
GNU Make

GNU Make
A Program for Directing Recompilation

GNU make Version 4.1
October 2014

Richard M. Stallman, Roland McGrath, Paul D. Smith

This file documents the GNU make utility, which determines automatically which pieces of a
large program need to be recompiled, and issues the commands to recompile them.

This is Edition 0.73, last updated 5 October 2014, of The GNU Make Manual, for GNU make

version 4.1.

Copyright c© 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014 Free Software Foundation,
Inc.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, with the
Front-Cover Texts being “A GNU Manual,” and with the Back-Cover Texts as in
(a) below. A copy of the license is included in the section entitled “GNU Free
Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify this
GNU manual. Buying copies from the FSF supports it in developing GNU and
promoting software freedom.”

Published by the Free Software Foundation
51 Franklin St. – Fifth Floor
Boston, MA 02110-1301 USA
ISBN 1-882114-83-3

Cover art by Etienne Suvasa.

i

Short Contents

1 Overview of make . 1

2 An Introduction to Makefiles . 3
3 Writing Makefiles . 9

4 Writing Rules . 19

5 Writing Recipes in Rules . 37

6 How to Use Variables . 53
7 Conditional Parts of Makefiles . 69
8 Functions for Transforming Text . 73

9 How to Run make . 87
10 Using Implicit Rules . 97
11 Using make to Update Archive Files . 113
12 Extending GNU make . 117

13 Features of GNU make . 127

14 Incompatibilities and Missing Features . 131

15 Makefile Conventions . 133

A Quick Reference . 147
B Errors Generated by Make . 153

C Complex Makefile Example . 157
Index of Concepts . 169

Index of Functions, Variables, & Directives . 177

iii

Table of Contents

1 Overview of make . 1
1.1 How to Read This Manual . 1
1.2 Problems and Bugs . 1

2 An Introduction to Makefiles . 3
2.1 What a Rule Looks Like . 3
2.2 A Simple Makefile . 3
2.3 How make Processes a Makefile . 5
2.4 Variables Make Makefiles Simpler . 5
2.5 Letting make Deduce the Recipes . 6
2.6 Another Style of Makefile . 7
2.7 Rules for Cleaning the Directory . 7

3 Writing Makefiles . 9
3.1 What Makefiles Contain . 9

3.1.1 Splitting Long Lines . 9
3.2 What Name to Give Your Makefile . 10
3.3 Including Other Makefiles . 10
3.4 The Variable MAKEFILES . 11
3.5 How Makefiles Are Remade . 12
3.6 Overriding Part of Another Makefile . 13
3.7 How make Reads a Makefile . 13
3.8 Secondary Expansion . 15

4 Writing Rules . 19
4.1 Rule Syntax . 19
4.2 Types of Prerequisites . 20
4.3 Using Wildcard Characters in File Names . 21

4.3.1 Wildcard Examples . 21
4.3.2 Pitfalls of Using Wildcards . 21
4.3.3 The Function wildcard . 22

4.4 Searching Directories for Prerequisites . 22
4.4.1 VPATH: Search Path for All Prerequisites . 23
4.4.2 The vpath Directive . 23
4.4.3 How Directory Searches are Performed . 24
4.4.4 Writing Recipes with Directory Search . 25
4.4.5 Directory Search and Implicit Rules . 25
4.4.6 Directory Search for Link Libraries . 25

4.5 Phony Targets . 26
4.6 Rules without Recipes or Prerequisites . 28
4.7 Empty Target Files to Record Events . 28
4.8 Special Built-in Target Names . 28
4.9 Multiple Targets in a Rule . 31
4.10 Multiple Rules for One Target . 31
4.11 Static Pattern Rules . 32

4.11.1 Syntax of Static Pattern Rules . 32
4.11.2 Static Pattern Rules versus Implicit Rules . 33

iv GNU make

4.12 Double-Colon Rules . 34
4.13 Generating Prerequisites Automatically . 34

5 Writing Recipes in Rules . 37
5.1 Recipe Syntax . 37

5.1.1 Splitting Recipe Lines . 37
5.1.2 Using Variables in Recipes . 39

5.2 Recipe Echoing . 39
5.3 Recipe Execution . 39

5.3.1 Using One Shell . 40
5.3.2 Choosing the Shell . 41

5.4 Parallel Execution . 42
5.4.1 Output During Parallel Execution . 43
5.4.2 Input During Parallel Execution . 44

5.5 Errors in Recipes . 44
5.6 Interrupting or Killing make . 45
5.7 Recursive Use of make . 45

5.7.1 How the MAKE Variable Works . 46
5.7.2 Communicating Variables to a Sub-make . 46
5.7.3 Communicating Options to a Sub-make . 48
5.7.4 The ‘--print-directory’ Option . 50

5.8 Defining Canned Recipes . 50
5.9 Using Empty Recipes . 51

6 How to Use Variables . 53
6.1 Basics of Variable References . 53
6.2 The Two Flavors of Variables . 54
6.3 Advanced Features for Reference to Variables . 56

6.3.1 Substitution References . 56
6.3.2 Computed Variable Names . 56

6.4 How Variables Get Their Values . 58
6.5 Setting Variables . 59
6.6 Appending More Text to Variables . 59
6.7 The override Directive . 61
6.8 Defining Multi-Line Variables . 61
6.9 Undefining Variables . 62
6.10 Variables from the Environment . 63
6.11 Target-specific Variable Values . 63
6.12 Pattern-specific Variable Values . 64
6.13 Suppressing Inheritance . 65
6.14 Other Special Variables . 65

7 Conditional Parts of Makefiles . 69
7.1 Example of a Conditional . 69
7.2 Syntax of Conditionals . 70
7.3 Conditionals that Test Flags . 72

v

8 Functions for Transforming Text . 73
8.1 Function Call Syntax . 73
8.2 Functions for String Substitution and Analysis . 73
8.3 Functions for File Names . 76
8.4 Functions for Conditionals . 78
8.5 The foreach Function . 79
8.6 The file Function . 80
8.7 The call Function . 80
8.8 The value Function . 81
8.9 The eval Function . 82
8.10 The origin Function . 83
8.11 The flavor Function . 84
8.12 Functions That Control Make . 85
8.13 The shell Function . 85
8.14 The guile Function . 86

9 How to Run make . 87
9.1 Arguments to Specify the Makefile . 87
9.2 Arguments to Specify the Goals . 87
9.3 Instead of Executing Recipes . 89
9.4 Avoiding Recompilation of Some Files . 90
9.5 Overriding Variables . 90
9.6 Testing the Compilation of a Program . 91
9.7 Summary of Options . 91

10 Using Implicit Rules . 97
10.1 Using Implicit Rules . 97
10.2 Catalogue of Built-In Rules . 98
10.3 Variables Used by Implicit Rules . 101
10.4 Chains of Implicit Rules . 103
10.5 Defining and Redefining Pattern Rules . 103

10.5.1 Introduction to Pattern Rules . 104
10.5.2 Pattern Rule Examples . 104
10.5.3 Automatic Variables . 105
10.5.4 How Patterns Match . 107
10.5.5 Match-Anything Pattern Rules . 108
10.5.6 Canceling Implicit Rules . 109

10.6 Defining Last-Resort Default Rules . 109
10.7 Old-Fashioned Suffix Rules . 110
10.8 Implicit Rule Search Algorithm . 111

11 Using make to Update Archive Files . 113
11.1 Archive Members as Targets . 113
11.2 Implicit Rule for Archive Member Targets . 113

11.2.1 Updating Archive Symbol Directories . 114
11.3 Dangers When Using Archives . 114
11.4 Suffix Rules for Archive Files . 114

vi GNU make

12 Extending GNU make . 117
12.1 GNU Guile Integration . 117

12.1.1 Conversion of Guile Types . 117
12.1.2 Interfaces from Guile to make . 118
12.1.3 Example Using Guile in make . 118

12.2 Loading Dynamic Objects . 119
12.2.1 The load Directive . 120
12.2.2 How Loaded Objects Are Remade . 121
12.2.3 Loaded Object Interface . 121
12.2.4 Example Loaded Object . 123

13 Features of GNU make . 127

14 Incompatibilities and Missing Features 131

15 Makefile Conventions . 133
15.1 General Conventions for Makefiles . 133
15.2 Utilities in Makefiles . 134
15.3 Variables for Specifying Commands . 134
15.4 DESTDIR: Support for Staged Installs . 135
15.5 Variables for Installation Directories . 136
15.6 Standard Targets for Users . 140
15.7 Install Command Categories . 144

Appendix A Quick Reference . 147

Appendix B Errors Generated by Make . 153

Appendix C Complex Makefile Example . 157
C.1 GNU Free Documentation License . 161

Index of Concepts . 169

Index of Functions, Variables, & Directives 177

1

1 Overview of make

The make utility automatically determines which pieces of a large program need to be recom-
piled, and issues commands to recompile them. This manual describes GNU make, which was
implemented by Richard Stallman and Roland McGrath. Development since Version 3.76 has
been handled by Paul D. Smith.

GNU make conforms to section 6.2 of IEEE Standard 1003.2-1992 (POSIX.2).

Our examples show C programs, since they are most common, but you can use make with
any programming language whose compiler can be run with a shell command. Indeed, make is
not limited to programs. You can use it to describe any task where some files must be updated
automatically from others whenever the others change.

To prepare to use make, you must write a file called the makefile that describes the relation-
ships among files in your program and provides commands for updating each file. In a program,
typically, the executable file is updated from object files, which are in turn made by compiling
source files.

Once a suitable makefile exists, each time you change some source files, this simple shell
command:

make

suffices to perform all necessary recompilations. The make program uses the makefile data base
and the last-modification times of the files to decide which of the files need to be updated. For
each of those files, it issues the recipes recorded in the data base.

You can provide command line arguments to make to control which files should be recompiled,
or how. See Chapter 9 [How to Run make], page 87.

1.1 How to Read This Manual

If you are new to make, or are looking for a general introduction, read the first few sections of each
chapter, skipping the later sections. In each chapter, the first few sections contain introductory
or general information and the later sections contain specialized or technical information. The
exception is Chapter 2 [An Introduction to Makefiles], page 3, all of which is introductory.

If you are familiar with other make programs, see Chapter 13 [Features of GNU make],
page 127, which lists the enhancements GNU make has, and Chapter 14 [Incompatibilities and
Missing Features], page 131, which explains the few things GNU make lacks that others have.

For a quick summary, see Section 9.7 [Options Summary], page 91, Appendix A [Quick
Reference], page 147, and Section 4.8 [Special Targets], page 28.

1.2 Problems and Bugs

If you have problems with GNU make or think you’ve found a bug, please report it to the
developers; we cannot promise to do anything but we might well want to fix it.

Before reporting a bug, make sure you’ve actually found a real bug. Carefully reread the doc-
umentation and see if it really says you can do what you’re trying to do. If it’s not clear whether
you should be able to do something or not, report that too; it’s a bug in the documentation!

Before reporting a bug or trying to fix it yourself, try to isolate it to the smallest possible
makefile that reproduces the problem. Then send us the makefile and the exact results make

gave you, including any error or warning messages. Please don’t paraphrase these messages: it’s
best to cut and paste them into your report. When generating this small makefile, be sure to
not use any non-free or unusual tools in your recipes: you can almost always emulate what such
a tool would do with simple shell commands. Finally, be sure to explain what you expected to
occur; this will help us decide whether the problem was really in the documentation.

2 GNU make

Once you have a precise problem you can report it in one of two ways. Either send electronic
mail to:

bug-make@gnu.org

or use our Web-based project management tool, at:

http://savannah.gnu.org/projects/make/

In addition to the information above, please be careful to include the version number of make
you are using. You can get this information with the command ‘make --version’. Be sure also
to include the type of machine and operating system you are using. One way to obtain this
information is by looking at the final lines of output from the command ‘make --help’.

3

2 An Introduction to Makefiles

You need a file called a makefile to tell make what to do. Most often, the makefile tells make

how to compile and link a program.

In this chapter, we will discuss a simple makefile that describes how to compile and link a
text editor which consists of eight C source files and three header files. The makefile can also tell
make how to run miscellaneous commands when explicitly asked (for example, to remove certain
files as a clean-up operation). To see a more complex example of a makefile, see Appendix C
[Complex Makefile], page 157.

When make recompiles the editor, each changed C source file must be recompiled. If a header
file has changed, each C source file that includes the header file must be recompiled to be
safe. Each compilation produces an object file corresponding to the source file. Finally, if any
source file has been recompiled, all the object files, whether newly made or saved from previous
compilations, must be linked together to produce the new executable editor.

2.1 What a Rule Looks Like

A simple makefile consists of “rules” with the following shape:

target ... : prerequisites ...

recipe

...

...

A target is usually the name of a file that is generated by a program; examples of targets
are executable or object files. A target can also be the name of an action to carry out, such as
‘clean’ (see Section 4.5 [Phony Targets], page 26).

A prerequisite is a file that is used as input to create the target. A target often depends on
several files.

A recipe is an action that make carries out. A recipe may have more than one command,
either on the same line or each on its own line. Please note: you need to put a tab character at
the beginning of every recipe line! This is an obscurity that catches the unwary. If you prefer
to prefix your recipes with a character other than tab, you can set the .RECIPEPREFIX variable
to an alternate character (see Section 6.14 [Special Variables], page 65).

Usually a recipe is in a rule with prerequisites and serves to create a target file if any of
the prerequisites change. However, the rule that specifies a recipe for the target need not have
prerequisites. For example, the rule containing the delete command associated with the target
‘clean’ does not have prerequisites.

A rule, then, explains how and when to remake certain files which are the targets of the
particular rule. make carries out the recipe on the prerequisites to create or update the target.
A rule can also explain how and when to carry out an action. See Chapter 4 [Writing Rules],
page 19.

A makefile may contain other text besides rules, but a simple makefile need only contain
rules. Rules may look somewhat more complicated than shown in this template, but all fit the
pattern more or less.

2.2 A Simple Makefile

Here is a straightforward makefile that describes the way an executable file called edit depends
on eight object files which, in turn, depend on eight C source and three header files.

In this example, all the C files include defs.h, but only those defining editing commands
include command.h, and only low level files that change the editor buffer include buffer.h.

4 GNU make

edit : main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

cc -o edit main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

main.o : main.c defs.h

cc -c main.c

kbd.o : kbd.c defs.h command.h

cc -c kbd.c

command.o : command.c defs.h command.h

cc -c command.c

display.o : display.c defs.h buffer.h

cc -c display.c

insert.o : insert.c defs.h buffer.h

cc -c insert.c

search.o : search.c defs.h buffer.h

cc -c search.c

files.o : files.c defs.h buffer.h command.h

cc -c files.c

utils.o : utils.c defs.h

cc -c utils.c

clean :

rm edit main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

We split each long line into two lines using backslash/newline; this is like using one long line,
but is easier to read. See Section 3.1.1 [Splitting Long Lines], page 9.

To use this makefile to create the executable file called edit, type:

make

To use this makefile to delete the executable file and all the object files from the directory,
type:

make clean

In the example makefile, the targets include the executable file ‘edit’, and the object files
‘main.o’ and ‘kbd.o’. The prerequisites are files such as ‘main.c’ and ‘defs.h’. In fact, each
‘.o’ file is both a target and a prerequisite. Recipes include ‘cc -c main.c’ and ‘cc -c kbd.c’.

When a target is a file, it needs to be recompiled or relinked if any of its prerequisites change.
In addition, any prerequisites that are themselves automatically generated should be updated
first. In this example, edit depends on each of the eight object files; the object file main.o

depends on the source file main.c and on the header file defs.h.

A recipe may follow each line that contains a target and prerequisites. These recipes say
how to update the target file. A tab character (or whatever character is specified by the
.RECIPEPREFIX variable; see Section 6.14 [Special Variables], page 65) must come at the be-
ginning of every line in the recipe to distinguish recipes from other lines in the makefile. (Bear
in mind that make does not know anything about how the recipes work. It is up to you to supply
recipes that will update the target file properly. All make does is execute the recipe you have
specified when the target file needs to be updated.)

The target ‘clean’ is not a file, but merely the name of an action. Since you normally do
not want to carry out the actions in this rule, ‘clean’ is not a prerequisite of any other rule.
Consequently, make never does anything with it unless you tell it specifically. Note that this
rule not only is not a prerequisite, it also does not have any prerequisites, so the only purpose
of the rule is to run the specified recipe. Targets that do not refer to files but are just actions

Chapter 2: An Introduction to Makefiles 5

are called phony targets. See Section 4.5 [Phony Targets], page 26, for information about this
kind of target. See Section 5.5 [Errors in Recipes], page 44, to see how to cause make to ignore
errors from rm or any other command.

2.3 How make Processes a Makefile

By default, make starts with the first target (not targets whose names start with ‘.’). This
is called the default goal. (Goals are the targets that make strives ultimately to update. You
can override this behavior using the command line (see Section 9.2 [Arguments to Specify the
Goals], page 87) or with the .DEFAULT_GOAL special variable (see Section 6.14 [Other Special
Variables], page 65).

In the simple example of the previous section, the default goal is to update the executable
program edit; therefore, we put that rule first.

Thus, when you give the command:

make

make reads the makefile in the current directory and begins by processing the first rule. In the
example, this rule is for relinking edit; but before make can fully process this rule, it must
process the rules for the files that edit depends on, which in this case are the object files. Each
of these files is processed according to its own rule. These rules say to update each ‘.o’ file by
compiling its source file. The recompilation must be done if the source file, or any of the header
files named as prerequisites, is more recent than the object file, or if the object file does not
exist.

The other rules are processed because their targets appear as prerequisites of the goal. If
some other rule is not depended on by the goal (or anything it depends on, etc.), that rule is
not processed, unless you tell make to do so (with a command such as make clean).

Before recompiling an object file, make considers updating its prerequisites, the source file
and header files. This makefile does not specify anything to be done for them—the ‘.c’ and
‘.h’ files are not the targets of any rules—so make does nothing for these files. But make would
update automatically generated C programs, such as those made by Bison or Yacc, by their own
rules at this time.

After recompiling whichever object files need it, make decides whether to relink edit. This
must be done if the file edit does not exist, or if any of the object files are newer than it. If an
object file was just recompiled, it is now newer than edit, so edit is relinked.

Thus, if we change the file insert.c and run make, make will compile that file to update
insert.o, and then link edit. If we change the file command.h and run make, make will recompile
the object files kbd.o, command.o and files.o and then link the file edit.

2.4 Variables Make Makefiles Simpler

In our example, we had to list all the object files twice in the rule for edit (repeated here):

edit : main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

cc -o edit main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

Such duplication is error-prone; if a new object file is added to the system, we might add it
to one list and forget the other. We can eliminate the risk and simplify the makefile by using
a variable. Variables allow a text string to be defined once and substituted in multiple places
later (see Chapter 6 [How to Use Variables], page 53).

It is standard practice for every makefile to have a variable named objects, OBJECTS, objs,
OBJS, obj, or OBJ which is a list of all object file names. We would define such a variable
objects with a line like this in the makefile:

6 GNU make

objects = main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

Then, each place we want to put a list of the object file names, we can substitute the variable’s
value by writing ‘$(objects)’ (see Chapter 6 [How to Use Variables], page 53).

Here is how the complete simple makefile looks when you use a variable for the object files:

objects = main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

edit : $(objects)

cc -o edit $(objects)

main.o : main.c defs.h

cc -c main.c

kbd.o : kbd.c defs.h command.h

cc -c kbd.c

command.o : command.c defs.h command.h

cc -c command.c

display.o : display.c defs.h buffer.h

cc -c display.c

insert.o : insert.c defs.h buffer.h

cc -c insert.c

search.o : search.c defs.h buffer.h

cc -c search.c

files.o : files.c defs.h buffer.h command.h

cc -c files.c

utils.o : utils.c defs.h

cc -c utils.c

clean :

rm edit $(objects)

2.5 Letting make Deduce the Recipes

It is not necessary to spell out the recipes for compiling the individual C source files, because
make can figure them out: it has an implicit rule for updating a ‘.o’ file from a correspondingly
named ‘.c’ file using a ‘cc -c’ command. For example, it will use the recipe ‘cc -c main.c -o

main.o’ to compile main.c into main.o. We can therefore omit the recipes from the rules for
the object files. See Chapter 10 [Using Implicit Rules], page 97.

When a ‘.c’ file is used automatically in this way, it is also automatically added to the list
of prerequisites. We can therefore omit the ‘.c’ files from the prerequisites, provided we omit
the recipe.

Here is the entire example, with both of these changes, and a variable objects as suggested
above:

Chapter 2: An Introduction to Makefiles 7

objects = main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

edit : $(objects)

cc -o edit $(objects)

main.o : defs.h

kbd.o : defs.h command.h

command.o : defs.h command.h

display.o : defs.h buffer.h

insert.o : defs.h buffer.h

search.o : defs.h buffer.h

files.o : defs.h buffer.h command.h

utils.o : defs.h

.PHONY : clean

clean :

rm edit $(objects)

This is how we would write the makefile in actual practice. (The complications associated with
‘clean’ are described elsewhere. See Section 4.5 [Phony Targets], page 26, and Section 5.5
[Errors in Recipes], page 44.)

Because implicit rules are so convenient, they are important. You will see them used fre-
quently.

