Operating Systems

Steven Hand
12 lectures for CST Ia

Easter Term 2000

Part II: Operating System Functions
(Handout 1 of 2)

What is an Operating System?

e A program which controls the execution of all
other programs (applications).

e Acts as an intermediary between the user(s) and
the computer.

e Objectives:
— convenience,
— efficiency,

— extensibility.

e Similar to a government ...

An Abstract View

The Operating System (OS):

App1l
App 2
App N

Operating System

S T

Hardware

— controls all execution.
— multiplexes resources between applications.

— abstracts away from complexity.

Typically also have some libraries and some tools
provided with OS.

Are these part of the OS? Is IE4 a tool?

— no-one Can agree ...

For us, the OS ~ the kernel.

In The Beginning ...
1949: First stored-program machine (EDSAQC)

to ~ 1955: “Open Shop".
— large machines with vacuum tubes.
— I/O by paper tape / punch cards.

— user = programmer = operator.

To reduce cost, hire an operator:

— programmers write programs and submit
tape/cards to operator.

— operator feeds cards, collects output from
printer.

Management like it.
Programmers hate it.
Operators hate it.

need something better.

Batch Systems

e Introduction of tape drives allow batching of jobs:
— programmers put jobs on cards as before.
— all cards read onto a tape.
— operator carries input tape to computer.
— results written to output tape.

— output tape taken to printer.

e Computer now has a resident monitor:
— Initially control is in monitor.
— Monitor reads job and transfer control.
— At end of job, control transfers back to
monitor.
e Even better: spooling systems.
— use interrupt driven I/0O.
— use magnetic disk to cache input tape.

— fire operator.

e Monitor now schedules jobs ...

Multi-Programming

Job 4 Job 4 Job 4
Job 3 Job 3 Job 3
Job 2 Job 2 Job 2
Job 1 Job 1 Job 1
Operating Operating Operating
System System System

Use memory to cache jobs from disk = more than
one job active simultaneously.

Two stage scheduling:
1. select jobs to load: job scheduling.

2. select resident job to run: CPU scheduling.
Users want more interaction = time-sharing:

e.g. CTSS, TSO, Unix, VMS, Windows NT ...

Today and Tomorrow

Single user systems: cheap and cheerful.
— personal computers.

— no other users = ignore protection.

— e.g. DOS, Windows, Win 95/98, ...

RT Systems: power is nothing without control.
— hard-real time: nuclear reactor safety monitor.

— soft-real time: mp3 player.

Parallel Processing: the need for speed.
— SMP: 2—8 processors in a box.

— MIMD: super-computing.

Distributed computing: global processing?
— Java: the network is the computer.

— CORBA: the computer is the network.

Monolithic Operating

Scheduler

Systems

e Oldest kind of OS structure (“modern” examples

are DOS, original MacOS)

e Problem: applications can e.g.
— trash OS software.
— trash another application.
— hoard CPU time.
— abuse I/O devices.

— etc ...

e No good for fault containment (or multi-user).

e Need a better solution ...

Dual-Mode Operation

e Want to stop buggy (or malicious) program from
doing bad things.

= provide hardware support to differentiate between
(at least) two modes of operation.

1. User Mode : when executing on behalf of a
user (i.e. application programs).

2. Kernel Mode : when executing on behalf of
the operating system.

e Hardware contains a mode-bit, e.g. O means
kernel, 1 means user.

interrupt or fault

set user mode

e Certain machine instructions only possible in
kernel mode ...

Protecting I/O & Memory

e First try: make I/O instructions privileged.
— applications can’'t mask interrupts.

— applications can’t control I/O devices.

e But:
1. Application can rewrite interrupt vectors.

2. Some devices accessed via memory
e Hence need to protect memory also ...

e e.g. define a base and a limit for each program.

Ox FFFF
Job 4
0xD800
Job 3 limit register
0x9800 < 0x4800
Job 2
0x5000 <«—— 0x5000
Job 1 base register
0x3000 >
Operating
0x0000 System

e Accesses outside allowed range are protected.

10

Protection Hardware

>

P

v O

CPU — > B—i< 2~ &
n

=

AN, |

vector to OS (address error)

Hardware checks every memory reference.

Access out of range = vector into operating
system (just as for an interrupt).

Only allow update of base and limit registers in
kernel mode.

Typically disable memory protection in kernel
mode (although a bad idea).

Other hardware protection schemes possible ...

11

Protecting the CPU

Need to ensure that the OS stays in control.

= use a timer.

