that accepts L and halts in time O(f(n)) for all inputs of length n. Give a detailed argument for this statement, describing how M might be obtained from a machine accepting L in time f(n).
- 4. Consider the language L in the alphabet $\{a,b\}$ given by $L = \{a^nb^n \mid n \in \mathbb{N}\}$. $L \notin \mathsf{SPACE}(\mathsf{c})$ for any constant c. Why?