2.6 Another Style of Makefile

When the objects of a makefile are created only by implicit rules, an alternative style of makefile
is possible. In this style of makefile, you group entries by their prerequisites instead of by their
targets. Here is what one looks like:

objects = main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

edit : $(objects)

cc -o edit $(objects)

$(objects) : defs.h

kbd.o command.o files.o : command.h

display.o insert.o search.o files.o : buffer.h

Here defs.h is given as a prerequisite of all the object files; command.h and buffer.h are
prerequisites of the specific object files listed for them.

Whether this is better is a matter of taste: it is more compact, but some people dislike it
because they find it clearer to put all the information about each target in one place.

2.7 Rules for Cleaning the Directory

Compiling a program is not the only thing you might want to write rules for. Makefiles commonly
tell how to do a few other things besides compiling a program: for example, how to delete all
the object files and executables so that the directory is ‘clean’.

Here is how we could write a make rule for cleaning our example editor:

clean:

rm edit $(objects)

8 GNU make

In practice, we might want to write the rule in a somewhat more complicated manner to
handle unanticipated situations. We would do this:

.PHONY : clean

clean :

-rm edit $(objects)

This prevents make from getting confused by an actual file called clean and causes it to continue
in spite of errors from rm. (See Section 4.5 [Phony Targets], page 26, and Section 5.5 [Errors in
Recipes], page 44.)

A rule such as this should not be placed at the beginning of the makefile, because we do not
want it to run by default! Thus, in the example makefile, we want the rule for edit, which
recompiles the editor, to remain the default goal.

Since clean is not a prerequisite of edit, this rule will not run at all if we give the command
‘make’ with no arguments. In order to make the rule run, we have to type ‘make clean’. See
Chapter 9 [How to Run make], page 87.

9

3 Writing Makefiles

The information that tells make how to recompile a system comes from reading a data base
called the makefile.

3.1 What Makefiles Contain

Makefiles contain five kinds of things: explicit rules, implicit rules, variable definitions, directives,
and comments. Rules, variables, and directives are described at length in later chapters.

• An explicit rule says when and how to remake one or more files, called the rule’s targets.
It lists the other files that the targets depend on, called the prerequisites of the target, and
may also give a recipe to use to create or update the targets. See Chapter 4 [Writing Rules],
page 19.

• An implicit rule says when and how to remake a class of files based on their names. It
describes how a target may depend on a file with a name similar to the target and gives a
recipe to create or update such a target. See Chapter 10 [Using Implicit Rules], page 97.

• A variable definition is a line that specifies a text string value for a variable that can be
substituted into the text later. The simple makefile example shows a variable definition
for objects as a list of all object files (see Section 2.4 [Variables Make Makefiles Simpler],
page 5).

• A directive is an instruction for make to do something special while reading the makefile.
These include:

• Reading another makefile (see Section 3.3 [Including Other Makefiles], page 10).

• Deciding (based on the values of variables) whether to use or ignore a part of the
makefile (see Chapter 7 [Conditional Parts of Makefiles], page 69).

• Defining a variable from a verbatim string containing multiple lines (see Section 6.8
[Defining Multi-Line Variables], page 61).

• ‘#’ in a line of a makefile starts a comment. It and the rest of the line are ignored, except
that a trailing backslash not escaped by another backslash will continue the comment across
multiple lines. A line containing just a comment (with perhaps spaces before it) is effectively
blank, and is ignored. If you want a literal #, escape it with a backslash (e.g., \#). Comments
may appear on any line in the makefile, although they are treated specially in certain
situations.

You cannot use comments within variable references or function calls: any instance of #
will be treated literally (rather than as the start of a comment) inside a variable reference
or function call.

Comments within a recipe are passed to the shell, just as with any other recipe text. The
shell decides how to interpret it: whether or not this is a comment is up to the shell.

Within a define directive, comments are not ignored during the definition of the variable,
but rather kept intact in the value of the variable. When the variable is expanded they will
either be treated as make comments or as recipe text, depending on the context in which
the variable is evaluated.

3.1.1 Splitting Long Lines

Makefiles use a “line-based” syntax in which the newline character is special and marks the end
of a statement. GNU make has no limit on the length of a statement line, up to the amount of
memory in your computer.

However, it is difficult to read lines which are too long to display without wrapping or
scrolling. So, you can format your makefiles for readability by adding newlines into the middle

10 GNU make

of a statement: you do this by escaping the internal newlines with a backslash (\) character.
Where we need to make a distinction we will refer to “physical lines” as a single line ending with
a newline (regardless of whether it is escaped) and a “logical line” being a complete statement
including all escaped newlines up to the first non-escaped newline.

The way in which backslash/newline combinations are handled depends on whether the state-
ment is a recipe line or a non-recipe line. Handling of backslash/newline in a recipe line is
discussed later (see Section 5.1.1 [Splitting Recipe Lines], page 37).

Outside of recipe lines, backslash/newlines are converted into a single space character. Once
that is done, all whitespace around the backslash/newline is condensed into a single space: this
includes all whitespace preceding the backslash, all whitespace at the beginning of the line after
the backslash/newline, and any consecutive backslash/newline combinations.

If the .POSIX special target is defined then backslash/newline handling is modified slightly
to conform to POSIX.2: first, whitespace preceding a backslash is not removed and second,
consecutive backslash/newlines are not condensed.

3.2 What Name to Give Your Makefile

By default, when make looks for the makefile, it tries the following names, in order: GNUmakefile,
makefile and Makefile.

Normally you should call your makefile either makefile or Makefile. (We recommend
Makefile because it appears prominently near the beginning of a directory listing, right near
other important files such as README.) The first name checked, GNUmakefile, is not recom-
mended for most makefiles. You should use this name if you have a makefile that is specific to
GNU make, and will not be understood by other versions of make. Other make programs look
for makefile and Makefile, but not GNUmakefile.

If make finds none of these names, it does not use any makefile. Then you must specify a goal
with a command argument, and make will attempt to figure out how to remake it using only its
built-in implicit rules. See Chapter 10 [Using Implicit Rules], page 97.

If you want to use a nonstandard name for your makefile, you can specify the makefile name
with the ‘-f’ or ‘--file’ option. The arguments ‘-f name’ or ‘--file=name’ tell make to read
the file name as the makefile. If you use more than one ‘-f’ or ‘--file’ option, you can specify
several makefiles. All the makefiles are effectively concatenated in the order specified. The
default makefile names GNUmakefile, makefile and Makefile are not checked automatically if
you specify ‘-f’ or ‘--file’.

3.3 Including Other Makefiles

The include directive tells make to suspend reading the current makefile and read one or more
other makefiles before continuing. The directive is a line in the makefile that looks like this:

include filenames...

filenames can contain shell file name patterns. If filenames is empty, nothing is included and no
error is printed.

Extra spaces are allowed and ignored at the beginning of the line, but the first character must
not be a tab (or the value of .RECIPEPREFIX)—if the line begins with a tab, it will be considered a
recipe line. Whitespace is required between include and the file names, and between file names;
extra whitespace is ignored there and at the end of the directive. A comment starting with ‘#’
is allowed at the end of the line. If the file names contain any variable or function references,
they are expanded. See Chapter 6 [How to Use Variables], page 53.

For example, if you have three .mk files, a.mk, b.mk, and c.mk, and $(bar) expands to bish

bash, then the following expression

include foo *.mk $(bar)

Chapter 3: Writing Makefiles 11

is equivalent to

include foo a.mk b.mk c.mk bish bash

When make processes an include directive, it suspends reading of the containing makefile
and reads from each listed file in turn. When that is finished, make resumes reading the makefile
in which the directive appears.

One occasion for using include directives is when several programs, handled by individual
makefiles in various directories, need to use a common set of variable definitions (see Section 6.5
[Setting Variables], page 59) or pattern rules (see Section 10.5 [Defining and Redefining Pattern
Rules], page 103).

Another such occasion is when you want to generate prerequisites from source files automat-
ically; the prerequisites can be put in a file that is included by the main makefile. This practice
is generally cleaner than that of somehow appending the prerequisites to the end of the main
makefile as has been traditionally done with other versions of make. See Section 4.13 [Automatic
Prerequisites], page 34.

If the specified name does not start with a slash, and the file is not found in the current direc-
tory, several other directories are searched. First, any directories you have specified with the ‘-I’
or ‘--include-dir’ option are searched (see Section 9.7 [Summary of Options], page 91). Then
the following directories (if they exist) are searched, in this order: prefix/include (normally
/usr/local/include1) /usr/gnu/include, /usr/local/include, /usr/include.

If an included makefile cannot be found in any of these directories, a warning message is
generated, but it is not an immediately fatal error; processing of the makefile containing the
include continues. Once it has finished reading makefiles, make will try to remake any that are
out of date or don’t exist. See Section 3.5 [How Makefiles Are Remade], page 12. Only after it
has tried to find a way to remake a makefile and failed, will make diagnose the missing makefile
as a fatal error.

If you want make to simply ignore a makefile which does not exist or cannot be remade, with
no error message, use the -include directive instead of include, like this:

-include filenames...

This acts like include in every way except that there is no error (not even a warning) if any
of the filenames (or any prerequisites of any of the filenames) do not exist or cannot be remade.

For compatibility with some other make implementations, sinclude is another name for
-include.

3.4 The Variable MAKEFILES

If the environment variable MAKEFILES is defined, make considers its value as a list of names
(separated by whitespace) of additional makefiles to be read before the others. This works
much like the include directive: various directories are searched for those files (see Section 3.3
[Including Other Makefiles], page 10). In addition, the default goal is never taken from one of
these makefiles (or any makefile included by them) and it is not an error if the files listed in
MAKEFILES are not found.

The main use of MAKEFILES is in communication between recursive invocations of make (see
Section 5.7 [Recursive Use of make], page 45). It usually is not desirable to set the environment
variable before a top-level invocation of make, because it is usually better not to mess with a
makefile from outside. However, if you are running make without a specific makefile, a makefile
in MAKEFILES can do useful things to help the built-in implicit rules work better, such as defining
search paths (see Section 4.4 [Directory Search], page 22).

1 GNU Make compiled for MS-DOS and MS-Windows behaves as if prefix has been defined to be the root of
the DJGPP tree hierarchy.

12 GNU make

Some users are tempted to set MAKEFILES in the environment automatically on login, and
program makefiles to expect this to be done. This is a very bad idea, because such makefiles
will fail to work if run by anyone else. It is much better to write explicit include directives in
the makefiles. See Section 3.3 [Including Other Makefiles], page 10.

3.5 How Makefiles Are Remade

Sometimes makefiles can be remade from other files, such as RCS or SCCS files. If a makefile
can be remade from other files, you probably want make to get an up-to-date version of the
makefile to read in.

To this end, after reading in all makefiles, make will consider each as a goal target and attempt
to update it. If a makefile has a rule which says how to update it (found either in that very
makefile or in another one) or if an implicit rule applies to it (see Chapter 10 [Using Implicit
Rules], page 97), it will be updated if necessary. After all makefiles have been checked, if any
have actually been changed, make starts with a clean slate and reads all the makefiles over again.
(It will also attempt to update each of them over again, but normally this will not change them
again, since they are already up to date.)

If you know that one or more of your makefiles cannot be remade and you want to keep make

from performing an implicit rule search on them, perhaps for efficiency reasons, you can use
any normal method of preventing implicit rule look-up to do so. For example, you can write an
explicit rule with the makefile as the target, and an empty recipe (see Section 5.9 [Using Empty
Recipes], page 51).

If the makefiles specify a double-colon rule to remake a file with a recipe but no prerequisites,
that file will always be remade (see Section 4.12 [Double-Colon], page 34). In the case of
makefiles, a makefile that has a double-colon rule with a recipe but no prerequisites will be
remade every time make is run, and then again after make starts over and reads the makefiles
in again. This would cause an infinite loop: make would constantly remake the makefile, and
never do anything else. So, to avoid this, make will not attempt to remake makefiles which are
specified as targets of a double-colon rule with a recipe but no prerequisites.

If you do not specify any makefiles to be read with ‘-f’ or ‘--file’ options, make will
try the default makefile names; see Section 3.2 [What Name to Give Your Makefile], page 10.
Unlike makefiles explicitly requested with ‘-f’ or ‘--file’ options, make is not certain that
these makefiles should exist. However, if a default makefile does not exist but can be created by
running make rules, you probably want the rules to be run so that the makefile can be used.

Therefore, if none of the default makefiles exists, make will try to make each of them in the
same order in which they are searched for (see Section 3.2 [What Name to Give Your Makefile],
page 10) until it succeeds in making one, or it runs out of names to try. Note that it is not an
error if make cannot find or make any makefile; a makefile is not always necessary.

When you use the ‘-t’ or ‘--touch’ option (see Section 9.3 [Instead of Executing Recipes],
page 89), you would not want to use an out-of-date makefile to decide which targets to touch.
So the ‘-t’ option has no effect on updating makefiles; they are really updated even if ‘-t’ is
specified. Likewise, ‘-q’ (or ‘--question’) and ‘-n’ (or ‘--just-print’) do not prevent updating
of makefiles, because an out-of-date makefile would result in the wrong output for other targets.
Thus, ‘make -f mfile -n foo’ will update mfile, read it in, and then print the recipe to update
foo and its prerequisites without running it. The recipe printed for foo will be the one specified
in the updated contents of mfile.

However, on occasion you might actually wish to prevent updating of even the makefiles.
You can do this by specifying the makefiles as goals in the command line as well as specifying
them as makefiles. When the makefile name is specified explicitly as a goal, the options ‘-t’ and
so on do apply to them.

Chapter 3: Writing Makefiles 13

Thus, ‘make -f mfile -n mfile foo’ would read the makefile mfile, print the recipe needed
to update it without actually running it, and then print the recipe needed to update foo without
running that. The recipe for foo will be the one specified by the existing contents of mfile.

3.6 Overriding Part of Another Makefile

Sometimes it is useful to have a makefile that is mostly just like another makefile. You can
often use the ‘include’ directive to include one in the other, and add more targets or variable
definitions. However, it is invalid for two makefiles to give different recipes for the same target.
But there is another way.

In the containing makefile (the one that wants to include the other), you can use a match-
anything pattern rule to say that to remake any target that cannot be made from the information
in the containing makefile, make should look in another makefile. See Section 10.5 [Pattern
Rules], page 103, for more information on pattern rules.

For example, if you have a makefile called Makefile that says how to make the target ‘foo’
(and other targets), you can write a makefile called GNUmakefile that contains:

foo:

frobnicate > foo

%: force

@$(MAKE) -f Makefile $@

force: ;

If you say ‘make foo’, make will find GNUmakefile, read it, and see that to make foo, it needs
to run the recipe ‘frobnicate > foo’. If you say ‘make bar’, make will find no way to make bar
in GNUmakefile, so it will use the recipe from the pattern rule: ‘make -f Makefile bar’. If
Makefile provides a rule for updating bar, make will apply the rule. And likewise for any other
target that GNUmakefile does not say how to make.

The way this works is that the pattern rule has a pattern of just ‘%’, so it matches any target
whatever. The rule specifies a prerequisite force, to guarantee that the recipe will be run even
if the target file already exists. We give the force target an empty recipe to prevent make from
searching for an implicit rule to build it—otherwise it would apply the same match-anything
rule to force itself and create a prerequisite loop!

3.7 How make Reads a Makefile

GNU make does its work in two distinct phases. During the first phase it reads all the makefiles,
included makefiles, etc. and internalizes all the variables and their values, implicit and explicit
rules, and constructs a dependency graph of all the targets and their prerequisites. During the
second phase, make uses these internal structures to determine what targets will need to be
rebuilt and to invoke the rules necessary to do so.

It’s important to understand this two-phase approach because it has a direct impact on
how variable and function expansion happens; this is often a source of some confusion when
writing makefiles. Here we will present a summary of the phases in which expansion happens
for different constructs within the makefile. We say that expansion is immediate if it happens
during the first phase: in this case make will expand any variables or functions in that section
of a construct as the makefile is parsed. We say that expansion is deferred if expansion is not
performed immediately. Expansion of a deferred construct is not performed until either the
construct appears later in an immediate context, or until the second phase.

You may not be familiar with some of these constructs yet. You can reference this section as
you become familiar with them, in later chapters.

14 GNU make

Variable Assignment

Variable definitions are parsed as follows:

immediate = deferred

immediate ?= deferred

immediate := immediate

immediate ::= immediate

immediate += deferred or immediate

immediate != immediate

define immediate

deferred

endef

define immediate =

deferred

endef

define immediate ?=

deferred

endef

define immediate :=

immediate

endef

define immediate ::=

immediate

endef

define immediate +=

deferred or immediate

endef

define immediate !=

immediate

endef

For the append operator, ‘+=’, the right-hand side is considered immediate if the variable
was previously set as a simple variable (‘:=’ or ‘::=’), and deferred otherwise.

For the shell assignment operator, ‘!=’, the right-hand side is evaluated immediately and
handed to the shell. The result is stored in the variable named on the left, and that variable
becomes a simple variable (and will thus be re-evaluated on each reference).

Conditional Directives

Conditional directives are parsed immediately. This means, for example, that automatic vari-
ables cannot be used in conditional directives, as automatic variables are not set until the recipe
for that rule is invoked. If you need to use automatic variables in a conditional directive you
must move the condition into the recipe and use shell conditional syntax instead.

Rule Definition

A rule is always expanded the same way, regardless of the form:

immediate : immediate ; deferred

Chapter 3: Writing Makefiles 15

deferred

That is, the target and prerequisite sections are expanded immediately, and the recipe used
to construct the target is always deferred. This general rule is true for explicit rules, pattern
rules, suffix rules, static pattern rules, and simple prerequisite definitions.

3.8 Secondary Expansion

In the previous section we learned that GNU make works in two distinct phases: a read-in
phase and a target-update phase (see Section 3.7 [How make Reads a Makefile], page 13). GNU
make also has the ability to enable a second expansion of the prerequisites (only) for some or
all targets defined in the makefile. In order for this second expansion to occur, the special
target .SECONDEXPANSION must be defined before the first prerequisite list that makes use of
this feature.

If that special target is defined then in between the two phases mentioned above, right at the
end of the read-in phase, all the prerequisites of the targets defined after the special target are
expanded a second time. In most circumstances this secondary expansion will have no effect,
since all variable and function references will have been expanded during the initial parsing of
the makefiles. In order to take advantage of the secondary expansion phase of the parser, then,
it’s necessary to escape the variable or function reference in the makefile. In this case the first
expansion merely un-escapes the reference but doesn’t expand it, and expansion is left to the
secondary expansion phase. For example, consider this makefile:

.SECONDEXPANSION:

ONEVAR = onefile

TWOVAR = twofile

myfile: $(ONEVAR) $$(TWOVAR)

After the first expansion phase the prerequisites list of the myfile target will be onefile

and $(TWOVAR); the first (unescaped) variable reference to ONEVAR is expanded, while the
second (escaped) variable reference is simply unescaped, without being recognized as a variable
reference. Now during the secondary expansion the first word is expanded again but since it
contains no variable or function references it remains the value onefile, while the second word
is now a normal reference to the variable TWOVAR, which is expanded to the value twofile.
The final result is that there are two prerequisites, onefile and twofile.

Obviously, this is not a very interesting case since the same result could more easily have
been achieved simply by having both variables appear, unescaped, in the prerequisites list. One
difference becomes apparent if the variables are reset; consider this example:

.SECONDEXPANSION:

AVAR = top

onefile: $(AVAR)

twofile: $$(AVAR)

AVAR = bottom

Here the prerequisite of onefile will be expanded immediately, and resolve to the value top,
while the prerequisite of twofile will not be full expanded until the secondary expansion and
yield a value of bottom.

This is marginally more exciting, but the true power of this feature only becomes apparent
when you discover that secondary expansions always take place within the scope of the automatic
variables for that target. This means that you can use variables such as $@, $*, etc. during
the second expansion and they will have their expected values, just as in the recipe. All you
have to do is defer the expansion by escaping the $. Also, secondary expansion occurs for both
explicit and implicit (pattern) rules. Knowing this, the possible uses for this feature increase
dramatically. For example:

.SECONDEXPANSION:

16 GNU make

main_OBJS := main.o try.o test.o

lib_OBJS := lib.o api.o

main lib: $$($$@_OBJS)

Here, after the initial expansion the prerequisites of both the main and lib targets will be
$($@_OBJS). During the secondary expansion, the $@ variable is set to the name of the target
and so the expansion for the main target will yield $(main_OBJS), or main.o try.o test.o,
while the secondary expansion for the lib target will yield $(lib_OBJS), or lib.o api.o.

You can also mix in functions here, as long as they are properly escaped:

main_SRCS := main.c try.c test.c

lib_SRCS := lib.c api.c

.SECONDEXPANSION:

main lib: $$(patsubst %.c,%.o,$$($$@_SRCS))

This version allows users to specify source files rather than object files, but gives the same
resulting prerequisites list as the previous example.

Evaluation of automatic variables during the secondary expansion phase, especially of the
target name variable $$@, behaves similarly to evaluation within recipes. However, there are
some subtle differences and “corner cases” which come into play for the different types of rule
definitions that make understands. The subtleties of using the different automatic variables are
described below.