Usually use a countdown timer, e.g.
1. Set timer to initial value (e.g. OxFFFF).
2. Every tick (e.g. 1us), timer decrements value.

3. When value hits zero, interrupt.
(Modern timers have programmable tick rate.)
Hence OS gets to run periodically and do its stuff.

Need to ensure only OS can load timer, and that
interrupt cannot be masked.

— use same scheme as for other devices.

Same scheme can be used to implement
time-sharing.

12

Kernel-Based Operating Systems

iHs

_Unpriv nnnnn
Priv | Kernel System Calls
Scheduler
Flle System Protocol Code
SIW .??_V_‘.‘??__D__T'Y.e_i R
L — :

Applications can’'t do I/O due to protection

= operating system does it on their behalf.

operating system:

Need secure way for application to invoke

= require a special (unprivileged) instruction to
allow transition from user to kernel mode.

Generally called a software interrupt since

operates similarly to (hardware) interrupt ...

Set of OS services accessible via software

interrupt mechanism called system calls.

13

Microkernel Operating Systems

Device
Driver

Device
Driver

e Alternative structure:
— Push some OS services into servers.

— Servers may be privileged (i.e. operate in
kernel mode).

e Increases both modularity and extensibility.

e Still access kernel via system calls, but need new
way to access servers:

= interprocess communication (IPC) schemes.

14

Kernels versus Microkernels

Lots of IPC adds overhead

= microkernels usually perform less well.

Microkernel implementation sometimes tricky:
need to worry about synchronisation.

Microkernels often end up with redundant copies
of OS data structures.

today most common operating systems blur the
distinction between kernel and microkernel.

e.g. linux is “kernel”, but has kernel modules and
certain servers.

e.g. Windows NT was originally microkernel (3.5),
but now (4.0) pushed lots back into kernel for
performance.

Still not clear what the best OS structure is, or
how much it really matters ...

15

Operating System Functions

e Regardless of structure, OS needs to securely
multiplex resources, i.e.

1.
2.

protect applications from each other, yet

share physical resources between them.

e Also usually want to abstract away from grungy
harware, i.e. OS provides a virtual machine:

share CPU (in time) and provide a virtual
processor,

allocate and protect memory and provide a
virtual address space,

present (relatively) hardware independent
virtual devices.

divide up storage space by using filing systems.

e Remainder of this part of the course will look at
each of the above areas in turn ...

16

Process Concept

From user’'s point of view, the operating system is
there to execute programs:

— on batch system, refer to jobs
— on interactive system, refer to processes

— (we’ll use both terms fairly interchangeably)

Process # Program:

— A program is static, while a process is dynamic

A : : "
— In fact, a process = “a program in execution

(Note: “program’ here is pretty low level, i.e.
native machine code or executable)

Process includes:
1. program counter
2. stack

3. data section

Processes execute on virtual processors

17

Process States

admit release

dispatch

timeout
or yield

Blocked

e AS a process executes, it changes state:

New: the process is being created
Running: instructions are being executed

Ready: the process is waiting for the CPU
(and is prepared to run at any time)

Blocked: the process is waiting for some event
to occur (and cannot run until it does)

Exit: the process has finished execution.

e [he operating system is responsible for
maintaining the state of each process.

18

Process Control Block

Process Number (or Process ID)
Current Process State

CPU Scheduling Information

Program Counter

Other CPU Registers

Memory Mangement Information

Other Information
(e.g. list of open files, name of
executable, identity of owner, CPU
time used so far, devices owned)

<= Refs to previous and next PCBS wump-

OS maintains information about every process in a
data structure called a process control block (PCB):

e Unique process identifier

e Process state (Running, Ready, etc.)

e CPU scheduling & accounting information
e Program counter & CPU Registers

e Memory management information

19

Context Switching

Process A Operating System Process B

executing I
_\A

idle

idle
Save State into PCB A

Restore State from PCB B —™

executing

Save State into PCB B 4

idle
<4— Restore State from PCB A

executing

\

process context — machine environment during
the time the process is actively using the CPU.

i.e. context includes program counter, general
purpose registers, processor status register, ...

To switch between processes, the OS must:

a) save the context of the currently executing
process (if any), and

b) restore the context of that being resumed.

Time taken depends on h/w support.

20

Scheduling Queues

Ready Queue :
. admit __° dispatch release |
- — CPU —
1 timeout or yield
Wait Queue(s)
event - event-wait

CreQte CreQte “========== === === s !
(batch) (interactive)

e Job Queue: batch processes awaiting admission.

e Ready Queue: set of all processes residing in main
memory, ready and waiting to execute.

e Wait Queue(s): set of processes waiting for an
I/O device (or for other processes)

e Long-term & short-term schedulers:

— Job scheduler selects which processes should
be brought into the ready queue.