Secondary Expansion of Explicit Rules

During the secondary expansion of explicit rules, $$@ and $$% evaluate, respectively, to the
file name of the target and, when the target is an archive member, the target member name.
The $$< variable evaluates to the first prerequisite in the first rule for this target. $$^ and $$+

evaluate to the list of all prerequisites of rules that have already appeared for the same target ($$+
with repetitions and $$^ without). The following example will help illustrate these behaviors:

.SECONDEXPANSION:

foo: foo.1 bar.1 $$< $$^ $$+ # line #1

foo: foo.2 bar.2 $$< $$^ $$+ # line #2

foo: foo.3 bar.3 $$< $$^ $$+ # line #3

In the first prerequisite list, all three variables ($$<, $$^, and $$+) expand to the empty
string. In the second, they will have values foo.1, foo.1 bar.1, and foo.1 bar.1 respectively.
In the third they will have values foo.1, foo.1 bar.1 foo.2 bar.2, and foo.1 bar.1 foo.2

bar.2 foo.1 foo.1 bar.1 foo.1 bar.1 respectively.

Rules undergo secondary expansion in makefile order, except that the rule with the recipe is
always evaluated last.

The variables $$? and $$* are not available and expand to the empty string.

Secondary Expansion of Static Pattern Rules

Rules for secondary expansion of static pattern rules are identical to those for explicit rules,
above, with one exception: for static pattern rules the $$* variable is set to the pattern stem.
As with explicit rules, $$? is not available and expands to the empty string.

Chapter 3: Writing Makefiles 17

Secondary Expansion of Implicit Rules

As make searches for an implicit rule, it substitutes the stem and then performs secondary
expansion for every rule with a matching target pattern. The value of the automatic variables
is derived in the same fashion as for static pattern rules. As an example:

.SECONDEXPANSION:

foo: bar

foo foz: fo%: bo%

%oo: $$< $$^ $$+ $$*

When the implicit rule is tried for target foo, $$< expands to bar, $$^ expands to bar boo,
$$+ also expands to bar boo, and $$* expands to f.

Note that the directory prefix (D), as described in Section 10.8 [Implicit Rule Search Algo-
rithm], page 111, is appended (after expansion) to all the patterns in the prerequisites list. As
an example:

.SECONDEXPANSION:

/tmp/foo.o:

%.o: $$(addsuffix /%.c,foo bar) foo.h

@echo $^

The prerequisite list printed, after the secondary expansion and directory prefix reconstruc-
tion, will be /tmp/foo/foo.c /tmp/bar/foo.c foo.h. If you are not interested in this recon-
struction, you can use $$* instead of % in the prerequisites list.

19

4 Writing Rules

A rule appears in the makefile and says when and how to remake certain files, called the rule’s
targets (most often only one per rule). It lists the other files that are the prerequisites of the
target, and the recipe to use to create or update the target.

The order of rules is not significant, except for determining the default goal: the target for
make to consider, if you do not otherwise specify one. The default goal is the target of the first
rule in the first makefile. If the first rule has multiple targets, only the first target is taken as
the default. There are two exceptions: a target starting with a period is not a default unless it
contains one or more slashes, ‘/’, as well; and, a target that defines a pattern rule has no effect
on the default goal. (See Section 10.5 [Defining and Redefining Pattern Rules], page 103.)

Therefore, we usually write the makefile so that the first rule is the one for compiling the
entire program or all the programs described by the makefile (often with a target called ‘all’).
See Section 9.2 [Arguments to Specify the Goals], page 87.

4.1 Rule Syntax

In general, a rule looks like this:

targets : prerequisites

recipe

...

or like this:

targets : prerequisites ; recipe

recipe

...

The targets are file names, separated by spaces. Wildcard characters may be used (see
Section 4.3 [Using Wildcard Characters in File Names], page 21) and a name of the form a(m)

represents member m in archive file a (see Section 11.1 [Archive Members as Targets], page 113).
Usually there is only one target per rule, but occasionally there is a reason to have more (see
Section 4.9 [Multiple Targets in a Rule], page 31).

The recipe lines start with a tab character (or the first character in the value of the
.RECIPEPREFIX variable; see Section 6.14 [Special Variables], page 65). The first recipe line
may appear on the line after the prerequisites, with a tab character, or may appear on the same
line, with a semicolon. Either way, the effect is the same. There are other differences in the
syntax of recipes. See Chapter 5 [Writing Recipes in Rules], page 37.

Because dollar signs are used to start make variable references, if you really want a dollar
sign in a target or prerequisite you must write two of them, ‘$$’ (see Chapter 6 [How to Use
Variables], page 53). If you have enabled secondary expansion (see Section 3.8 [Secondary
Expansion], page 15) and you want a literal dollar sign in the prerequisites list, you must
actually write four dollar signs (‘$$$$’).

You may split a long line by inserting a backslash followed by a newline, but this is not
required, as make places no limit on the length of a line in a makefile.

A rule tells make two things: when the targets are out of date, and how to update them when
necessary.

The criterion for being out of date is specified in terms of the prerequisites, which consist
of file names separated by spaces. (Wildcards and archive members (see Chapter 11 [Archives],
page 113) are allowed here too.) A target is out of date if it does not exist or if it is older
than any of the prerequisites (by comparison of last-modification times). The idea is that the
contents of the target file are computed based on information in the prerequisites, so if any of
the prerequisites changes, the contents of the existing target file are no longer necessarily valid.

20 GNU make

How to update is specified by a recipe. This is one or more lines to be executed by the
shell (normally ‘sh’), but with some extra features (see Chapter 5 [Writing Recipes in Rules],
page 37).

4.2 Types of Prerequisites

There are actually two different types of prerequisites understood by GNU make: normal pre-
requisites such as described in the previous section, and order-only prerequisites. A normal
prerequisite makes two statements: first, it imposes an order in which recipes will be invoked:
the recipes for all prerequisites of a target will be completed before the recipe for the target is
run. Second, it imposes a dependency relationship: if any prerequisite is newer than the target,
then the target is considered out-of-date and must be rebuilt.

Normally, this is exactly what you want: if a target’s prerequisite is updated, then the target
should also be updated.

Occasionally, however, you have a situation where you want to impose a specific ordering
on the rules to be invoked without forcing the target to be updated if one of those rules is
executed. In that case, you want to define order-only prerequisites. Order-only prerequisites
can be specified by placing a pipe symbol (|) in the prerequisites list: any prerequisites to the
left of the pipe symbol are normal; any prerequisites to the right are order-only:

targets : normal-prerequisites | order-only-prerequisites

The normal prerequisites section may of course be empty. Also, you may still declare multiple
lines of prerequisites for the same target: they are appended appropriately (normal prerequisites
are appended to the list of normal prerequisites; order-only prerequisites are appended to the
list of order-only prerequisites). Note that if you declare the same file to be both a normal and
an order-only prerequisite, the normal prerequisite takes precedence (since they have a strict
superset of the behavior of an order-only prerequisite).

Consider an example where your targets are to be placed in a separate directory, and that
directory might not exist before make is run. In this situation, you want the directory to
be created before any targets are placed into it but, because the timestamps on directories
change whenever a file is added, removed, or renamed, we certainly don’t want to rebuild all the
targets whenever the directory’s timestamp changes. One way to manage this is with order-only
prerequisites: make the directory an order-only prerequisite on all the targets:

OBJDIR := objdir

OBJS := $(addprefix $(OBJDIR)/,foo.o bar.o baz.o)

$(OBJDIR)/%.o : %.c

$(COMPILE.c) $(OUTPUT_OPTION) $<

all: $(OBJS)

$(OBJS): | $(OBJDIR)

$(OBJDIR):

mkdir $(OBJDIR)

Now the rule to create the objdir directory will be run, if needed, before any ‘.o’ is built,
but no ‘.o’ will be built because the objdir directory timestamp changed.

Chapter 4: Writing Rules 21

4.3 Using Wildcard Characters in File Names

A single file name can specify many files using wildcard characters. The wildcard characters in
make are ‘*’, ‘?’ and ‘[...]’, the same as in the Bourne shell. For example, *.c specifies a list
of all the files (in the working directory) whose names end in ‘.c’.

The character ‘~’ at the beginning of a file name also has special significance. If alone,
or followed by a slash, it represents your home directory. For example ~/bin expands to
/home/you/bin. If the ‘~’ is followed by a word, the string represents the home directory
of the user named by that word. For example ~john/bin expands to /home/john/bin. On
systems which don’t have a home directory for each user (such as MS-DOS or MS-Windows),
this functionality can be simulated by setting the environment variable HOME.

Wildcard expansion is performed by make automatically in targets and in prerequisites. In
recipes, the shell is responsible for wildcard expansion. In other contexts, wildcard expansion
happens only if you request it explicitly with the wildcard function.

The special significance of a wildcard character can be turned off by preceding it with a
backslash. Thus, foo*bar would refer to a specific file whose name consists of ‘foo’, an asterisk,
and ‘bar’.

4.3.1 Wildcard Examples

Wildcards can be used in the recipe of a rule, where they are expanded by the shell. For example,
here is a rule to delete all the object files:

clean:

rm -f *.o

Wildcards are also useful in the prerequisites of a rule. With the following rule in the makefile,
‘make print’ will print all the ‘.c’ files that have changed since the last time you printed them:

print: *.c

lpr -p $?

touch print

This rule uses print as an empty target file; see Section 4.7 [Empty Target Files to Record
Events], page 28. (The automatic variable ‘$?’ is used to print only those files that have changed;
see Section 10.5.3 [Automatic Variables], page 105.)

Wildcard expansion does not happen when you define a variable. Thus, if you write this:

objects = *.o

then the value of the variable objects is the actual string ‘*.o’. However, if you use the value
of objects in a target or prerequisite, wildcard expansion will take place there. If you use the
value of objects in a recipe, the shell may perform wildcard expansion when the recipe runs.
To set objects to the expansion, instead use:

objects := $(wildcard *.o)

See Section 4.3.3 [Wildcard Function], page 22.

4.3.2 Pitfalls of Using Wildcards

Now here is an example of a naive way of using wildcard expansion, that does not do what you
would intend. Suppose you would like to say that the executable file foo is made from all the
object files in the directory, and you write this:

objects = *.o

foo : $(objects)

cc -o foo $(CFLAGS) $(objects)

22 GNU make

The value of objects is the actual string ‘*.o’. Wildcard expansion happens in the rule for foo,
so that each existing ‘.o’ file becomes a prerequisite of foo and will be recompiled if necessary.

But what if you delete all the ‘.o’ files? When a wildcard matches no files, it is left as it is,
so then foo will depend on the oddly-named file *.o. Since no such file is likely to exist, make
will give you an error saying it cannot figure out how to make *.o. This is not what you want!

Actually it is possible to obtain the desired result with wildcard expansion, but you need
more sophisticated techniques, including the wildcard function and string substitution. These
are described in the following section.

Microsoft operating systems (MS-DOS and MS-Windows) use backslashes to separate direc-
tories in pathnames, like so:

c:\foo\bar\baz.c

This is equivalent to the Unix-style c:/foo/bar/baz.c (the c: part is the so-called drive
letter). When make runs on these systems, it supports backslashes as well as the Unix-style
forward slashes in pathnames. However, this support does not include the wildcard expansion,
where backslash is a quote character. Therefore, you must use Unix-style slashes in these cases.

4.3.3 The Function wildcard

Wildcard expansion happens automatically in rules. But wildcard expansion does not normally
take place when a variable is set, or inside the arguments of a function. If you want to do
wildcard expansion in such places, you need to use the wildcard function, like this:

$(wildcard pattern...)

This string, used anywhere in a makefile, is replaced by a space-separated list of names of
existing files that match one of the given file name patterns. If no existing file name matches
a pattern, then that pattern is omitted from the output of the wildcard function. Note that
this is different from how unmatched wildcards behave in rules, where they are used verbatim
rather than ignored (see Section 4.3.2 [Wildcard Pitfall], page 21).

One use of the wildcard function is to get a list of all the C source files in a directory, like
this:

$(wildcard *.c)

We can change the list of C source files into a list of object files by replacing the ‘.c’ suffix
with ‘.o’ in the result, like this:

$(patsubst %.c,%.o,$(wildcard *.c))

(Here we have used another function, patsubst. See Section 8.2 [Functions for String Substitu-
tion and Analysis], page 73.)

Thus, a makefile to compile all C source files in the directory and then link them together
could be written as follows:

objects := $(patsubst %.c,%.o,$(wildcard *.c))

foo : $(objects)

cc -o foo $(objects)

(This takes advantage of the implicit rule for compiling C programs, so there is no need to write
explicit rules for compiling the files. See Section 6.2 [The Two Flavors of Variables], page 54,
for an explanation of ‘:=’, which is a variant of ‘=’.)

4.4 Searching Directories for Prerequisites

For large systems, it is often desirable to put sources in a separate directory from the binaries.
The directory search features of make facilitate this by searching several directories automatically
to find a prerequisite. When you redistribute the files among directories, you do not need to
change the individual rules, just the search paths.

Chapter 4: Writing Rules 23

4.4.1 VPATH: Search Path for All Prerequisites

The value of the make variable VPATH specifies a list of directories that make should search.
Most often, the directories are expected to contain prerequisite files that are not in the current
directory; however, make uses VPATH as a search list for both prerequisites and targets of rules.

Thus, if a file that is listed as a target or prerequisite does not exist in the current directory,
make searches the directories listed in VPATH for a file with that name. If a file is found in one
of them, that file may become the prerequisite (see below). Rules may then specify the names
of files in the prerequisite list as if they all existed in the current directory. See Section 4.4.4
[Writing Recipes with Directory Search], page 25.

In the VPATH variable, directory names are separated by colons or blanks. The order in which
directories are listed is the order followed by make in its search. (On MS-DOS and MS-Windows,
semi-colons are used as separators of directory names in VPATH, since the colon can be used in
the pathname itself, after the drive letter.)

For example,

VPATH = src:../headers

specifies a path containing two directories, src and ../headers, which make searches in that
order.

With this value of VPATH, the following rule,

foo.o : foo.c

is interpreted as if it were written like this:

foo.o : src/foo.c

assuming the file foo.c does not exist in the current directory but is found in the directory src.

4.4.2 The vpath Directive

Similar to the VPATH variable, but more selective, is the vpath directive (note lower case), which
allows you to specify a search path for a particular class of file names: those that match a
particular pattern. Thus you can supply certain search directories for one class of file names
and other directories (or none) for other file names.

There are three forms of the vpath directive:

vpath pattern directories

Specify the search path directories for file names that match pattern.

The search path, directories, is a list of directories to be searched, separated by
colons (semi-colons on MS-DOS and MS-Windows) or blanks, just like the search
path used in the VPATH variable.

vpath pattern

Clear out the search path associated with pattern.

vpath

Clear all search paths previously specified with vpath directives.

A vpath pattern is a string containing a ‘%’ character. The string must match the file name
of a prerequisite that is being searched for, the ‘%’ character matching any sequence of zero or
more characters (as in pattern rules; see Section 10.5 [Defining and Redefining Pattern Rules],
page 103). For example, %.h matches files that end in .h. (If there is no ‘%’, the pattern must
match the prerequisite exactly, which is not useful very often.)

‘%’ characters in a vpath directive’s pattern can be quoted with preceding backslashes (‘\’).
Backslashes that would otherwise quote ‘%’ characters can be quoted with more backslashes.
Backslashes that quote ‘%’ characters or other backslashes are removed from the pattern before

24 GNU make

it is compared to file names. Backslashes that are not in danger of quoting ‘%’ characters go
unmolested.

When a prerequisite fails to exist in the current directory, if the pattern in a vpath directive
matches the name of the prerequisite file, then the directories in that directive are searched just
like (and before) the directories in the VPATH variable.

For example,

vpath %.h ../headers

tells make to look for any prerequisite whose name ends in .h in the directory ../headers if the
file is not found in the current directory.

If several vpath patterns match the prerequisite file’s name, then make processes each match-
ing vpath directive one by one, searching all the directories mentioned in each directive. make

handles multiple vpath directives in the order in which they appear in the makefile; multiple
directives with the same pattern are independent of each other.

Thus,

vpath %.c foo

vpath % blish

vpath %.c bar

will look for a file ending in ‘.c’ in foo, then blish, then bar, while

vpath %.c foo:bar

vpath % blish

will look for a file ending in ‘.c’ in foo, then bar, then blish.

4.4.3 How Directory Searches are Performed

When a prerequisite is found through directory search, regardless of type (general or selective),
the pathname located may not be the one that make actually provides you in the prerequisite
list. Sometimes the path discovered through directory search is thrown away.

The algorithm make uses to decide whether to keep or abandon a path found via directory
search is as follows:

1. If a target file does not exist at the path specified in the makefile, directory search is
performed.

2. If the directory search is successful, that path is kept and this file is tentatively stored as
the target.

3. All prerequisites of this target are examined using this same method.

4. After processing the prerequisites, the target may or may not need to be rebuilt:

a. If the target does not need to be rebuilt, the path to the file found during directory
search is used for any prerequisite lists which contain this target. In short, if make
doesn’t need to rebuild the target then you use the path found via directory search.

b. If the target does need to be rebuilt (is out-of-date), the pathname found during di-
rectory search is thrown away, and the target is rebuilt using the file name specified in
the makefile. In short, if make must rebuild, then the target is rebuilt locally, not in
the directory found via directory search.

This algorithm may seem complex, but in practice it is quite often exactly what you want.

Other versions of make use a simpler algorithm: if the file does not exist, and it is found via
directory search, then that pathname is always used whether or not the target needs to be built.
Thus, if the target is rebuilt it is created at the pathname discovered during directory search.

If, in fact, this is the behavior you want for some or all of your directories, you can use the
GPATH variable to indicate this to make.

Chapter 4: Writing Rules 25

GPATH has the same syntax and format as VPATH (that is, a space- or colon-delimited list of
pathnames). If an out-of-date target is found by directory search in a directory that also appears
in GPATH, then that pathname is not thrown away. The target is rebuilt using the expanded
path.

4.4.4 Writing Recipes with Directory Search

When a prerequisite is found in another directory through directory search, this cannot change
the recipe of the rule; they will execute as written. Therefore, you must write the recipe with
care so that it will look for the prerequisite in the directory where make finds it.

This is done with the automatic variables such as ‘$^’ (see Section 10.5.3 [Automatic Vari-
ables], page 105). For instance, the value of ‘$^’ is a list of all the prerequisites of the rule,
including the names of the directories in which they were found, and the value of ‘$@’ is the
target. Thus:

foo.o : foo.c

cc -c $(CFLAGS) $^ -o $@

(The variable CFLAGS exists so you can specify flags for C compilation by implicit rules; we use
it here for consistency so it will affect all C compilations uniformly; see Section 10.3 [Variables
Used by Implicit Rules], page 101.)

Often the prerequisites include header files as well, which you do not want to mention in the
recipe. The automatic variable ‘$<’ is just the first prerequisite:

VPATH = src:../headers

foo.o : foo.c defs.h hack.h

cc -c $(CFLAGS) $< -o $@

4.4.5 Directory Search and Implicit Rules

The search through the directories specified in VPATH or with vpath also happens during con-
sideration of implicit rules (see Chapter 10 [Using Implicit Rules], page 97).

For example, when a file foo.o has no explicit rule, make considers implicit rules, such as the
built-in rule to compile foo.c if that file exists. If such a file is lacking in the current directory,
the appropriate directories are searched for it. If foo.c exists (or is mentioned in the makefile)
in any of the directories, the implicit rule for C compilation is applied.

The recipes of implicit rules normally use automatic variables as a matter of necessity; con-
sequently they will use the file names found by directory search with no extra effort.

4.4.6 Directory Search for Link Libraries

Directory search applies in a special way to libraries used with the linker. This special feature
comes into play when you write a prerequisite whose name is of the form ‘-lname’. (You can
tell something strange is going on here because the prerequisite is normally the name of a file,
and the file name of a library generally looks like libname.a, not like ‘-lname’.)

When a prerequisite’s name has the form ‘-lname’, make handles it specially by searching
for the file libname.so, and, if it is not found, for the file libname.a in the current directory,
in directories specified by matching vpath search paths and the VPATH search path, and then in
the directories /lib, /usr/lib, and prefix/lib (normally /usr/local/lib, but MS-DOS/MS-
Windows versions of make behave as if prefix is defined to be the root of the DJGPP installation
tree).

For example, if there is a /usr/lib/libcurses.a library on your system (and no
/usr/lib/libcurses.so file), then

foo : foo.c -lcurses

cc $^ -o $@

26 GNU make

would cause the command ‘cc foo.c /usr/lib/libcurses.a -o foo’ to be executed when foo

is older than foo.c or than /usr/lib/libcurses.a.

Although the default set of files to be searched for is libname.so and libname.a, this is
customizable via the .LIBPATTERNS variable. Each word in the value of this variable is a pattern
string. When a prerequisite like ‘-lname’ is seen, make will replace the percent in each pattern
in the list with name and perform the above directory searches using each library file name.

The default value for .LIBPATTERNS is ‘lib%.so lib%.a’, which provides the default behavior
described above.

You can turn off link library expansion completely by setting this variable to an empty value.

4.5 Phony Targets

A phony target is one that is not really the name of a file; rather it is just a name for a recipe
to be executed when you make an explicit request. There are two reasons to use a phony target:
to avoid a conflict with a file of the same name, and to improve performance.

If you write a rule whose recipe will not create the target file, the recipe will be executed
every time the target comes up for remaking. Here is an example:

clean:

rm *.o temp

Because the rm command does not create a file named clean, probably no such file will ever
exist. Therefore, the rm command will be executed every time you say ‘make clean’.

In this example, the clean target will not work properly if a file named clean is ever created
in this directory. Since it has no prerequisites, clean would always be considered up to date and
its recipe would not be executed. To avoid this problem you can explicitly declare the target
to be phony by making it a prerequisite of the special target .PHONY (see Section 4.8 [Special
Built-in Target Names], page 28) as follows:

.PHONY: clean

clean:

rm *.o temp

Once this is done, ‘make clean’ will run the recipe regardless of whether there is a file named
clean.

Phony targets are also useful in conjunction with recursive invocations of make (see Section 5.7
[Recursive Use of make], page 45). In this situation the makefile will often contain a variable
which lists a number of sub-directories to be built. A simplistic way to handle this is to define
one rule with a recipe that loops over the sub-directories, like this:

SUBDIRS = foo bar baz

subdirs:

for dir in $(SUBDIRS); do \

$(MAKE) -C $$dir; \

done

There are problems with this method, however. First, any error detected in a sub-make is
ignored by this rule, so it will continue to build the rest of the directories even when one fails.
This can be overcome by adding shell commands to note the error and exit, but then it will
do so even if make is invoked with the -k option, which is unfortunate. Second, and perhaps
more importantly, you cannot take advantage of make’s ability to build targets in parallel (see
Section 5.4 [Parallel Execution], page 42), since there is only one rule.

By declaring the sub-directories as .PHONY targets (you must do this as the sub-directory
obviously always exists; otherwise it won’t be built) you can remove these problems:

Chapter 4: Writing Rules 27

SUBDIRS = foo bar baz

.PHONY: subdirs $(SUBDIRS)

subdirs: $(SUBDIRS)

$(SUBDIRS):

$(MAKE) -C $@

foo: baz

Here we’ve also declared that the foo sub-directory cannot be built until after the baz

sub-directory is complete; this kind of relationship declaration is particularly important when
attempting parallel builds.

The implicit rule search (see Chapter 10 [Implicit Rules], page 97) is skipped for .PHONY

targets. This is why declaring a target as .PHONY is good for performance, even if you are not
worried about the actual file existing.

A phony target should not be a prerequisite of a real target file; if it is, its recipe will be run
every time make goes to update that file. As long as a phony target is never a prerequisite of a
real target, the phony target recipe will be executed only when the phony target is a specified
goal (see Section 9.2 [Arguments to Specify the Goals], page 87).

Phony targets can have prerequisites. When one directory contains multiple programs, it is
most convenient to describe all of the programs in one makefile ./Makefile. Since the target
remade by default will be the first one in the makefile, it is common to make this a phony target
named ‘all’ and give it, as prerequisites, all the individual programs. For example:

all : prog1 prog2 prog3

.PHONY : all

prog1 : prog1.o utils.o

cc -o prog1 prog1.o utils.o

prog2 : prog2.o

cc -o prog2 prog2.o

prog3 : prog3.o sort.o utils.o

cc -o prog3 prog3.o sort.o utils.o

Now you can say just ‘make’ to remake all three programs, or specify as arguments the ones
to remake (as in ‘make prog1 prog3’). Phoniness is not inherited: the prerequisites of a phony
target are not themselves phony, unless explicitly declared to be so.

When one phony target is a prerequisite of another, it serves as a subroutine of the other.
For example, here ‘make cleanall’ will delete the object files, the difference files, and the file
program:

.PHONY: cleanall cleanobj cleandiff

cleanall : cleanobj cleandiff

rm program

cleanobj :

rm *.o

cleandiff :

28 GNU make

rm *.diff

4.6 Rules without Recipes or Prerequisites

If a rule has no prerequisites or recipe, and the target of the rule is a nonexistent file, then make

imagines this target to have been updated whenever its rule is run. This implies that all targets
depending on this one will always have their recipe run.

An example will illustrate this:

clean: FORCE

rm $(objects)

FORCE:

Here the target ‘FORCE’ satisfies the special conditions, so the target clean that depends on
it is forced to run its recipe. There is nothing special about the name ‘FORCE’, but that is one
name commonly used this way.

As you can see, using ‘FORCE’ this way has the same results as using ‘.PHONY: clean’.

Using ‘.PHONY’ is more explicit and more efficient. However, other versions of make do not
support ‘.PHONY’; thus ‘FORCE’ appears in many makefiles. See Section 4.5 [Phony Targets],
page 26.

4.7 Empty Target Files to Record Events

The empty target is a variant of the phony target; it is used to hold recipes for an action that
you request explicitly from time to time. Unlike a phony target, this target file can really exist;
but the file’s contents do not matter, and usually are empty.

The purpose of the empty target file is to record, with its last-modification time, when the
rule’s recipe was last executed. It does so because one of the commands in the recipe is a touch

command to update the target file.

The empty target file should have some prerequisites (otherwise it doesn’t make sense). When
you ask to remake the empty target, the recipe is executed if any prerequisite is more recent
than the target; in other words, if a prerequisite has changed since the last time you remade the
target. Here is an example:

print: foo.c bar.c

lpr -p $?

touch print

With this rule, ‘make print’ will execute the lpr command if either source file has changed
since the last ‘make print’. The automatic variable ‘$?’ is used to print only those files that
have changed (see Section 10.5.3 [Automatic Variables], page 105).

4.8 Special Built-in Target Names

Certain names have special meanings if they appear as targets.

.PHONY

The prerequisites of the special target .PHONY are considered to be phony targets.
When it is time to consider such a target, make will run its recipe unconditionally,
regardless of whether a file with that name exists or what its last-modification time
is. See Section 4.5 [Phony Targets], page 26.

.SUFFIXES

The prerequisites of the special target .SUFFIXES are the list of suffixes to be used
in checking for suffix rules. See Section 10.7 [Old-Fashioned Suffix Rules], page 110.

Chapter 4: Writing Rules 29

.DEFAULT

The recipe specified for .DEFAULT is used for any target for which no rules are found
(either explicit rules or implicit rules). See Section 10.6 [Last Resort], page 109.
If a .DEFAULT recipe is specified, every file mentioned as a prerequisite, but not as
a target in a rule, will have that recipe executed on its behalf. See Section 10.8
[Implicit Rule Search Algorithm], page 111.

.PRECIOUS

The targets which .PRECIOUS depends on are given the following special treatment:
if make is killed or interrupted during the execution of their recipes, the target is
not deleted. See Section 5.6 [Interrupting or Killing make], page 45. Also, if the
target is an intermediate file, it will not be deleted after it is no longer needed, as is
normally done. See Section 10.4 [Chains of Implicit Rules], page 103. In this latter
respect it overlaps with the .SECONDARY special target.

You can also list the target pattern of an implicit rule (such as ‘%.o’) as a prerequisite
file of the special target .PRECIOUS to preserve intermediate files created by rules
whose target patterns match that file’s name.

.INTERMEDIATE

The targets which .INTERMEDIATE depends on are treated as intermediate files.
See Section 10.4 [Chains of Implicit Rules], page 103. .INTERMEDIATE with no
prerequisites has no effect.

.SECONDARY

The targets which .SECONDARY depends on are treated as intermediate files, except
that they are never automatically deleted. See Section 10.4 [Chains of Implicit
Rules], page 103.

.SECONDARY with no prerequisites causes all targets to be treated as secondary (i.e.,
no target is removed because it is considered intermediate).

.SECONDEXPANSION

If .SECONDEXPANSION is mentioned as a target anywhere in the makefile, then all
prerequisite lists defined after it appears will be expanded a second time after all
makefiles have been read in. See Section 3.8 [Secondary Expansion], page 15.

.DELETE_ON_ERROR

If .DELETE_ON_ERROR is mentioned as a target anywhere in the makefile, then make

will delete the target of a rule if it has changed and its recipe exits with a nonzero
exit status, just as it does when it receives a signal. See Section 5.5 [Errors in
Recipes], page 44.

.IGNORE

If you specify prerequisites for .IGNORE, then make will ignore errors in execution of
the recipe for those particular files. The recipe for .IGNORE (if any) is ignored.

If mentioned as a target with no prerequisites, .IGNORE says to ignore errors in
execution of recipes for all files. This usage of ‘.IGNORE’ is supported only for
historical compatibility. Since this affects every recipe in the makefile, it is not very
useful; we recommend you use the more selective ways to ignore errors in specific
recipes. See Section 5.5 [Errors in Recipes], page 44.

.LOW_RESOLUTION_TIME

If you specify prerequisites for .LOW_RESOLUTION_TIME, make assumes that these
files are created by commands that generate low resolution time stamps. The recipe
for the .LOW_RESOLUTION_TIME target are ignored.

30 GNU make

The high resolution file time stamps of many modern file systems lessen the chance
of make incorrectly concluding that a file is up to date. Unfortunately, some hosts
do not provide a way to set a high resolution file time stamp, so commands like
‘cp -p’ that explicitly set a file’s time stamp must discard its sub-second part. If
a file is created by such a command, you should list it as a prerequisite of .LOW_
RESOLUTION_TIME so that make does not mistakenly conclude that the file is out of
date. For example:

.LOW_RESOLUTION_TIME: dst

dst: src

cp -p src dst

Since ‘cp -p’ discards the sub-second part of src’s time stamp, dst is typically
slightly older than src even when it is up to date. The .LOW_RESOLUTION_TIME line
causes make to consider dst to be up to date if its time stamp is at the start of the
same second that src’s time stamp is in.

Due to a limitation of the archive format, archive member time stamps are al-
ways low resolution. You need not list archive members as prerequisites of .LOW_
RESOLUTION_TIME, as make does this automatically.

.SILENT

If you specify prerequisites for .SILENT, then make will not print the recipe used
to remake those particular files before executing them. The recipe for .SILENT is
ignored.

If mentioned as a target with no prerequisites, .SILENT says not to print any recipes
before executing them. This usage of ‘.SILENT’ is supported only for historical
compatibility. We recommend you use the more selective ways to silence specific
recipes. See Section 5.2 [Recipe Echoing], page 39. If you want to silence all recipes
for a particular run of make, use the ‘-s’ or ‘--silent’ option (see Section 9.7
[Options Summary], page 91).

.EXPORT_ALL_VARIABLES

Simply by being mentioned as a target, this tells make to export all variables to child
processes by default. See Section 5.7.2 [Communicating Variables to a Sub-make],
page 46.

.NOTPARALLEL

If .NOTPARALLEL is mentioned as a target, then this invocation of make will be run
serially, even if the ‘-j’ option is given. Any recursively invoked make command
will still run recipes in parallel (unless its makefile also contains this target). Any
prerequisites on this target are ignored.

.ONESHELL

If .ONESHELL is mentioned as a target, then when a target is built all lines of the
recipe will be given to a single invocation of the shell rather than each line being
invoked separately (see Section 5.3 [Recipe Execution], page 39).

.POSIX

If .POSIX is mentioned as a target, then the makefile will be parsed and run in
POSIX-conforming mode. This does not mean that only POSIX-conforming make-
files will be accepted: all advanced GNU make features are still available. Rather,
this target causes make to behave as required by POSIX in those areas where make’s
default behavior differs.

In particular, if this target is mentioned then recipes will be invoked as if the shell
had been passed the -e flag: the first failing command in a recipe will cause the
recipe to fail immediately.

Chapter 4: Writing Rules 31

Any defined implicit rule suffix also counts as a special target if it appears as a target, and
so does the concatenation of two suffixes, such as ‘.c.o’. These targets are suffix rules, an
obsolete way of defining implicit rules (but a way still widely used). In principle, any target
name could be special in this way if you break it in two and add both pieces to the suffix list.
In practice, suffixes normally begin with ‘.’, so these special target names also begin with ‘.’.
See Section 10.7 [Old-Fashioned Suffix Rules], page 110.

4.9 Multiple Targets in a Rule

A rule with multiple targets is equivalent to writing many rules, each with one target, and
all identical aside from that. The same recipe applies to all the targets, but its effect may
vary because you can substitute the actual target name into the recipe using ‘$@’. The rule
contributes the same prerequisites to all the targets also.

This is useful in two cases.

• You want just prerequisites, no recipe. For example:

kbd.o command.o files.o: command.h

gives an additional prerequisite to each of the three object files mentioned.

• Similar recipes work for all the targets. The recipes do not need to be absolutely identical,
since the automatic variable ‘$@’ can be used to substitute the particular target to be remade
into the commands (see Section 10.5.3 [Automatic Variables], page 105). For example:

bigoutput littleoutput : text.g

generate text.g -$(subst output,,$@) > $@

is equivalent to

bigoutput : text.g

generate text.g -big > bigoutput

littleoutput : text.g

generate text.g -little > littleoutput

Here we assume the hypothetical program generate makes two types of output, one if given
‘-big’ and one if given ‘-little’. See Section 8.2 [Functions for String Substitution and
Analysis], page 73, for an explanation of the subst function.

Suppose you would like to vary the prerequisites according to the target, much as the variable
‘$@’ allows you to vary the recipe. You cannot do this with multiple targets in an ordinary rule,
but you can do it with a static pattern rule. See Section 4.11 [Static Pattern Rules], page 32.

4.10 Multiple Rules for One Target

One file can be the target of several rules. All the prerequisites mentioned in all the rules are
merged into one list of prerequisites for the target. If the target is older than any prerequisite
from any rule, the recipe is executed.

There can only be one recipe to be executed for a file. If more than one rule gives a recipe
for the same file, make uses the last one given and prints an error message. (As a special case,
if the file’s name begins with a dot, no error message is printed. This odd behavior is only for
compatibility with other implementations of make. . . you should avoid using it). Occasionally
it is useful to have the same target invoke multiple recipes which are defined in different parts
of your makefile; you can use double-colon rules (see Section 4.12 [Double-Colon], page 34) for
this.

An extra rule with just prerequisites can be used to give a few extra prerequisites to many
files at once. For example, makefiles often have a variable, such as objects, containing a list

32 GNU make

of all the compiler output files in the system being made. An easy way to say that all of them
must be recompiled if config.h changes is to write the following:

objects = foo.o bar.o

foo.o : defs.h

bar.o : defs.h test.h

$(objects) : config.h

This could be inserted or taken out without changing the rules that really specify how to
make the object files, making it a convenient form to use if you wish to add the additional
prerequisite intermittently.

Another wrinkle is that the additional prerequisites could be specified with a variable that
you set with a command line argument to make (see Section 9.5 [Overriding Variables], page 90).
For example,

extradeps=

$(objects) : $(extradeps)

means that the command ‘make extradeps=foo.h’ will consider foo.h as a prerequisite of each
object file, but plain ‘make’ will not.

If none of the explicit rules for a target has a recipe, then make searches for an applicable
implicit rule to find one see Chapter 10 [Using Implicit Rules], page 97).

4.11 Static Pattern Rules

Static pattern rules are rules which specify multiple targets and construct the prerequisite names
for each target based on the target name. They are more general than ordinary rules with mul-
tiple targets because the targets do not have to have identical prerequisites. Their prerequisites
must be analogous, but not necessarily identical.

4.11.1 Syntax of Static Pattern Rules

Here is the syntax of a static pattern rule:

targets ...: target-pattern: prereq-patterns ...

recipe

...

The targets list specifies the targets that the rule applies to. The targets can contain wildcard
characters, just like the targets of ordinary rules (see Section 4.3 [Using Wildcard Characters in
File Names], page 21).

The target-pattern and prereq-patterns say how to compute the prerequisites of each target.
Each target is matched against the target-pattern to extract a part of the target name, called
the stem. This stem is substituted into each of the prereq-patterns to make the prerequisite
names (one from each prereq-pattern).

Each pattern normally contains the character ‘%’ just once. When the target-pattern matches
a target, the ‘%’ can match any part of the target name; this part is called the stem. The rest
of the pattern must match exactly. For example, the target foo.o matches the pattern ‘%.o’,
with ‘foo’ as the stem. The targets foo.c and foo.out do not match that pattern.

The prerequisite names for each target are made by substituting the stem for the ‘%’ in each
prerequisite pattern. For example, if one prerequisite pattern is %.c, then substitution of the
stem ‘foo’ gives the prerequisite name foo.c. It is legitimate to write a prerequisite pattern
that does not contain ‘%’; then this prerequisite is the same for all targets.

‘%’ characters in pattern rules can be quoted with preceding backslashes (‘\’). Backslashes
that would otherwise quote ‘%’ characters can be quoted with more backslashes. Backslashes
that quote ‘%’ characters or other backslashes are removed from the pattern before it is com-
pared to file names or has a stem substituted into it. Backslashes that are not in danger of

Chapter 4: Writing Rules 33

quoting ‘%’ characters go unmolested. For example, the pattern the\%weird\\%pattern\\ has
‘the%weird\’ preceding the operative ‘%’ character, and ‘pattern\\’ following it. The final two
backslashes are left alone because they cannot affect any ‘%’ character.

Here is an example, which compiles each of foo.o and bar.o from the corresponding .c file:

objects = foo.o bar.o

all: $(objects)

$(objects): %.o: %.c

$(CC) -c $(CFLAGS) $< -o $@

Here ‘$<’ is the automatic variable that holds the name of the prerequisite and ‘$@’ is the
automatic variable that holds the name of the target; see Section 10.5.3 [Automatic Variables],
page 105.

Each target specified must match the target pattern; a warning is issued for each target that
does not. If you have a list of files, only some of which will match the pattern, you can use
the filter function to remove non-matching file names (see Section 8.2 [Functions for String
Substitution and Analysis], page 73):

files = foo.elc bar.o lose.o

$(filter %.o,$(files)): %.o: %.c

$(CC) -c $(CFLAGS) $< -o $@

$(filter %.elc,$(files)): %.elc: %.el

emacs -f batch-byte-compile $<

In this example the result of ‘$(filter %.o,$(files))’ is bar.o lose.o, and the first static
pattern rule causes each of these object files to be updated by compiling the corresponding C
source file. The result of ‘$(filter %.elc,$(files))’ is foo.elc, so that file is made from
foo.el.

Another example shows how to use $* in static pattern rules:

bigoutput littleoutput : %output : text.g

generate text.g -$* > $@

When the generate command is run, $* will expand to the stem, either ‘big’ or ‘little’.

4.11.2 Static Pattern Rules versus Implicit Rules

A static pattern rule has much in common with an implicit rule defined as a pattern rule (see
Section 10.5 [Defining and Redefining Pattern Rules], page 103). Both have a pattern for the
target and patterns for constructing the names of prerequisites. The difference is in how make

decides when the rule applies.

An implicit rule can apply to any target that matches its pattern, but it does apply only
when the target has no recipe otherwise specified, and only when the prerequisites can be found.
If more than one implicit rule appears applicable, only one applies; the choice depends on the
order of rules.

By contrast, a static pattern rule applies to the precise list of targets that you specify in the
rule. It cannot apply to any other target and it invariably does apply to each of the targets
specified. If two conflicting rules apply, and both have recipes, that’s an error.

The static pattern rule can be better than an implicit rule for these reasons:

• You may wish to override the usual implicit rule for a few files whose names cannot be
categorized syntactically but can be given in an explicit list.

• If you cannot be sure of the precise contents of the directories you are using, you may not
be sure which other irrelevant files might lead make to use the wrong implicit rule. The

34 GNU make

choice might depend on the order in which the implicit rule search is done. With static
pattern rules, there is no uncertainty: each rule applies to precisely the targets specified.

4.12 Double-Colon Rules

Double-colon rules are explicit rules written with ‘::’ instead of ‘:’ after the target names.
They are handled differently from ordinary rules when the same target appears in more than
one rule. Pattern rules with double-colons have an entirely different meaning (see Section 10.5.5
[Match-Anything Rules], page 108).

When a target appears in multiple rules, all the rules must be the same type: all ordinary,
or all double-colon. If they are double-colon, each of them is independent of the others. Each
double-colon rule’s recipe is executed if the target is older than any prerequisites of that rule. If
there are no prerequisites for that rule, its recipe is always executed (even if the target already
exists). This can result in executing none, any, or all of the double-colon rules.

Double-colon rules with the same target are in fact completely separate from one another.
Each double-colon rule is processed individually, just as rules with different targets are processed.

The double-colon rules for a target are executed in the order they appear in the makefile.
However, the cases where double-colon rules really make sense are those where the order of
executing the recipes would not matter.

Double-colon rules are somewhat obscure and not often very useful; they provide a mechanism
for cases in which the method used to update a target differs depending on which prerequisite
files caused the update, and such cases are rare.

Each double-colon rule should specify a recipe; if it does not, an implicit rule will be used if
one applies. See Chapter 10 [Using Implicit Rules], page 97.

4.13 Generating Prerequisites Automatically

In the makefile for a program, many of the rules you need to write often say only that some
object file depends on some header file. For example, if main.c uses defs.h via an #include,
you would write:

main.o: defs.h

You need this rule so that make knows that it must remake main.o whenever defs.h changes.
You can see that for a large program you would have to write dozens of such rules in your
makefile. And, you must always be very careful to update the makefile every time you add or
remove an #include.