— CPU scheduler selects which process should be
executed next and allocates CPU.

21

Process Creation

Nearly all systems are hierarchical: parent
processes create children processes.

Resource sharing:
— Parent and children share all resources.
— Children share subset of parent’s resources.

— Parent and child share no resources.

Execution:
— Parent and children execute concurrently.

— Parent waits until children terminate.

Address space:
— Child duplicate of parent.

— Child has a program loaded into it.

E.g. Unix:
— fork() system call creates a new process
— all resources shared (child is a clone).

— execve() system call used to replace the
process’ memory space with a new program.

NT /2000: CreateProcess() system call includes
name of program to be executed.

22

Process Termination

e Process executes last statement and asks the
operating system to delete it (exit):

— Qutput data from child to parent (wait)

— Process’ resources are deallocated by the OS.

e Process performs an illegal operation, e.g.

— makes an attempt to access memory to which
it is not authorised,

— attempts to execute a privileged instruction
e Parent may terminate execution of child processes
(abort, kill), e.g. because
— Child has exceeded allocated resources
— Task assigned to child is no longer required
— Parent is exiting (‘“cascading termination”)
— (many operating systems do not allow a child
to continue if its parent terminates)

e E.g. Unix has wait(), exit() and kill()

e E.g. NT /2000 has ExitProcess() for self and
TerminateProcess() for others.

23

Process Blocking

In general a process blocks on an event, e.q.

— an I/O device completes an operation,

— another process sends a message

Assume OS provides some kind of general-purpose
blocking primitive, e.g. await().

Need care handling concurrency issues, e.d.

if (no key being pressed) {
await (keypress) ;
print ("Key has been pressed!\n");

}
// handle keyboard input

What happens if a key is pressed at the first '{" 7
(This is a big area: lots more detail next year.)

In this course we'’ll assume problems of this sort
do not arise.

24

CPU-1/0 Burst Cycle

Frequency

CPU Burst Duration (ms)

CPU-I/O Burst Cycle: process execution consists
of a cycle of CPU execution and I/O wait.

Processes can be described as either:

1.

I/O-bound: a process which spends more time
doing I/O that than computation; has many
short CPU bursts.

. CPU-bound: a process which spends more

time doing computations; has few very long
CPU bursts.

Observe most processes execute for at most a few
milliseconds before blocking

need multiprogramming to obtain decent overall
CPU utilization.

25

CPU Scheduler

Recall: CPU scheduler selects one of the ready
processes and allocates the CPU to it.

e Can choose a new process to run when:
1. a running process blocks (running — blocked)
2. a timer expires (running — ready)
3. a waiting process unblocks (blocked — ready)
4

. a process terminates (running — exit)

e If only make scheduling decision under 1, 4 =
have a non-preemptive scheduler:

simple to implement
D open to denial of service
— e.g. Windows 3.11.
e Otherwise the scheduler is preemptive.
solves DoS problem

D introduces concurrency problems ...

26

Idle system

What do we do if there is no ready process?

e halt processor (until interrupt arrives)
saves power (and heat!)

D might take too long.

e busy wait in scheduler
quick response time

D ugly, useless

e invent idle process, always available to run
gives uniform structure
could use it to run checks
D uses some memory

D can slow interrupt response

27

Scheduling Criteria

A variety of metrics may be used:

1. CPU utilization: the fraction of the time the CPU
is being used (and not for idle process!)

2. Throughput: # of processes that complete their
execution per time unit.

3. Turnaround time: amount of time to execute a
particular process.

4. Waiting time: amount of time a process has been
waiting in the ready queue.

5. Response time: amount of time it takes from
when a request was submitted until the first
response is produced (in time-sharing systems)

Sensible scheduling strategies might be:
e Maximize throughput or CPU utilization

e Minimize average turnaround time, waiting time or
response time.

Also need to worry about fairness and liveness.

28

First-Come, First-Served
(FCFS) Scheduling

e Depends on order processes arrive, e.g.

Process Burst Time

P 25
P 4
Ps 9

e If processes arrive in the order P, P>, Ps:

i N -

0 25 29 38
— Waiting time for Pi=0; P>,=25; P3=29;
— Average waiting time: (04 25+ 29)/3 = 18.

e If processes arrive in the order P3, P>, Pi:

E % i

0 9 13 38
— Waiting time for P1=13; P>,=8; P3=0;
— Average waiting time: (134+840)/3 =7.