To avoid this hassle, most modern C compilers can write these rules for you, by looking at
the #include lines in the source files. Usually this is done with the ‘-M’ option to the compiler.
For example, the command:

cc -M main.c

generates the output:

main.o : main.c defs.h

Thus you no longer have to write all those rules yourself. The compiler will do it for you.

Note that such a rule constitutes mentioning main.o in a makefile, so it can never be consid-
ered an intermediate file by implicit rule search. This means that make won’t ever remove the
file after using it; see Section 10.4 [Chains of Implicit Rules], page 103.

With old make programs, it was traditional practice to use this compiler feature to generate
prerequisites on demand with a command like ‘make depend’. That command would create a
file depend containing all the automatically-generated prerequisites; then the makefile could use
include to read them in (see Section 3.3 [Include], page 10).

Chapter 4: Writing Rules 35

In GNU make, the feature of remaking makefiles makes this practice obsolete—you need never
tell make explicitly to regenerate the prerequisites, because it always regenerates any makefile
that is out of date. See Section 3.5 [Remaking Makefiles], page 12.

The practice we recommend for automatic prerequisite generation is to have one makefile
corresponding to each source file. For each source file name.c there is a makefile name.d which
lists what files the object file name.o depends on. That way only the source files that have
changed need to be rescanned to produce the new prerequisites.

Here is the pattern rule to generate a file of prerequisites (i.e., a makefile) called name.d from
a C source file called name.c:

%.d: %.c

@set -e; rm -f $@; \

$(CC) -M $(CPPFLAGS) $< > $@.$$$$; \

sed ’s,\($*\)\.o[:]*,\1.o $@ : ,g’ < $@.$$$$ > $@; \

rm -f $@.$$$$

See Section 10.5 [Pattern Rules], page 103, for information on defining pattern rules. The ‘-e’
flag to the shell causes it to exit immediately if the $(CC) command (or any other command)
fails (exits with a nonzero status).

With the GNU C compiler, you may wish to use the ‘-MM’ flag instead of ‘-M’. This omits
prerequisites on system header files. See Section “Options Controlling the Preprocessor” in
Using GNU CC , for details.

The purpose of the sed command is to translate (for example):

main.o : main.c defs.h

into:

main.o main.d : main.c defs.h

This makes each ‘.d’ file depend on all the source and header files that the corresponding ‘.o’ file
depends on. make then knows it must regenerate the prerequisites whenever any of the source
or header files changes.

Once you’ve defined the rule to remake the ‘.d’ files, you then use the include directive to
read them all in. See Section 3.3 [Include], page 10. For example:

sources = foo.c bar.c

include $(sources:.c=.d)

(This example uses a substitution variable reference to translate the list of source files ‘foo.c
bar.c’ into a list of prerequisite makefiles, ‘foo.d bar.d’. See Section 6.3.1 [Substitution Refs],
page 56, for full information on substitution references.) Since the ‘.d’ files are makefiles like
any others, make will remake them as necessary with no further work from you. See Section 3.5
[Remaking Makefiles], page 12.

Note that the ‘.d’ files contain target definitions; you should be sure to place the include

directive after the first, default goal in your makefiles or run the risk of having a random object
file become the default goal. See Section 2.3 [How Make Works], page 5.

37

5 Writing Recipes in Rules

The recipe of a rule consists of one or more shell command lines to be executed, one at a time,
in the order they appear. Typically, the result of executing these commands is that the target
of the rule is brought up to date.

Users use many different shell programs, but recipes in makefiles are always interpreted by
/bin/sh unless the makefile specifies otherwise. See Section 5.3 [Recipe Execution], page 39.

5.1 Recipe Syntax

Makefiles have the unusual property that there are really two distinct syntaxes in one file. Most
of the makefile uses make syntax (see Chapter 3 [Writing Makefiles], page 9). However, recipes
are meant to be interpreted by the shell and so they are written using shell syntax. The make

program does not try to understand shell syntax: it performs only a very few specific translations
on the content of the recipe before handing it to the shell.

Each line in the recipe must start with a tab (or the first character in the value of the
.RECIPEPREFIX variable; see Section 6.14 [Special Variables], page 65), except that the first
recipe line may be attached to the target-and-prerequisites line with a semicolon in between.
Any line in the makefile that begins with a tab and appears in a “rule context” (that is, after a
rule has been started until another rule or variable definition) will be considered part of a recipe
for that rule. Blank lines and lines of just comments may appear among the recipe lines; they
are ignored.

Some consequences of these rules include:

• A blank line that begins with a tab is not blank: it’s an empty recipe (see Section 5.9
[Empty Recipes], page 51).

• A comment in a recipe is not a make comment; it will be passed to the shell as-is. Whether
the shell treats it as a comment or not depends on your shell.

• A variable definition in a “rule context” which is indented by a tab as the first character
on the line, will be considered part of a recipe, not a make variable definition, and passed
to the shell.

• A conditional expression (ifdef, ifeq, etc. see Section 7.2 [Syntax of Conditionals],
page 70) in a “rule context” which is indented by a tab as the first character on the line,
will be considered part of a recipe and be passed to the shell.

5.1.1 Splitting Recipe Lines

One of the few ways in which make does interpret recipes is checking for a backslash just before
the newline. As in normal makefile syntax, a single logical recipe line can be split into multiple
physical lines in the makefile by placing a backslash before each newline. A sequence of lines
like this is considered a single recipe line, and one instance of the shell will be invoked to run it.

However, in contrast to how they are treated in other places in a makefile (see Section 3.1.1
[Splitting Long Lines], page 9), backslash/newline pairs are not removed from the recipe. Both
the backslash and the newline characters are preserved and passed to the shell. How the back-
slash/newline is interpreted depends on your shell. If the first character of the next line after
the backslash/newline is the recipe prefix character (a tab by default; see Section 6.14 [Special
Variables], page 65), then that character (and only that character) is removed. Whitespace is
never added to the recipe.

For example, the recipe for the all target in this makefile:

38 GNU make

all :

@echo no\

space

@echo no\

space

@echo one \

space

@echo one\

space

consists of four separate shell commands where the output is:

nospace

nospace

one space

one space

As a more complex example, this makefile:

all : ; @echo ’hello \

world’ ; echo "hello \

world"

will invoke one shell with a command of:

echo ’hello \

world’ ; echo "hello \

world"

which, according to shell quoting rules, will yield the following output:

hello \

world

hello world

Notice how the backslash/newline pair was removed inside the string quoted with double quotes
("..."), but not from the string quoted with single quotes (’...’). This is the way the default
shell (/bin/sh) handles backslash/newline pairs. If you specify a different shell in your makefiles
it may treat them differently.

Sometimes you want to split a long line inside of single quotes, but you don’t want the
backslash/newline to appear in the quoted content. This is often the case when passing scripts
to languages such as Perl, where extraneous backslashes inside the script can change its meaning
or even be a syntax error. One simple way of handling this is to place the quoted string, or even
the entire command, into a make variable then use the variable in the recipe. In this situation
the newline quoting rules for makefiles will be used, and the backslash/newline will be removed.
If we rewrite our example above using this method:

HELLO = ’hello \

world’

all : ; @echo $(HELLO)

we will get output like this:

hello world

If you like, you can also use target-specific variables (see Section 6.11 [Target-specific Variable
Values], page 63) to obtain a tighter correspondence between the variable and the recipe that
uses it.

Chapter 5: Writing Recipes in Rules 39

5.1.2 Using Variables in Recipes

The other way in which make processes recipes is by expanding any variable references in them
(see Section 6.1 [Reference], page 53). This occurs after make has finished reading all the
makefiles and the target is determined to be out of date; so, the recipes for targets which are
not rebuilt are never expanded.

Variable and function references in recipes have identical syntax and semantics to references
elsewhere in the makefile. They also have the same quoting rules: if you want a dollar sign to
appear in your recipe, you must double it (‘$$’). For shells like the default shell, that use dollar
signs to introduce variables, it’s important to keep clear in your mind whether the variable you
want to reference is a make variable (use a single dollar sign) or a shell variable (use two dollar
signs). For example:

LIST = one two three

all:

for i in $(LIST); do \

echo $$i; \

done

results in the following command being passed to the shell:

for i in one two three; do \

echo $i; \

done

which generates the expected result:

one

two

three

5.2 Recipe Echoing

Normally make prints each line of the recipe before it is executed. We call this echoing because
it gives the appearance that you are typing the lines yourself.

When a line starts with ‘@’, the echoing of that line is suppressed. The ‘@’ is discarded before
the line is passed to the shell. Typically you would use this for a command whose only effect is
to print something, such as an echo command to indicate progress through the makefile:

@echo About to make distribution files

When make is given the flag ‘-n’ or ‘--just-print’ it only echoes most recipes, without
executing them. See Section 9.7 [Summary of Options], page 91. In this case even the recipe
lines starting with ‘@’ are printed. This flag is useful for finding out which recipes make thinks
are necessary without actually doing them.

The ‘-s’ or ‘--silent’ flag to make prevents all echoing, as if all recipes started with ‘@’. A
rule in the makefile for the special target .SILENT without prerequisites has the same effect (see
Section 4.8 [Special Built-in Target Names], page 28). .SILENT is essentially obsolete since ‘@’
is more flexible.

5.3 Recipe Execution

When it is time to execute recipes to update a target, they are executed by invoking a new sub-
shell for each line of the recipe, unless the .ONESHELL special target is in effect (see Section 5.3.1
[Using One Shell], page 40) (In practice, make may take shortcuts that do not affect the results.)

40 GNU make

Please note: this implies that setting shell variables and invoking shell commands such as cd
that set a context local to each process will not affect the following lines in the recipe.1 If you
want to use cd to affect the next statement, put both statements in a single recipe line. Then
make will invoke one shell to run the entire line, and the shell will execute the statements in
sequence. For example:

foo : bar/lose

cd $(@D) && gobble $(@F) > ../$@

Here we use the shell AND operator (&&) so that if the cd command fails, the script will
fail without trying to invoke the gobble command in the wrong directory, which could cause
problems (in this case it would certainly cause ../foo to be truncated, at least).

5.3.1 Using One Shell

Sometimes you would prefer that all the lines in the recipe be passed to a single invocation of the
shell. There are generally two situations where this is useful: first, it can improve performance in
makefiles where recipes consist of many command lines, by avoiding extra processes. Second, you
might want newlines to be included in your recipe command (for example perhaps you are using
a very different interpreter as your SHELL). If the .ONESHELL special target appears anywhere
in the makefile then all recipe lines for each target will be provided to a single invocation of the
shell. Newlines between recipe lines will be preserved. For example:

.ONESHELL:

foo : bar/lose

cd $(@D)

gobble $(@F) > ../$@

would now work as expected even though the commands are on different recipe lines.

If .ONESHELL is provided, then only the first line of the recipe will be checked for the special
prefix characters (‘@’, ‘-’, and ‘+’). Subsequent lines will include the special characters in the
recipe line when the SHELL is invoked. If you want your recipe to start with one of these special
characters you’ll need to arrange for them to not be the first characters on the first line, perhaps
by adding a comment or similar. For example, this would be a syntax error in Perl because the
first ‘@’ is removed by make:

.ONESHELL:

SHELL = /usr/bin/perl

.SHELLFLAGS = -e

show :

@f = qw(a b c);

print "@f\n";

However, either of these alternatives would work properly:

.ONESHELL:

SHELL = /usr/bin/perl

.SHELLFLAGS = -e

show :

Make sure "@" is not the first character on the first line

@f = qw(a b c);

print "@f\n";

or

.ONESHELL:

SHELL = /usr/bin/perl

1 On MS-DOS, the value of current working directory is global, so changing it will affect the following recipe
lines on those systems.

Chapter 5: Writing Recipes in Rules 41

.SHELLFLAGS = -e

show :

my @f = qw(a b c);

print "@f\n";

As a special feature, if SHELL is determined to be a POSIX-style shell, the special prefix
characters in “internal” recipe lines will removed before the recipe is processed. This feature is
intended to allow existing makefiles to add the .ONESHELL special target and still run properly
without extensive modifications. Since the special prefix characters are not legal at the beginning
of a line in a POSIX shell script this is not a loss in functionality. For example, this works as
expected:

.ONESHELL:

foo : bar/lose

@cd $(@D)

@gobble $(@F) > ../$@

Even with this special feature, however, makefiles with .ONESHELL will behave differently in
ways that could be noticeable. For example, normally if any line in the recipe fails, that causes
the rule to fail and no more recipe lines are processed. Under .ONESHELL a failure of any but
the final recipe line will not be noticed by make. You can modify .SHELLFLAGS to add the -e

option to the shell which will cause any failure anywhere in the command line to cause the shell
to fail, but this could itself cause your recipe to behave differently. Ultimately you may need to
harden your recipe lines to allow them to work with .ONESHELL.

5.3.2 Choosing the Shell

The program used as the shell is taken from the variable SHELL. If this variable is not set in
your makefile, the program /bin/sh is used as the shell. The argument(s) passed to the shell
are taken from the variable .SHELLFLAGS. The default value of .SHELLFLAGS is -c normally, or
-ec in POSIX-conforming mode.

Unlike most variables, the variable SHELL is never set from the environment. This is because
the SHELL environment variable is used to specify your personal choice of shell program for
interactive use. It would be very bad for personal choices like this to affect the functioning of
makefiles. See Section 6.10 [Variables from the Environment], page 63.

Furthermore, when you do set SHELL in your makefile that value is not exported in the
environment to recipe lines that make invokes. Instead, the value inherited from the user’s
environment, if any, is exported. You can override this behavior by explicitly exporting SHELL

(see Section 5.7.2 [Communicating Variables to a Sub-make], page 46), forcing it to be passed in
the environment to recipe lines.

However, on MS-DOS and MS-Windows the value of SHELL in the environment is used, since
on those systems most users do not set this variable, and therefore it is most likely set specifically
to be used by make. On MS-DOS, if the setting of SHELL is not suitable for make, you can set the
variable MAKESHELL to the shell that make should use; if set it will be used as the shell instead
of the value of SHELL.

Choosing a Shell in DOS and Windows

Choosing a shell in MS-DOS and MS-Windows is much more complex than on other systems.

On MS-DOS, if SHELL is not set, the value of the variable COMSPEC (which is always set) is
used instead.

The processing of lines that set the variable SHELL in Makefiles is different on MS-DOS. The
stock shell, command.com, is ridiculously limited in its functionality and many users of make tend
to install a replacement shell. Therefore, on MS-DOS, make examines the value of SHELL, and

42 GNU make

changes its behavior based on whether it points to a Unix-style or DOS-style shell. This allows
reasonable functionality even if SHELL points to command.com.

If SHELL points to a Unix-style shell, make on MS-DOS additionally checks whether that shell
can indeed be found; if not, it ignores the line that sets SHELL. In MS-DOS, GNU make searches
for the shell in the following places:

1. In the precise place pointed to by the value of SHELL. For example, if the makefile specifies
‘SHELL = /bin/sh’, make will look in the directory /bin on the current drive.

2. In the current directory.

3. In each of the directories in the PATH variable, in order.

In every directory it examines, make will first look for the specific file (sh in the example
above). If this is not found, it will also look in that directory for that file with one of the known
extensions which identify executable files. For example .exe, .com, .bat, .btm, .sh, and some
others.

If any of these attempts is successful, the value of SHELL will be set to the full pathname of
the shell as found. However, if none of these is found, the value of SHELL will not be changed,
and thus the line that sets it will be effectively ignored. This is so make will only support features
specific to a Unix-style shell if such a shell is actually installed on the system where make runs.

Note that this extended search for the shell is limited to the cases where SHELL is set from
the Makefile; if it is set in the environment or command line, you are expected to set it to the
full pathname of the shell, exactly as things are on Unix.

The effect of the above DOS-specific processing is that a Makefile that contains ‘SHELL =

/bin/sh’ (as many Unix makefiles do), will work on MS-DOS unaltered if you have e.g. sh.exe
installed in some directory along your PATH.

5.4 Parallel Execution

GNU make knows how to execute several recipes at once. Normally, make will execute only
one recipe at a time, waiting for it to finish before executing the next. However, the ‘-j’ or
‘--jobs’ option tells make to execute many recipes simultaneously. You can inhibit parallelism
in a particular makefile with the .NOTPARALLEL pseudo-target (see Section 4.8 [Special Targets],
page 28).

On MS-DOS, the ‘-j’ option has no effect, since that system doesn’t support multi-processing.

If the ‘-j’ option is followed by an integer, this is the number of recipes to execute at once;
this is called the number of job slots. If there is nothing looking like an integer after the ‘-j’
option, there is no limit on the number of job slots. The default number of job slots is one,
which means serial execution (one thing at a time).

Handling recursive make invocations raises issues for parallel execution. For more information
on this, see Section 5.7.3 [Communicating Options to a Sub-make], page 48.

If a recipe fails (is killed by a signal or exits with a nonzero status), and errors are not
ignored for that recipe (see Section 5.5 [Errors in Recipes], page 44), the remaining recipe lines
to remake the same target will not be run. If a recipe fails and the ‘-k’ or ‘--keep-going’ option
was not given (see Section 9.7 [Summary of Options], page 91), make aborts execution. If make
terminates for any reason (including a signal) with child processes running, it waits for them to
finish before actually exiting.

When the system is heavily loaded, you will probably want to run fewer jobs than when it
is lightly loaded. You can use the ‘-l’ option to tell make to limit the number of jobs to run at
once, based on the load average. The ‘-l’ or ‘--max-load’ option is followed by a floating-point
number. For example,

-l 2.5

Chapter 5: Writing Recipes in Rules 43

will not let make start more than one job if the load average is above 2.5. The ‘-l’ option with
no following number removes the load limit, if one was given with a previous ‘-l’ option.

More precisely, when make goes to start up a job, and it already has at least one job running,
it checks the current load average; if it is not lower than the limit given with ‘-l’, make waits
until the load average goes below that limit, or until all the other jobs finish.

By default, there is no load limit.

5.4.1 Output During Parallel Execution

When running several recipes in parallel the output from each recipe appears as soon as it is
generated, with the result that messages from different recipes may be interspersed, sometimes
even appearing on the same line. This can make reading the output very difficult.

To avoid this you can use the ‘--output-sync’ (‘-O’) option. This option instructs make

to save the output from the commands it invokes and print it all once the commands are
completed. Additionally, if there are multiple recursive make invocations running in parallel,
they will communicate so that only one of them is generating output at a time.

If working directory printing is enabled (see Section 5.7.4 [The ‘--print-directory’ Option],
page 50), the enter/leave messages are printed around each output grouping. If you prefer not
to see these messages add the ‘--no-print-directory’ option to MAKEFLAGS.

There are four levels of granularity when synchronizing output, specified by giving an argu-
ment to the option (e.g., ‘-Oline’ or ‘--output-sync=recurse’).

none This is the default: all output is sent directly as it is generated and no synchroniza-
tion is performed.

line Output from each individual line of the recipe is grouped and printed as soon as
that line is complete. If a recipe consists of multiple lines, they may be interspersed
with lines from other recipes.

target Output from the entire recipe for each target is grouped and printed once the target
is complete. This is the default if the --output-sync or -O option is given with no
argument.

recurse Output from each recursive invocation of make is grouped and printed once the
recursive invocation is complete.

Regardless of the mode chosen, the total build time will be the same. The only difference is
in how the output appears.

The ‘target’ and ‘recurse’ modes both collect the output of the entire recipe of a target
and display it uninterrupted when the recipe completes. The difference between them is in how
recipes that contain recursive invocations of make are treated (see Section 5.7 [Recursive Use of
make], page 45). For all recipes which have no recursive lines, the ‘target’ and ‘recurse’ modes
behave identically.

If the ‘recurse’ mode is chosen, recipes that contain recursive make invocations are treated
the same as other targets: the output from the recipe, including the output from the recursive
make, is saved and printed after the entire recipe is complete. This ensures output from all
the targets built by a given recursive make instance are grouped together, which may make the
output easier to understand. However it also leads to long periods of time during the build
where no output is seen, followed by large bursts of output. If you are not watching the build
as it proceeds, but instead viewing a log of the build after the fact, this may be the best option
for you.

If you are watching the output, the long gaps of quiet during the build can be frustrating.
The ‘target’ output synchronization mode detects when make is going to be invoked recursively,
using the standard methods, and it will not synchronize the output of those lines. The recursive

44 GNU make

make will perform the synchronization for its targets and the output from each will be displayed
immediately when it completes. Be aware that output from recursive lines of the recipe are
not synchronized (for example if the recursive line prints a message before running make, that
message will not be synchronized).

The ‘line’ mode can be useful for front-ends that are watching the output of make to track
when recipes are started and completed.

Some programs invoked by make may behave differently if they determine they’re writing
output to a terminal versus a file (often described as “interactive” vs. “non-interactive” modes).
For example, many programs that can display colorized output will not do so if they determine
they are not writing to a terminal. If your makefile invokes a program like this then using the
output synchronization options will cause the program to believe it’s running in “non-interactive”
mode even though the output will ultimately go to the terminal.