— i.e. over twice as good!
e First case poor due to convoy effect.

29

SJF Scheduling

Intuition from FCFS leads us to shortest job first
(SJF) scheduling.

e Associate with each process the length of its next
CPU burst.

e Use these lengths to schedule the process with the
shortest time.

e (FCFS can be used to break ties.)

For example:

Process Arrival Time Burst Time

P, 0 4
P 2 4
Ps 4 1
Py 5 4
i K E B
0 7 8 12 16

e Waiting time for P1=0; P,=6; P3=3; P4=7,;
e Average waiting time: (04+6+4+2+47)/4 = 3.75.

SJF is optimal in that it gives the minimum average
waiting time for a given set of processes.

30

SRTF Scheduling

e SRTF = Shortest Remaining-Time First.
e Just a preemptive version of SJF.

e i.e. if a new process arrives with a CPU burst
length less than the remaining time of the current
executing process, preempt.

For example:

Process Arrival Time Burst Time

P 0 7
P> 2 4
P3 4 1
Py 5 4
R E B R ! R
0 2 4 5 7 11 16

e Waiting time for P1=9; P>=1; P3=0;, Py=2;
e Average waiting time: (94+14+0+42)/4 = 3.

What are the problems here?

31

Predicting Burst Lengths

e For both SJF and SRTF require the next “burst
length” for each process = need to estimate it.

e Can be done by using the length of previous CPU
bursts, using exponential averaging:

1. t, = actual length of nt™ CPU burst.
2. T,41 = predicted value for next CPU burst.
3. For a,0 < a <1 define:

Tat1 = atp, + (1 —a)m,

e If we expand the formula we get:

Tn+1 — at, + ...+ (1 — Q{)jatn_j + ...+ (1 _ O{)n—|—17_0

e Choose value of a according to our belief about
the system, e.g. if we believe history irrelevant,
choose a =~ 1 and then get 7,41 = 5.

e In general an exponential averaging scheme is a
good predictor if the variance is small.

32

Round Robin Scheduling

Define a small fixed unit of time called a quantum (or
time-slice), typically 10-100 milliseconds. Then:

e Process at the front of the ready queue is
allocated the CPU for (up to) one quantum.

e When the time has elapsed, the process is
preempted and appended to the ready queue.

Round robin has some nice properties:
e Fair: if there are n processes in the ready queue
and the time quantum is g, then each process gets

1/nth of the CPU.

e Live: no process waits more than (n — 1)q time
units before receiving a CPU allocation.

e Typically get higher average turnaround time than
SRTF, but better average response time.

But tricky choosing correct size quantum:
e g too large = FCFS/FIFO

e ¢ too small = context switch overhead too high.

33

Static Priority Scheduling

A priority value (an integer) is associated with
each process.

e The CPU is allocated to the process with the
highest priority (smallest integer = highest priority)
— preemptive
— non-preemptive

e e.9g. SJF is a priority scheduling algorithm where
priority is the predicted next CPU burst time.

e Problem: how to resolve ties?
— round robin with time-slicing
— allocate quantum to each process in turn.

— Problem: biased towards CPU intensive jobs.
x per-process quantum based on usage?

* ignore?

e Problem: starvation ...

34

Dyvnamic Priority Scheduling

e Use same scheduling algorithm, but allow priorities
to change over time.
e e.g. simple aging:

— processes have a (static) base priority and a
dynamic effective priority.

— if process starved for k seconds, increment
effective priority.

— once process runs, reset effective priority.

e e.g. computed priority:
— First used in Dijkstra's THE
— time slots: ..., ¢, t+1, ...

— in each time slot ¢, measure the CPU usage of
process j: u’

— priority for process j in slot ¢t + 1:
J o — f(uj Y J)
pt—|-1 taptv t_17pt_17"-

— e.g. p{_H = p{/Q + kui
— penalises CPU bound — supports I/O bound.
e today such computation considered acceptable ...

35

Multilevel Queue

e Ready queue partitioned into separate queues, e.g.
— foreground (interactive),

— background (batch)

e Each queue has its own scheduling algorithm, e.qg.
— foreground: RR,
— background: FCFS

e Scheduling must also be done between the queues:

— Fixed priority scheduling; i.e., serve all from
foreground and then from background.

— Time slice: each queue gets a certain amount
of CPU time which it can divide between its
processes, e.g. 80% to foreground via RR,
20% to background in FCFS.

e Also get multilevel feedback queue:

— as above, but processes can move between the
various queues.

— can be used to implement dynamic priority
schemes, among others.

36