5.4.2 Input During Parallel Execution

Two processes cannot both take input from the same device at the same time. To make sure that
only one recipe tries to take input from the terminal at once, make will invalidate the standard
input streams of all but one running recipe. If another recipe attempts to read from standard
input it will usually incur a fatal error (a ‘Broken pipe’ signal).

It is unpredictable which recipe will have a valid standard input stream (which will come
from the terminal, or wherever you redirect the standard input of make). The first recipe run
will always get it first, and the first recipe started after that one finishes will get it next, and so
on.

We will change how this aspect of make works if we find a better alternative. In the mean
time, you should not rely on any recipe using standard input at all if you are using the parallel
execution feature; but if you are not using this feature, then standard input works normally in
all recipes.

5.5 Errors in Recipes

After each shell invocation returns, make looks at its exit status. If the shell completed success-
fully (the exit status is zero), the next line in the recipe is executed in a new shell; after the last
line is finished, the rule is finished.

If there is an error (the exit status is nonzero), make gives up on the current rule, and perhaps
on all rules.

Sometimes the failure of a certain recipe line does not indicate a problem. For example, you
may use the mkdir command to ensure that a directory exists. If the directory already exists,
mkdir will report an error, but you probably want make to continue regardless.

To ignore errors in a recipe line, write a ‘-’ at the beginning of the line’s text (after the initial
tab). The ‘-’ is discarded before the line is passed to the shell for execution.

For example,

clean:

-rm -f *.o

This causes make to continue even if rm is unable to remove a file.

When you run make with the ‘-i’ or ‘--ignore-errors’ flag, errors are ignored in all recipes
of all rules. A rule in the makefile for the special target .IGNORE has the same effect, if there
are no prerequisites. These ways of ignoring errors are obsolete because ‘-’ is more flexible.

When errors are to be ignored, because of either a ‘-’ or the ‘-i’ flag, make treats an error
return just like success, except that it prints out a message that tells you the status code the
shell exited with, and says that the error has been ignored.

Chapter 5: Writing Recipes in Rules 45

When an error happens that make has not been told to ignore, it implies that the current
target cannot be correctly remade, and neither can any other that depends on it either directly
or indirectly. No further recipes will be executed for these targets, since their preconditions have
not been achieved.

Normally make gives up immediately in this circumstance, returning a nonzero status. How-
ever, if the ‘-k’ or ‘--keep-going’ flag is specified, make continues to consider the other pre-
requisites of the pending targets, remaking them if necessary, before it gives up and returns
nonzero status. For example, after an error in compiling one object file, ‘make -k’ will continue
compiling other object files even though it already knows that linking them will be impossible.
See Section 9.7 [Summary of Options], page 91.

The usual behavior assumes that your purpose is to get the specified targets up to date; once
make learns that this is impossible, it might as well report the failure immediately. The ‘-k’
option says that the real purpose is to test as many of the changes made in the program as
possible, perhaps to find several independent problems so that you can correct them all before
the next attempt to compile. This is why Emacs’ compile command passes the ‘-k’ flag by
default.

Usually when a recipe line fails, if it has changed the target file at all, the file is corrupted
and cannot be used—or at least it is not completely updated. Yet the file’s time stamp says
that it is now up to date, so the next time make runs, it will not try to update that file. The
situation is just the same as when the shell is killed by a signal; see Section 5.6 [Interrupts],
page 45. So generally the right thing to do is to delete the target file if the recipe fails after
beginning to change the file. make will do this if .DELETE_ON_ERROR appears as a target. This is
almost always what you want make to do, but it is not historical practice; so for compatibility,
you must explicitly request it.

5.6 Interrupting or Killing make

If make gets a fatal signal while a shell is executing, it may delete the target file that the recipe
was supposed to update. This is done if the target file’s last-modification time has changed since
make first checked it.

The purpose of deleting the target is to make sure that it is remade from scratch when make

is next run. Why is this? Suppose you type Ctrl-c while a compiler is running, and it has
begun to write an object file foo.o. The Ctrl-c kills the compiler, resulting in an incomplete
file whose last-modification time is newer than the source file foo.c. But make also receives the
Ctrl-c signal and deletes this incomplete file. If make did not do this, the next invocation of
make would think that foo.o did not require updating—resulting in a strange error message
from the linker when it tries to link an object file half of which is missing.

You can prevent the deletion of a target file in this way by making the special target
.PRECIOUS depend on it. Before remaking a target, make checks to see whether it appears
on the prerequisites of .PRECIOUS, and thereby decides whether the target should be deleted if
a signal happens. Some reasons why you might do this are that the target is updated in some
atomic fashion, or exists only to record a modification-time (its contents do not matter), or must
exist at all times to prevent other sorts of trouble.

5.7 Recursive Use of make

Recursive use of make means using make as a command in a makefile. This technique is useful
when you want separate makefiles for various subsystems that compose a larger system. For
example, suppose you have a sub-directory subdir which has its own makefile, and you would
like the containing directory’s makefile to run make on the sub-directory. You can do it by
writing this:

subsystem:

46 GNU make

cd subdir && $(MAKE)

or, equivalently, this (see Section 9.7 [Summary of Options], page 91):

subsystem:

$(MAKE) -C subdir

You can write recursive make commands just by copying this example, but there are many
things to know about how they work and why, and about how the sub-make relates to the top-
level make. You may also find it useful to declare targets that invoke recursive make commands
as ‘.PHONY’ (for more discussion on when this is useful, see Section 4.5 [Phony Targets], page 26).

For your convenience, when GNU make starts (after it has processed any -C options) it sets
the variable CURDIR to the pathname of the current working directory. This value is never
touched by make again: in particular note that if you include files from other directories the
value of CURDIR does not change. The value has the same precedence it would have if it were
set in the makefile (by default, an environment variable CURDIR will not override this value).
Note that setting this variable has no impact on the operation of make (it does not cause make

to change its working directory, for example).

5.7.1 How the MAKE Variable Works

Recursive make commands should always use the variable MAKE, not the explicit command name
‘make’, as shown here:

subsystem:

cd subdir && $(MAKE)

The value of this variable is the file name with which make was invoked. If this file name was
/bin/make, then the recipe executed is ‘cd subdir && /bin/make’. If you use a special version
of make to run the top-level makefile, the same special version will be executed for recursive
invocations.

As a special feature, using the variable MAKE in the recipe of a rule alters the effects of the
‘-t’ (‘--touch’), ‘-n’ (‘--just-print’), or ‘-q’ (‘--question’) option. Using the MAKE variable
has the same effect as using a ‘+’ character at the beginning of the recipe line. See Section 9.3
[Instead of Executing the Recipes], page 89. This special feature is only enabled if the MAKE

variable appears directly in the recipe: it does not apply if the MAKE variable is referenced
through expansion of another variable. In the latter case you must use the ‘+’ token to get these
special effects.

Consider the command ‘make -t’ in the above example. (The ‘-t’ option marks targets as up
to date without actually running any recipes; see Section 9.3 [Instead of Execution], page 89.)
Following the usual definition of ‘-t’, a ‘make -t’ command in the example would create a file
named subsystem and do nothing else. What you really want it to do is run ‘cd subdir &&

make -t’; but that would require executing the recipe, and ‘-t’ says not to execute recipes.

The special feature makes this do what you want: whenever a recipe line of a rule contains the
variable MAKE, the flags ‘-t’, ‘-n’ and ‘-q’ do not apply to that line. Recipe lines containing MAKE
are executed normally despite the presence of a flag that causes most recipes not to be run. The
usual MAKEFLAGS mechanism passes the flags to the sub-make (see Section 5.7.3 [Communicating
Options to a Sub-make], page 48), so your request to touch the files, or print the recipes, is
propagated to the subsystem.

5.7.2 Communicating Variables to a Sub-make

Variable values of the top-level make can be passed to the sub-make through the environment
by explicit request. These variables are defined in the sub-make as defaults, but they do not
override variables defined in the makefile used by the sub-make unless you use the ‘-e’ switch
(see Section 9.7 [Summary of Options], page 91).

Chapter 5: Writing Recipes in Rules 47

To pass down, or export, a variable, make adds the variable and its value to the environment
for running each line of the recipe. The sub-make, in turn, uses the environment to initialize its
table of variable values. See Section 6.10 [Variables from the Environment], page 63.

Except by explicit request, make exports a variable only if it is either defined in the environ-
ment initially or set on the command line, and if its name consists only of letters, numbers, and
underscores. Some shells cannot cope with environment variable names consisting of characters
other than letters, numbers, and underscores.

The value of the make variable SHELL is not exported. Instead, the value of the SHELL variable
from the invoking environment is passed to the sub-make. You can force make to export its value
for SHELL by using the export directive, described below. See Section 5.3.2 [Choosing the Shell],
page 41.

The special variable MAKEFLAGS is always exported (unless you unexport it). MAKEFILES is
exported if you set it to anything.

make automatically passes down variable values that were defined on the command line, by
putting them in the MAKEFLAGS variable. See the next section.

Variables are not normally passed down if they were created by default by make (see
Section 10.3 [Variables Used by Implicit Rules], page 101). The sub-make will define these
for itself.

If you want to export specific variables to a sub-make, use the export directive, like this:

export variable ...

If you want to prevent a variable from being exported, use the unexport directive, like this:

unexport variable ...

In both of these forms, the arguments to export and unexport are expanded, and so could be
variables or functions which expand to a (list of) variable names to be (un)exported.

As a convenience, you can define a variable and export it at the same time by doing:

export variable = value

has the same result as:

variable = value

export variable

and

export variable := value

has the same result as:

variable := value

export variable

Likewise,

export variable += value

is just like:

variable += value

export variable

See Section 6.6 [Appending More Text to Variables], page 59.

You may notice that the export and unexport directives work in make in the same way they
work in the shell, sh.

If you want all variables to be exported by default, you can use export by itself:

export

This tells make that variables which are not explicitly mentioned in an export or unexport

directive should be exported. Any variable given in an unexport directive will still not be

48 GNU make

exported. If you use export by itself to export variables by default, variables whose names con-
tain characters other than alphanumerics and underscores will not be exported unless specifically
mentioned in an export directive.

The behavior elicited by an export directive by itself was the default in older versions of
GNU make. If your makefiles depend on this behavior and you want to be compatible with old
versions of make, you can write a rule for the special target .EXPORT_ALL_VARIABLES instead of
using the export directive. This will be ignored by old makes, while the export directive will
cause a syntax error.

Likewise, you can use unexport by itself to tell make not to export variables by default. Since
this is the default behavior, you would only need to do this if export had been used by itself
earlier (in an included makefile, perhaps). You cannot use export and unexport by themselves
to have variables exported for some recipes and not for others. The last export or unexport
directive that appears by itself determines the behavior for the entire run of make.

As a special feature, the variable MAKELEVEL is changed when it is passed down from level to
level. This variable’s value is a string which is the depth of the level as a decimal number. The
value is ‘0’ for the top-level make; ‘1’ for a sub-make, ‘2’ for a sub-sub-make, and so on. The
incrementation happens when make sets up the environment for a recipe.

The main use of MAKELEVEL is to test it in a conditional directive (see Chapter 7 [Conditional
Parts of Makefiles], page 69); this way you can write a makefile that behaves one way if run
recursively and another way if run directly by you.

You can use the variable MAKEFILES to cause all sub-make commands to use additional make-
files. The value of MAKEFILES is a whitespace-separated list of file names. This variable, if
defined in the outer-level makefile, is passed down through the environment; then it serves as a
list of extra makefiles for the sub-make to read before the usual or specified ones. See Section 3.4
[The Variable MAKEFILES], page 11.

5.7.3 Communicating Options to a Sub-make

Flags such as ‘-s’ and ‘-k’ are passed automatically to the sub-make through the variable
MAKEFLAGS. This variable is set up automatically by make to contain the flag letters that make
received. Thus, if you do ‘make -ks’ then MAKEFLAGS gets the value ‘ks’.

As a consequence, every sub-make gets a value for MAKEFLAGS in its environment. In response,
it takes the flags from that value and processes them as if they had been given as arguments.
See Section 9.7 [Summary of Options], page 91.

Likewise variables defined on the command line are passed to the sub-make through
MAKEFLAGS. Words in the value of MAKEFLAGS that contain ‘=’, make treats as variable defi-
nitions just as if they appeared on the command line. See Section 9.5 [Overriding Variables],
page 90.

The options ‘-C’, ‘-f’, ‘-o’, and ‘-W’ are not put into MAKEFLAGS; these options are not passed
down.

The ‘-j’ option is a special case (see Section 5.4 [Parallel Execution], page 42). If you set it
to some numeric value ‘N’ and your operating system supports it (most any UNIX system will;
others typically won’t), the parent make and all the sub-makes will communicate to ensure that
there are only ‘N’ jobs running at the same time between them all. Note that any job that is
marked recursive (see Section 9.3 [Instead of Executing Recipes], page 89) doesn’t count against
the total jobs (otherwise we could get ‘N’ sub-makes running and have no slots left over for any
real work!)

If your operating system doesn’t support the above communication, then ‘-j 1’ is always put
into MAKEFLAGS instead of the value you specified. This is because if the ‘-j’ option were passed
down to sub-makes, you would get many more jobs running in parallel than you asked for. If

Chapter 5: Writing Recipes in Rules 49

you give ‘-j’ with no numeric argument, meaning to run as many jobs as possible in parallel,
this is passed down, since multiple infinities are no more than one.

If you do not want to pass the other flags down, you must change the value of MAKEFLAGS,
like this:

subsystem:

cd subdir && $(MAKE) MAKEFLAGS=

The command line variable definitions really appear in the variable MAKEOVERRIDES, and
MAKEFLAGS contains a reference to this variable. If you do want to pass flags down normally, but
don’t want to pass down the command line variable definitions, you can reset MAKEOVERRIDES
to empty, like this:

MAKEOVERRIDES =

This is not usually useful to do. However, some systems have a small fixed limit on the size of
the environment, and putting so much information into the value of MAKEFLAGS can exceed it. If
you see the error message ‘Arg list too long’, this may be the problem. (For strict compliance
with POSIX.2, changing MAKEOVERRIDES does not affect MAKEFLAGS if the special target ‘.POSIX’
appears in the makefile. You probably do not care about this.)

A similar variable MFLAGS exists also, for historical compatibility. It has the same value
as MAKEFLAGS except that it does not contain the command line variable definitions, and it
always begins with a hyphen unless it is empty (MAKEFLAGS begins with a hyphen only when it
begins with an option that has no single-letter version, such as ‘--warn-undefined-variables’).
MFLAGS was traditionally used explicitly in the recursive make command, like this:

subsystem:

cd subdir && $(MAKE) $(MFLAGS)

but now MAKEFLAGS makes this usage redundant. If you want your makefiles to be compatible
with old make programs, use this technique; it will work fine with more modern make versions
too.

The MAKEFLAGS variable can also be useful if you want to have certain options, such as ‘-k’
(see Section 9.7 [Summary of Options], page 91), set each time you run make. You simply put a
value for MAKEFLAGS in your environment. You can also set MAKEFLAGS in a makefile, to specify
additional flags that should also be in effect for that makefile. (Note that you cannot use MFLAGS
this way. That variable is set only for compatibility; make does not interpret a value you set for
it in any way.)

When make interprets the value of MAKEFLAGS (either from the environment or from a make-
file), it first prepends a hyphen if the value does not already begin with one. Then it chops
the value into words separated by blanks, and parses these words as if they were options given
on the command line (except that ‘-C’, ‘-f’, ‘-h’, ‘-o’, ‘-W’, and their long-named versions are
ignored; and there is no error for an invalid option).

If you do put MAKEFLAGS in your environment, you should be sure not to include any options
that will drastically affect the actions of make and undermine the purpose of makefiles and of
make itself. For instance, the ‘-t’, ‘-n’, and ‘-q’ options, if put in one of these variables, could
have disastrous consequences and would certainly have at least surprising and probably annoying
effects.

If you’d like to run other implementations of make in addition to GNU make, and hence do
not want to add GNU make-specific flags to the MAKEFLAGS variable, you can add them to the
GNUMAKEFLAGS variable instead. This variable is parsed just before MAKEFLAGS, in the same way
as MAKEFLAGS. When make constructs MAKEFLAGS to pass to a recursive make it will include all
flags, even those taken from GNUMAKEFLAGS. As a result, after parsing GNUMAKEFLAGS GNU make

sets this variable to the empty string to avoid duplicating flags during recursion.

50 GNU make

It’s best to use GNUMAKEFLAGS only with flags which won’t materially change the behavior of
your makefiles. If your makefiles require GNU make anyway then simply use MAKEFLAGS. Flags
such as ‘--no-print-directory’ or ‘--output-sync’ may be appropriate for GNUMAKEFLAGS.

5.7.4 The ‘--print-directory’ Option

If you use several levels of recursive make invocations, the ‘-w’ or ‘--print-directory’ option
can make the output a lot easier to understand by showing each directory as make starts pro-
cessing it and as make finishes processing it. For example, if ‘make -w’ is run in the directory
/u/gnu/make, make will print a line of the form:

make: Entering directory ‘/u/gnu/make’.

before doing anything else, and a line of the form:

make: Leaving directory ‘/u/gnu/make’.

when processing is completed.

Normally, you do not need to specify this option because ‘make’ does it for you: ‘-w’ is turned
on automatically when you use the ‘-C’ option, and in sub-makes. make will not automatically
turn on ‘-w’ if you also use ‘-s’, which says to be silent, or if you use ‘--no-print-directory’
to explicitly disable it.

5.8 Defining Canned Recipes

When the same sequence of commands is useful in making various targets, you can define it as
a canned sequence with the define directive, and refer to the canned sequence from the recipes
for those targets. The canned sequence is actually a variable, so the name must not conflict
with other variable names.

Here is an example of defining a canned recipe:

define run-yacc =

yacc $(firstword $^)

mv y.tab.c $@

endef

Here run-yacc is the name of the variable being defined; endef marks the end of the definition;
the lines in between are the commands. The define directive does not expand variable references
and function calls in the canned sequence; the ‘$’ characters, parentheses, variable names, and
so on, all become part of the value of the variable you are defining. See Section 6.8 [Defining
Multi-Line Variables], page 61, for a complete explanation of define.

The first command in this example runs Yacc on the first prerequisite of whichever rule uses
the canned sequence. The output file from Yacc is always named y.tab.c. The second command
moves the output to the rule’s target file name.

To use the canned sequence, substitute the variable into the recipe of a rule. You can substi-
tute it like any other variable (see Section 6.1 [Basics of Variable References], page 53). Because
variables defined by define are recursively expanded variables, all the variable references you
wrote inside the define are expanded now. For example:

foo.c : foo.y

$(run-yacc)

‘foo.y’ will be substituted for the variable ‘$^’ when it occurs in run-yacc’s value, and ‘foo.c’
for ‘$@’.

This is a realistic example, but this particular one is not needed in practice because make has
an implicit rule to figure out these commands based on the file names involved (see Chapter 10
[Using Implicit Rules], page 97).

Chapter 5: Writing Recipes in Rules 51

In recipe execution, each line of a canned sequence is treated just as if the line appeared on
its own in the rule, preceded by a tab. In particular, make invokes a separate sub-shell for each
line. You can use the special prefix characters that affect command lines (‘@’, ‘-’, and ‘+’) on
each line of a canned sequence. See Chapter 5 [Writing Recipes in Rules], page 37. For example,
using this canned sequence:

define frobnicate =

@echo "frobnicating target $@"

frob-step-1 $< -o $@-step-1

frob-step-2 $@-step-1 -o $@

endef

make will not echo the first line, the echo command. But it will echo the following two recipe
lines.

On the other hand, prefix characters on the recipe line that refers to a canned sequence apply
to every line in the sequence. So the rule:

frob.out: frob.in

@$(frobnicate)

does not echo any recipe lines. (See Section 5.2 [Recipe Echoing], page 39, for a full explanation
of ‘@’.)

5.9 Using Empty Recipes

It is sometimes useful to define recipes which do nothing. This is done simply by giving a recipe
that consists of nothing but whitespace. For example:

target: ;

defines an empty recipe for target. You could also use a line beginning with a recipe prefix
character to define an empty recipe, but this would be confusing because such a line looks empty.

You may be wondering why you would want to define a recipe that does nothing. The only
reason this is useful is to prevent a target from getting implicit recipes (from implicit rules or the
.DEFAULT special target; see Chapter 10 [Implicit Rules], page 97, and see Section 10.6 [Defining
Last-Resort Default Rules], page 109).

You may be inclined to define empty recipes for targets that are not actual files, but only
exist so that their prerequisites can be remade. However, this is not the best way to do that,
because the prerequisites may not be remade properly if the target file actually does exist. See
Section 4.5 [Phony Targets], page 26, for a better way to do this.

53

6 How to Use Variables

A variable is a name defined in a makefile to represent a string of text, called the variable’s
value. These values are substituted by explicit request into targets, prerequisites, recipes, and
other parts of the makefile. (In some other versions of make, variables are called macros.)

Variables and functions in all parts of a makefile are expanded when read, except for in recipes,
the right-hand sides of variable definitions using ‘=’, and the bodies of variable definitions using
the define directive.

Variables can represent lists of file names, options to pass to compilers, programs to run,
directories to look in for source files, directories to write output in, or anything else you can
imagine.

A variable name may be any sequence of characters not containing ‘:’, ‘#’, ‘=’, or whitespace.
However, variable names containing characters other than letters, numbers, and underscores
should be considered carefully, as in some shells they cannot be passed through the environment
to a sub-make (see Section 5.7.2 [Communicating Variables to a Sub-make], page 46). Variable
names beginning with ‘.’ and an uppercase letter may be given special meaning in future versions
of make.

Variable names are case-sensitive. The names ‘foo’, ‘FOO’, and ‘Foo’ all refer to different
variables.

It is traditional to use upper case letters in variable names, but we recommend using lower
case letters for variable names that serve internal purposes in the makefile, and reserving upper
case for parameters that control implicit rules or for parameters that the user should override
with command options (see Section 9.5 [Overriding Variables], page 90).

A few variables have names that are a single punctuation character or just a few characters.
These are the automatic variables, and they have particular specialized uses. See Section 10.5.3
[Automatic Variables], page 105.

6.1 Basics of Variable References

To substitute a variable’s value, write a dollar sign followed by the name of the variable in
parentheses or braces: either ‘$(foo)’ or ‘${foo}’ is a valid reference to the variable foo. This
special significance of ‘$’ is why you must write ‘$$’ to have the effect of a single dollar sign in
a file name or recipe.

Variable references can be used in any context: targets, prerequisites, recipes, most directives,
and new variable values. Here is an example of a common case, where a variable holds the names
of all the object files in a program:

objects = program.o foo.o utils.o

program : $(objects)

cc -o program $(objects)

$(objects) : defs.h

Variable references work by strict textual substitution. Thus, the rule

foo = c

prog.o : prog.$(foo)

(foo)(foo) -$(foo) prog.$(foo)

could be used to compile a C program prog.c. Since spaces before the variable value are ignored
in variable assignments, the value of foo is precisely ‘c’. (Don’t actually write your makefiles
this way!)

A dollar sign followed by a character other than a dollar sign, open-parenthesis or open-brace
treats that single character as the variable name. Thus, you could reference the variable x with

54 GNU make

‘$x’. However, this practice is strongly discouraged, except in the case of the automatic variables
(see Section 10.5.3 [Automatic Variables], page 105).

6.2 The Two Flavors of Variables

There are two ways that a variable in GNU make can have a value; we call them the two flavors
of variables. The two flavors are distinguished in how they are defined and in what they do
when expanded.

The first flavor of variable is a recursively expanded variable. Variables of this sort are defined
by lines using ‘=’ (see Section 6.5 [Setting Variables], page 59) or by the define directive (see
Section 6.8 [Defining Multi-Line Variables], page 61). The value you specify is installed verbatim;
if it contains references to other variables, these references are expanded whenever this variable
is substituted (in the course of expanding some other string). When this happens, it is called
recursive expansion.

For example,

foo = $(bar)

bar = $(ugh)

ugh = Huh?

all:;echo $(foo)

will echo ‘Huh?’: ‘$(foo)’ expands to ‘$(bar)’ which expands to ‘$(ugh)’ which finally expands
to ‘Huh?’.

This flavor of variable is the only sort supported by most other versions of make. It has its
advantages and its disadvantages. An advantage (most would say) is that:

CFLAGS = $(include_dirs) -O

include_dirs = -Ifoo -Ibar

will do what was intended: when ‘CFLAGS’ is expanded in a recipe, it will expand to ‘-Ifoo
-Ibar -O’. A major disadvantage is that you cannot append something on the end of a variable,
as in

CFLAGS = $(CFLAGS) -O

because it will cause an infinite loop in the variable expansion. (Actually make detects the
infinite loop and reports an error.)

Another disadvantage is that any functions (see Chapter 8 [Functions for Transforming Text],
page 73) referenced in the definition will be executed every time the variable is expanded. This
makes make run slower; worse, it causes the wildcard and shell functions to give unpredictable
results because you cannot easily control when they are called, or even how many times.

To avoid all the problems and inconveniences of recursively expanded variables, there is
another flavor: simply expanded variables.

Simply expanded variables are defined by lines using ‘:=’ or ‘::=’ (see Section 6.5 [Setting
Variables], page 59). Both forms are equivalent in GNU make; however only the ‘::=’ form is
described by the POSIX standard (support for ‘::=’ was added to the POSIX standard in 2012,
so older versions of make won’t accept this form either).

The value of a simply expanded variable is scanned once and for all, expanding any references
to other variables and functions, when the variable is defined. The actual value of the simply
expanded variable is the result of expanding the text that you write. It does not contain any
references to other variables; it contains their values as of the time this variable was defined.
Therefore,

x := foo

y := $(x) bar

Chapter 6: How to Use Variables 55

x := later

is equivalent to

y := foo bar

x := later

When a simply expanded variable is referenced, its value is substituted verbatim.

Here is a somewhat more complicated example, illustrating the use of ‘:=’ in conjunction
with the shell function. (See Section 8.13 [The shell Function], page 85.) This example also
shows use of the variable MAKELEVEL, which is changed when it is passed down from level to
level. (See Section 5.7.2 [Communicating Variables to a Sub-make], page 46, for information
about MAKELEVEL.)

ifeq (0,${MAKELEVEL})

whoami := $(shell whoami)

host-type := $(shell arch)

MAKE := ${MAKE} host-type=${host-type} whoami=${whoami}

endif

An advantage of this use of ‘:=’ is that a typical ‘descend into a directory’ recipe then looks like
this:

${subdirs}:

${MAKE} -C $@ all

Simply expanded variables generally make complicated makefile programming more pre-
dictable because they work like variables in most programming languages. They allow you
to redefine a variable using its own value (or its value processed in some way by one of the
expansion functions) and to use the expansion functions much more efficiently (see Chapter 8
[Functions for Transforming Text], page 73).

You can also use them to introduce controlled leading whitespace into variable values. Lead-
ing whitespace characters are discarded from your input before substitution of variable references
and function calls; this means you can include leading spaces in a variable value by protecting
them with variable references, like this:

nullstring :=

space := $(nullstring) # end of the line

Here the value of the variable space is precisely one space. The comment ‘# end of the line’
is included here just for clarity. Since trailing space characters are not stripped from variable
values, just a space at the end of the line would have the same effect (but be rather hard to
read). If you put whitespace at the end of a variable value, it is a good idea to put a comment
like that at the end of the line to make your intent clear. Conversely, if you do not want any
whitespace characters at the end of your variable value, you must remember not to put a random
comment on the end of the line after some whitespace, such as this:

dir := /foo/bar # directory to put the frobs in

Here the value of the variable dir is ‘/foo/bar ’ (with four trailing spaces), which was probably
not the intention. (Imagine something like ‘$(dir)/file’ with this definition!)

There is another assignment operator for variables, ‘?=’. This is called a conditional variable
assignment operator, because it only has an effect if the variable is not yet defined. This
statement:

FOO ?= bar

is exactly equivalent to this (see Section 8.10 [The origin Function], page 83):

ifeq ($(origin FOO), undefined)

FOO = bar

endif

Note that a variable set to an empty value is still defined, so ‘?=’ will not set that variable.

56 GNU make

6.3 Advanced Features for Reference to Variables

This section describes some advanced features you can use to reference variables in more flexible
ways.

6.3.1 Substitution References

A substitution reference substitutes the value of a variable with alterations that you specify. It
has the form ‘$(var:a=b)’ (or ‘${var:a=b}’) and its meaning is to take the value of the variable
var, replace every a at the end of a word with b in that value, and substitute the resulting string.

When we say “at the end of a word”, we mean that a must appear either followed by
whitespace or at the end of the value in order to be replaced; other occurrences of a in the value
are unaltered. For example:

foo := a.o b.o c.o

bar := $(foo:.o=.c)

sets ‘bar’ to ‘a.c b.c c.c’. See Section 6.5 [Setting Variables], page 59.

A substitution reference is actually an abbreviation for use of the patsubst expansion func-
tion (see Section 8.2 [Functions for String Substitution and Analysis], page 73). We provide
substitution references as well as patsubst for compatibility with other implementations of
make.

Another type of substitution reference lets you use the full power of the patsubst function.
It has the same form ‘$(var:a=b)’ described above, except that now a must contain a single ‘%’
character. This case is equivalent to ‘$(patsubst a,b,$(var))’. See Section 8.2 [Functions for
String Substitution and Analysis], page 73, for a description of the patsubst function.

For example:

foo := a.o b.o c.o

bar := $(foo:%.o=%.c)

sets ‘bar’ to ‘a.c b.c c.c’.

6.3.2 Computed Variable Names

Computed variable names are a complicated concept needed only for sophisticated makefile
programming. For most purposes you need not consider them, except to know that making a
variable with a dollar sign in its name might have strange results. However, if you are the type
that wants to understand everything, or you are actually interested in what they do, read on.

Variables may be referenced inside the name of a variable. This is called a computed variable
name or a nested variable reference. For example,

x = y

y = z

a := $($(x))

defines a as ‘z’: the ‘$(x)’ inside ‘$($(x))’ expands to ‘y’, so ‘$($(x))’ expands to ‘$(y)’ which
in turn expands to ‘z’. Here the name of the variable to reference is not stated explicitly; it is
computed by expansion of ‘$(x)’. The reference ‘$(x)’ here is nested within the outer variable
reference.

The previous example shows two levels of nesting, but any number of levels is possible. For
example, here are three levels:

x = y

y = z

z = u

a := $($($(x)))

Chapter 6: How to Use Variables 57

Here the innermost ‘$(x)’ expands to ‘y’, so ‘$($(x))’ expands to ‘$(y)’ which in turn expands
to ‘z’; now we have ‘$(z)’, which becomes ‘u’.

References to recursively-expanded variables within a variable name are re-expanded in the
usual fashion. For example:

x = $(y)

y = z

z = Hello

a := $($(x))

defines a as ‘Hello’: ‘$($(x))’ becomes ‘$($(y))’ which becomes ‘$(z)’ which becomes ‘Hello’.

Nested variable references can also contain modified references and function invocations (see
Chapter 8 [Functions for Transforming Text], page 73), just like any other reference. For exam-
ple, using the subst function (see Section 8.2 [Functions for String Substitution and Analysis],
page 73):

x = variable1

variable2 := Hello

y = $(subst 1,2,$(x))

z = y

a := $($($(z)))

eventually defines a as ‘Hello’. It is doubtful that anyone would ever want to write a nested
reference as convoluted as this one, but it works: ‘$($($(z)))’ expands to ‘$($(y))’ which
becomes ‘$($(subst 1,2,$(x)))’. This gets the value ‘variable1’ from x and changes it by
substitution to ‘variable2’, so that the entire string becomes ‘$(variable2)’, a simple variable
reference whose value is ‘Hello’.

A computed variable name need not consist entirely of a single variable reference. It can
contain several variable references, as well as some invariant text. For example,

a_dirs := dira dirb

1_dirs := dir1 dir2

a_files := filea fileb

1_files := file1 file2

ifeq "$(use_a)" "yes"

a1 := a

else

a1 := 1

endif

ifeq "$(use_dirs)" "yes"

df := dirs

else

df := files

endif

dirs := $($(a1)_$(df))

will give dirs the same value as a_dirs, 1_dirs, a_files or 1_files depending on the settings
of use_a and use_dirs.

Computed variable names can also be used in substitution references:

58 GNU make

a_objects := a.o b.o c.o

1_objects := 1.o 2.o 3.o

sources := $($(a1)_objects:.o=.c)

defines sources as either ‘a.c b.c c.c’ or ‘1.c 2.c 3.c’, depending on the value of a1.

The only restriction on this sort of use of nested variable references is that they cannot specify
part of the name of a function to be called. This is because the test for a recognized function
name is done before the expansion of nested references. For example,

ifdef do_sort

func := sort

else

func := strip

endif

bar := a d b g q c

foo := $($(func) $(bar))

attempts to give ‘foo’ the value of the variable ‘sort a d b g q c’ or ‘strip a d b g q c’, rather
than giving ‘a d b g q c’ as the argument to either the sort or the strip function. This restric-
tion could be removed in the future if that change is shown to be a good idea.

You can also use computed variable names in the left-hand side of a variable assignment, or
in a define directive, as in:

dir = foo

$(dir)_sources := $(wildcard $(dir)/*.c)

define $(dir)_print =

lpr $($(dir)_sources)

endef

This example defines the variables ‘dir’, ‘foo_sources’, and ‘foo_print’.

Note that nested variable references are quite different from recursively expanded variables
(see Section 6.2 [The Two Flavors of Variables], page 54), though both are used together in
complex ways when doing makefile programming.

6.4 How Variables Get Their Values

Variables can get values in several different ways:

• You can specify an overriding value when you run make. See Section 9.5 [Overriding Vari-
ables], page 90.

• You can specify a value in the makefile, either with an assignment (see Section 6.5 [Setting
Variables], page 59) or with a verbatim definition (see Section 6.8 [Defining Multi-Line
Variables], page 61).

• Variables in the environment become make variables. See Section 6.10 [Variables from the
Environment], page 63.

• Several automatic variables are given new values for each rule. Each of these has a single
conventional use. See Section 10.5.3 [Automatic Variables], page 105.

• Several variables have constant initial values. See Section 10.3 [Variables Used by Implicit
Rules], page 101.

Chapter 6: How to Use Variables 59

6.5 Setting Variables

To set a variable from the makefile, write a line starting with the variable name followed by
‘=’ ‘:=’, or ‘::=’. Whatever follows the ‘=’, ‘:=’, or ‘::=’ on the line becomes the value. For
example,

objects = main.o foo.o bar.o utils.o

defines a variable named objects. Whitespace around the variable name and immediately after
the ‘=’ is ignored.

Variables defined with ‘=’ are recursively expanded variables. Variables defined with ‘:=’
or ‘::=’ are simply expanded variables; these definitions can contain variable references which
will be expanded before the definition is made. See Section 6.2 [The Two Flavors of Variables],
page 54.

The variable name may contain function and variable references, which are expanded when
the line is read to find the actual variable name to use.

There is no limit on the length of the value of a variable except the amount of memory on
the computer. You can split the value of a variable into multiple physical lines for readability
(see Section 3.1.1 [Splitting Long Lines], page 9).

Most variable names are considered to have the empty string as a value if you have never set
them. Several variables have built-in initial values that are not empty, but you can set them in
the usual ways (see Section 10.3 [Variables Used by Implicit Rules], page 101). Several special
variables are set automatically to a new value for each rule; these are called the automatic
variables (see Section 10.5.3 [Automatic Variables], page 105).

If you’d like a variable to be set to a value only if it’s not already set, then you can use the
shorthand operator ‘?=’ instead of ‘=’. These two settings of the variable ‘FOO’ are identical (see
Section 8.10 [The origin Function], page 83):

FOO ?= bar

and

ifeq ($(origin FOO), undefined)

FOO = bar

endif

The shell assignment operator ‘!=’ can be used to execute a program and set a variable to
its output. This operator first evaluates the right-hand side, then passes that result to the shell
for execution. If the result of the execution ends in a newline, that one newline is removed;
all other newlines are replaced by spaces. The resulting string is then placed into the named
recursively-expanded variable. For example:

hash != printf ’\043’

file_list != find . -name ’*.c’

If the result of the execution could produce a $, and you don’t intend what follows that to
be interpreted as a make variable or function reference, then you must replace every $ with $$

as part of the execution. Alternatively, you can set a simply expanded variable to the result
of running a program using the shell function call. See Section 8.13 [The shell Function],
page 85. For example:

hash := $(shell printf ’\043’)

var := $(shell find . -name "*.c")

6.6 Appending More Text to Variables

Often it is useful to add more text to the value of a variable already defined. You do this with
a line containing ‘+=’, like this:

objects += another.o

60 GNU make

This takes the value of the variable objects, and adds the text ‘another.o’ to it (preceded by
a single space). Thus:

objects = main.o foo.o bar.o utils.o

objects += another.o

sets objects to ‘main.o foo.o bar.o utils.o another.o’.

Using ‘+=’ is similar to:

objects = main.o foo.o bar.o utils.o

objects := $(objects) another.o

but differs in ways that become important when you use more complex values.

When the variable in question has not been defined before, ‘+=’ acts just like normal ‘=’: it
defines a recursively-expanded variable. However, when there is a previous definition, exactly
what ‘+=’ does depends on what flavor of variable you defined originally. See Section 6.2 [The
Two Flavors of Variables], page 54, for an explanation of the two flavors of variables.

When you add to a variable’s value with ‘+=’, make acts essentially as if you had included the
extra text in the initial definition of the variable. If you defined it first with ‘:=’ or ‘::=’, making
it a simply-expanded variable, ‘+=’ adds to that simply-expanded definition, and expands the
new text before appending it to the old value just as ‘:=’ does (see Section 6.5 [Setting Variables],
page 59, for a full explanation of ‘:=’ or ‘::=’). In fact,

variable := value

variable += more

is exactly equivalent to:

variable := value

variable := $(variable) more

On the other hand, when you use ‘+=’ with a variable that you defined first to be recursively-
expanded using plain ‘=’, make does something a bit different. Recall that when you define a
recursively-expanded variable, make does not expand the value you set for variable and function
references immediately. Instead it stores the text verbatim, and saves these variable and function
references to be expanded later, when you refer to the new variable (see Section 6.2 [The Two
Flavors of Variables], page 54). When you use ‘+=’ on a recursively-expanded variable, it is this
unexpanded text to which make appends the new text you specify.

variable = value

variable += more

is roughly equivalent to:

temp = value

variable = $(temp) more

except that of course it never defines a variable called temp. The importance of this comes when
the variable’s old value contains variable references. Take this common example:

CFLAGS = $(includes) -O

...

CFLAGS += -pg # enable profiling

The first line defines the CFLAGS variable with a reference to another variable, includes.
(CFLAGS is used by the rules for C compilation; see Section 10.2 [Catalogue of Built-In Rules],
page 98.) Using ‘=’ for the definition makes CFLAGS a recursively-expanded variable, mean-
ing ‘$(includes) -O’ is not expanded when make processes the definition of CFLAGS. Thus,
includes need not be defined yet for its value to take effect. It only has to be defined before
any reference to CFLAGS. If we tried to append to the value of CFLAGS without using ‘+=’, we
might do it like this:

CFLAGS := $(CFLAGS) -pg # enable profiling

Chapter 6: How to Use Variables 61

This is pretty close, but not quite what we want. Using ‘:=’ redefines CFLAGS as a simply-
expanded variable; this means make expands the text ‘$(CFLAGS) -pg’ before setting the variable.
If includes is not yet defined, we get ‘ -O -pg’, and a later definition of includes will have no
effect. Conversely, by using ‘+=’ we set CFLAGS to the unexpanded value ‘$(includes) -O -pg’.
Thus we preserve the reference to includes, so if that variable gets defined at any later point,
a reference like ‘$(CFLAGS)’ still uses its value.

6.7 The override Directive

If a variable has been set with a command argument (see Section 9.5 [Overriding Variables],
page 90), then ordinary assignments in the makefile are ignored. If you want to set the variable
in the makefile even though it was set with a command argument, you can use an override

directive, which is a line that looks like this:

override variable = value

or

override variable := value

To append more text to a variable defined on the command line, use:

override variable += more text

See Section 6.6 [Appending More Text to Variables], page 59.

Variable assignments marked with the override flag have a higher priority than all other
assignments, except another override. Subsequent assignments or appends to this variable
which are not marked override will be ignored.

The override directive was not invented for escalation in the war between makefiles and
command arguments. It was invented so you can alter and add to values that the user specifies
with command arguments.

For example, suppose you always want the ‘-g’ switch when you run the C compiler, but
you would like to allow the user to specify the other switches with a command argument just as
usual. You could use this override directive:

override CFLAGS += -g

You can also use override directives with define directives. This is done as you might
expect:

override define foo =

bar

endef

See the next section for information about define.

6.8 Defining Multi-Line Variables

Another way to set the value of a variable is to use the define directive. This directive has an
unusual syntax which allows newline characters to be included in the value, which is convenient
for defining both canned sequences of commands (see Section 5.8 [Defining Canned Recipes],
page 50), and also sections of makefile syntax to use with eval (see Section 8.9 [Eval Function],
page 82).

The define directive is followed on the same line by the name of the variable being defined
and an (optional) assignment operator, and nothing more. The value to give the variable appears
on the following lines. The end of the value is marked by a line containing just the word endef.
Aside from this difference in syntax, define works just like any other variable definition. The
variable name may contain function and variable references, which are expanded when the
directive is read to find the actual variable name to use.

62 GNU make

You may omit the variable assignment operator if you prefer. If omitted, make assumes
it to be ‘=’ and creates a recursively-expanded variable (see Section 6.2 [The Two Flavors of
Variables], page 54). When using a ‘+=’ operator, the value is appended to the previous value
as with any other append operation: with a single space separating the old and new values.

You may nest define directives: make will keep track of nested directives and report an error
if they are not all properly closed with endef. Note that lines beginning with the recipe prefix
character are considered part of a recipe, so any define or endef strings appearing on such a
line will not be considered make directives.

define two-lines =

echo foo

echo $(bar)

endef

The value in an ordinary assignment cannot contain a newline; but the newlines that separate
the lines of the value in a define become part of the variable’s value (except for the final newline
which precedes the endef and is not considered part of the value).

When used in a recipe, the previous example is functionally equivalent to this:

two-lines = echo foo; echo $(bar)

since two commands separated by semicolon behave much like two separate shell commands.
However, note that using two separate lines means make will invoke the shell twice, running an
independent sub-shell for each line. See Section 5.3 [Recipe Execution], page 39.

If you want variable definitions made with define to take precedence over command-line
variable definitions, you can use the override directive together with define:

override define two-lines =

foo

$(bar)

endef

See Section 6.7 [The override Directive], page 61.

6.9 Undefining Variables

If you want to clear a variable, setting its value to empty is usually sufficient. Expanding such
a variable will yield the same result (empty string) regardless of whether it was set or not.
However, if you are using the flavor (see Section 8.11 [Flavor Function], page 84) and origin

(see Section 8.10 [Origin Function], page 83) functions, there is a difference between a variable
that was never set and a variable with an empty value. In such situations you may want to use
the undefine directive to make a variable appear as if it was never set. For example:

foo := foo

bar = bar

undefine foo

undefine bar

$(info $(origin foo))

$(info $(flavor bar))

This example will print “undefined” for both variables.

If you want to undefine a command-line variable definition, you can use the override direc-
tive together with undefine, similar to how this is done for variable definitions:

override undefine CFLAGS

Chapter 6: How to Use Variables 63

6.10 Variables from the Environment

Variables in make can come from the environment in which make is run. Every environment
variable that make sees when it starts up is transformed into a make variable with the same
name and value. However, an explicit assignment in the makefile, or with a command argument,
overrides the environment. (If the ‘-e’ flag is specified, then values from the environment override
assignments in the makefile. See Section 9.7 [Summary of Options], page 91. But this is not
recommended practice.)

Thus, by setting the variable CFLAGS in your environment, you can cause all C compilations in
most makefiles to use the compiler switches you prefer. This is safe for variables with standard
or conventional meanings because you know that no makefile will use them for other things.
(Note this is not totally reliable; some makefiles set CFLAGS explicitly and therefore are not
affected by the value in the environment.)

When make runs a recipe, variables defined in the makefile are placed into the environment
of each shell. This allows you to pass values to sub-make invocations (see Section 5.7 [Recursive
Use of make], page 45). By default, only variables that came from the environment or the
command line are passed to recursive invocations. You can use the export directive to pass
other variables. See Section 5.7.2 [Communicating Variables to a Sub-make], page 46, for full
details.

Other use of variables from the environment is not recommended. It is not wise for makefiles
to depend for their functioning on environment variables set up outside their control, since this
would cause different users to get different results from the same makefile. This is against the
whole purpose of most makefiles.

Such problems would be especially likely with the variable SHELL, which is normally present
in the environment to specify the user’s choice of interactive shell. It would be very undesirable
for this choice to affect make; so, make handles the SHELL environment variable in a special way;
see Section 5.3.2 [Choosing the Shell], page 41.

6.11 Target-specific Variable Values

Variable values in make are usually global; that is, they are the same regardless of where they
are evaluated (unless they’re reset, of course). One exception to that is automatic variables (see
Section 10.5.3 [Automatic Variables], page 105).

The other exception is target-specific variable values. This feature allows you to define
different values for the same variable, based on the target that make is currently building. As
with automatic variables, these values are only available within the context of a target’s recipe
(and in other target-specific assignments).

Set a target-specific variable value like this:

target ... : variable-assignment

Target-specific variable assignments can be prefixed with any or all of the special keywords
export, override, or private; these apply their normal behavior to this instance of the variable
only.

Multiple target values create a target-specific variable value for each member of the target
list individually.

The variable-assignment can be any valid form of assignment; recursive (‘=’), simple (‘:=’
or ‘::=’), appending (‘+=’), or conditional (‘?=’). All variables that appear within the variable-
assignment are evaluated within the context of the target: thus, any previously-defined target-
specific variable values will be in effect. Note that this variable is actually distinct from any
“global” value: the two variables do not have to have the same flavor (recursive vs. simple).

Target-specific variables have the same priority as any other makefile variable. Variables
provided on the command line (and in the environment if the ‘-e’ option is in force) will take

64 GNU make

precedence. Specifying the override directive will allow the target-specific variable value to be
preferred.

There is one more special feature of target-specific variables: when you define a target-
specific variable that variable value is also in effect for all prerequisites of this target, and all
their prerequisites, etc. (unless those prerequisites override that variable with their own target-
specific variable value). So, for example, a statement like this:

prog : CFLAGS = -g

prog : prog.o foo.o bar.o

will set CFLAGS to ‘-g’ in the recipe for prog, but it will also set CFLAGS to ‘-g’ in the recipes
that create prog.o, foo.o, and bar.o, and any recipes which create their prerequisites.

Be aware that a given prerequisite will only be built once per invocation of make, at most. If
the same file is a prerequisite of multiple targets, and each of those targets has a different value
for the same target-specific variable, then the first target to be built will cause that prerequisite
to be built and the prerequisite will inherit the target-specific value from the first target. It will
ignore the target-specific values from any other targets.

6.12 Pattern-specific Variable Values

In addition to target-specific variable values (see Section 6.11 [Target-specific Variable Values],
page 63), GNU make supports pattern-specific variable values. In this form, the variable is
defined for any target that matches the pattern specified.

Set a pattern-specific variable value like this:

pattern ... : variable-assignment

where pattern is a %-pattern. As with target-specific variable values, multiple pattern values
create a pattern-specific variable value for each pattern individually. The variable-assignment
can be any valid form of assignment. Any command line variable setting will take precedence,
unless override is specified.

For example:

%.o : CFLAGS = -O

will assign CFLAGS the value of ‘-O’ for all targets matching the pattern %.o.

If a target matches more than one pattern, the matching pattern-specific variables with longer
stems are interpreted first. This results in more specific variables taking precedence over the
more generic ones, for example:

%.o: %.c

$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

lib/%.o: CFLAGS := -fPIC -g

%.o: CFLAGS := -g

all: foo.o lib/bar.o

In this example the first definition of the CFLAGS variable will be used to update lib/bar.o
even though the second one also applies to this target. Pattern-specific variables which result
in the same stem length are considered in the order in which they were defined in the makefile.

Pattern-specific variables are searched after any target-specific variables defined explicitly for
that target, and before target-specific variables defined for the parent target.

Chapter 6: How to Use Variables 65

6.13 Suppressing Inheritance

As described in previous sections, make variables are inherited by prerequisites. This capability
allows you to modify the behavior of a prerequisite based on which targets caused it to be
rebuilt. For example, you might set a target-specific variable on a debug target, then running
‘make debug’ will cause that variable to be inherited by all prerequisites of debug, while just
running ‘make all’ (for example) would not have that assignment.

Sometimes, however, you may not want a variable to be inherited. For these situations,
make provides the private modifier. Although this modifier can be used with any variable
assignment, it makes the most sense with target- and pattern-specific variables. Any variable
marked private will be visible to its local target but will not be inherited by prerequisites of
that target. A global variable marked private will be visible in the global scope but will not
be inherited by any target, and hence will not be visible in any recipe.

As an example, consider this makefile:

EXTRA_CFLAGS =

prog: private EXTRA_CFLAGS = -L/usr/local/lib

prog: a.o b.o

Due to the private modifier, a.o and b.o will not inherit the EXTRA_CFLAGS variable as-
signment from the prog target.

6.14 Other Special Variables

GNU make supports some variables that have special properties.

MAKEFILE_LIST

Contains the name of each makefile that is parsed by make, in the order in which it
was parsed. The name is appended just before make begins to parse the makefile.
Thus, if the first thing a makefile does is examine the last word in this variable,
it will be the name of the current makefile. Once the current makefile has used
include, however, the last word will be the just-included makefile.

If a makefile named Makefile has this content:

name1 := $(lastword $(MAKEFILE_LIST))

include inc.mk

name2 := $(lastword $(MAKEFILE_LIST))

all:

@echo name1 = $(name1)

@echo name2 = $(name2)

then you would expect to see this output:

name1 = Makefile

name2 = inc.mk

.DEFAULT_GOAL

Sets the default goal to be used if no targets were specified on the command line
(see Section 9.2 [Arguments to Specify the Goals], page 87). The .DEFAULT_GOAL

variable allows you to discover the current default goal, restart the default goal
selection algorithm by clearing its value, or to explicitly set the default goal. The
following example illustrates these cases:

66 GNU make

Query the default goal.

ifeq ($(.DEFAULT_GOAL),)

$(warning no default goal is set)

endif

.PHONY: foo

foo: ; @echo $@

$(warning default goal is $(.DEFAULT_GOAL))

Reset the default goal.

.DEFAULT_GOAL :=

.PHONY: bar

bar: ; @echo $@

$(warning default goal is $(.DEFAULT_GOAL))

Set our own.

.DEFAULT_GOAL := foo

This makefile prints:

no default goal is set

default goal is foo

default goal is bar

foo

Note that assigning more than one target name to .DEFAULT_GOAL is invalid and
will result in an error.

MAKE_RESTARTS

This variable is set only if this instance of make has restarted (see Section 3.5 [How
Makefiles Are Remade], page 12): it will contain the number of times this instance
has restarted. Note this is not the same as recursion (counted by the MAKELEVEL

variable). You should not set, modify, or export this variable.

MAKE_TERMOUT

MAKE_TERMERR

When make starts it will check whether stdout and stderr will show their output
on a terminal. If so, it will set MAKE_TERMOUT and MAKE_TERMERR, respectively, to
the name of the terminal device (or true if this cannot be determined). If set these
variables will be marked for export. These variables will not be changed by make

and they will not be modified if already set.

These values can be used (particularly in combination with output synchronization
(see Section 5.4.1 [Output During Parallel Execution], page 43) to determine whether
make itself is writing to a terminal; they can be tested to decide whether to force
recipe commands to generate colorized output for example.

If you invoke a sub-make and redirect its stdout or stderr it is your responsibility to
reset or unexport these variables as well, if your makefiles rely on them.

.RECIPEPREFIX

The first character of the value of this variable is used as the character make assumes
is introducing a recipe line. If the variable is empty (as it is by default) that character
is the standard tab character. For example, this is a valid makefile:

Chapter 6: How to Use Variables 67

.RECIPEPREFIX = >

all:

> @echo Hello, world

The value of .RECIPEPREFIX can be changed multiple times; once set it stays in
effect for all rules parsed until it is modified.

.VARIABLES

Expands to a list of the names of all global variables defined so far. This includes
variables which have empty values, as well as built-in variables (see Section 10.3
[Variables Used by Implicit Rules], page 101), but does not include any variables
which are only defined in a target-specific context. Note that any value you assign
to this variable will be ignored; it will always return its special value.

.FEATURES

Expands to a list of special features supported by this version of make. Possible
values include, but are not limited to:

‘archives’
Supports ar (archive) files using special file name syntax. See
Chapter 11 [Using make to Update Archive Files], page 113.

‘check-symlink’
Supports the -L (--check-symlink-times) flag. See Section 9.7 [Sum-
mary of Options], page 91.

‘else-if’ Supports “else if” non-nested conditionals. See Section 7.2 [Syntax of
Conditionals], page 70.

‘jobserver’
Supports “job server” enhanced parallel builds. See Section 5.4 [Parallel
Execution], page 42.

‘oneshell’
Supports the .ONESHELL special target. See Section 5.3.1 [Using One
Shell], page 40.

‘order-only’
Supports order-only prerequisites. See Section 4.2 [Types of Prerequi-
sites], page 20.

‘second-expansion’
Supports secondary expansion of prerequisite lists.

‘shortest-stem’
Uses the “shortest stem” method of choosing which pattern, of multi-
ple applicable options, will be used. See Section 10.5.4 [How Patterns
Match], page 107.

‘target-specific’
Supports target-specific and pattern-specific variable assignments. See
Section 6.11 [Target-specific Variable Values], page 63.

‘undefine’
Supports the undefine directive. See Section 6.9 [Undefine Directive],
page 62.

‘guile’ Has GNU Guile available as an embedded extension language. See
Section 12.1 [GNU Guile Integration], page 117.

68 GNU make

‘load’ Supports dynamically loadable objects for creating custom extensions.
See Section 12.2 [Loading Dynamic Objects], page 119.

.INCLUDE_DIRS

Expands to a list of directories that make searches for included makefiles (see
Section 3.3 [Including Other Makefiles], page 10).

69

7 Conditional Parts of Makefiles

A conditional directive causes part of a makefile to be obeyed or ignored depending on the values
of variables. Conditionals can compare the value of one variable to another, or the value of a
variable to a constant string. Conditionals control what make actually “sees” in the makefile, so
they cannot be used to control recipes at the time of execution.

7.1 Example of a Conditional

The following example of a conditional tells make to use one set of libraries if the CC variable is
‘gcc’, and a different set of libraries otherwise. It works by controlling which of two recipe lines
will be used for the rule. The result is that ‘CC=gcc’ as an argument to make changes not only
which compiler is used but also which libraries are linked.

libs_for_gcc = -lgnu

normal_libs =

foo: $(objects)

ifeq ($(CC),gcc)

$(CC) -o foo $(objects) $(libs_for_gcc)

else

$(CC) -o foo $(objects) $(normal_libs)

endif

This conditional uses three directives: one ifeq, one else and one endif.

The ifeq directive begins the conditional, and specifies the condition. It contains two argu-
ments, separated by a comma and surrounded by parentheses. Variable substitution is performed
on both arguments and then they are compared. The lines of the makefile following the ifeq

are obeyed if the two arguments match; otherwise they are ignored.

The else directive causes the following lines to be obeyed if the previous conditional failed.
In the example above, this means that the second alternative linking command is used whenever
the first alternative is not used. It is optional to have an else in a conditional.

The endif directive ends the conditional. Every conditional must end with an endif. Un-
conditional makefile text follows.

As this example illustrates, conditionals work at the textual level: the lines of the conditional
are treated as part of the makefile, or ignored, according to the condition. This is why the
larger syntactic units of the makefile, such as rules, may cross the beginning or the end of the
conditional.

When the variable CC has the value ‘gcc’, the above example has this effect:

foo: $(objects)

$(CC) -o foo $(objects) $(libs_for_gcc)

When the variable CC has any other value, the effect is this:

foo: $(objects)

$(CC) -o foo $(objects) $(normal_libs)

Equivalent results can be obtained in another way by conditionalizing a variable assignment
and then using the variable unconditionally:

libs_for_gcc = -lgnu

normal_libs =

ifeq ($(CC),gcc)

libs=$(libs_for_gcc)

70 GNU make

else

libs=$(normal_libs)

endif

foo: $(objects)

$(CC) -o foo $(objects) $(libs)

7.2 Syntax of Conditionals

The syntax of a simple conditional with no else is as follows:

conditional-directive

text-if-true

endif

The text-if-true may be any lines of text, to be considered as part of the makefile if the condition
is true. If the condition is false, no text is used instead.

The syntax of a complex conditional is as follows:

conditional-directive

text-if-true

else

text-if-false

endif

or:

conditional-directive-one

text-if-one-is-true

else conditional-directive-two

text-if-two-is-true

else

text-if-one-and-two-are-false

endif

There can be as many “else conditional-directive” clauses as necessary. Once a given condition
is true, text-if-true is used and no other clause is used; if no condition is true then text-if-false
is used. The text-if-true and text-if-false can be any number of lines of text.

The syntax of the conditional-directive is the same whether the conditional is simple or
complex; after an else or not. There are four different directives that test different conditions.
Here is a table of them:

ifeq (arg1, arg2)

ifeq ’arg1’ ’arg2’

ifeq "arg1" "arg2"

ifeq "arg1" ’arg2’

ifeq ’arg1’ "arg2"

Expand all variable references in arg1 and arg2 and compare them. If they are
identical, the text-if-true is effective; otherwise, the text-if-false, if any, is effective.

Often you want to test if a variable has a non-empty value. When the value results
from complex expansions of variables and functions, expansions you would consider
empty may actually contain whitespace characters and thus are not seen as empty.
However, you can use the strip function (see Section 8.2 [Text Functions], page 73)
to avoid interpreting whitespace as a non-empty value. For example:

ifeq ($(strip $(foo)),)

text-if-empty

endif

Chapter 7: Conditional Parts of Makefiles 71

will evaluate text-if-empty even if the expansion of $(foo) contains whitespace
characters.

ifneq (arg1, arg2)

ifneq ’arg1’ ’arg2’

ifneq "arg1" "arg2"

ifneq "arg1" ’arg2’

ifneq ’arg1’ "arg2"

Expand all variable references in arg1 and arg2 and compare them. If they are
different, the text-if-true is effective; otherwise, the text-if-false, if any, is effective.

ifdef variable-name

The ifdef form takes the name of a variable as its argument, not a reference to
a variable. The value of that variable has a non-empty value, the text-if-true is
effective; otherwise, the text-if-false, if any, is effective. Variables that have never
been defined have an empty value. The text variable-name is expanded, so it could
be a variable or function that expands to the name of a variable. For example:

bar = true

foo = bar

ifdef $(foo)

frobozz = yes

endif

The variable reference $(foo) is expanded, yielding bar, which is considered to be
the name of a variable. The variable bar is not expanded, but its value is examined
to determine if it is non-empty.

Note that ifdef only tests whether a variable has a value. It does not expand the
variable to see if that value is nonempty. Consequently, tests using ifdef return
true for all definitions except those like foo =. To test for an empty value, use
ifeq ($(foo),). For example,

bar =

foo = $(bar)

ifdef foo

frobozz = yes

else

frobozz = no

endif

sets ‘frobozz’ to ‘yes’, while:

foo =

ifdef foo

frobozz = yes

else

frobozz = no

endif

sets ‘frobozz’ to ‘no’.

ifndef variable-name

If the variable variable-name has an empty value, the text-if-true is effective; oth-
erwise, the text-if-false, if any, is effective. The rules for expansion and testing of
variable-name are identical to the ifdef directive.

Extra spaces are allowed and ignored at the beginning of the conditional directive line, but
a tab is not allowed. (If the line begins with a tab, it will be considered part of a recipe for
a rule.) Aside from this, extra spaces or tabs may be inserted with no effect anywhere except

72 GNU make

within the directive name or within an argument. A comment starting with ‘#’ may appear at
the end of the line.

The other two directives that play a part in a conditional are else and endif. Each of these
directives is written as one word, with no arguments. Extra spaces are allowed and ignored
at the beginning of the line, and spaces or tabs at the end. A comment starting with ‘#’ may
appear at the end of the line.

Conditionals affect which lines of the makefile make uses. If the condition is true, make reads
the lines of the text-if-true as part of the makefile; if the condition is false, make ignores those
lines completely. It follows that syntactic units of the makefile, such as rules, may safely be split
across the beginning or the end of the conditional.

make evaluates conditionals when it reads a makefile. Consequently, you cannot use automatic
variables in the tests of conditionals because they are not defined until recipes are run (see
Section 10.5.3 [Automatic Variables], page 105).

To prevent intolerable confusion, it is not permitted to start a conditional in one makefile and
end it in another. However, you may write an include directive within a conditional, provided
you do not attempt to terminate the conditional inside the included file.

7.3 Conditionals that Test Flags

You can write a conditional that tests make command flags such as ‘-t’ by using the variable
MAKEFLAGS together with the findstring function (see Section 8.2 [Functions for String Substi-
tution and Analysis], page 73). This is useful when touch is not enough to make a file appear
up to date.

The findstring function determines whether one string appears as a substring of another.
If you want to test for the ‘-t’ flag, use ‘t’ as the first string and the value of MAKEFLAGS as the
other.

For example, here is how to arrange to use ‘ranlib -t’ to finish marking an archive file up
to date:

archive.a: ...

ifneq (,$(findstring t,$(MAKEFLAGS)))

+touch archive.a

+ranlib -t archive.a

else

ranlib archive.a

endif

The ‘+’ prefix marks those recipe lines as “recursive” so that they will be executed despite use
of the ‘-t’ flag. See Section 5.7 [Recursive Use of make], page 45.

73

8 Functions for Transforming Text

Functions allow you to do text processing in the makefile to compute the files to operate on or
the commands to use in recipes. You use a function in a function call, where you give the name
of the function and some text (the arguments) for the function to operate on. The result of the
function’s processing is substituted into the makefile at the point of the call, just as a variable
might be substituted.

8.1 Function Call Syntax

A function call resembles a variable reference. It can appear anywhere a variable reference can
appear, and it is expanded using the same rules as variable references. A function call looks like
this:

$(function arguments)

or like this:

${function arguments}

Here function is a function name; one of a short list of names that are part of make. You can
also essentially create your own functions by using the call built-in function.

The arguments are the arguments of the function. They are separated from the function
name by one or more spaces or tabs, and if there is more than one argument, then they are
separated by commas. Such whitespace and commas are not part of an argument’s value.
The delimiters which you use to surround the function call, whether parentheses or braces,
can appear in an argument only in matching pairs; the other kind of delimiters may appear
singly. If the arguments themselves contain other function calls or variable references, it is
wisest to use the same kind of delimiters for all the references; write ‘$(subst a,b,$(x))’, not
‘$(subst a,b,${x})’. This is because it is clearer, and because only one type of delimiter is
matched to find the end of the reference.

The text written for each argument is processed by substitution of variables and function calls
to produce the argument value, which is the text on which the function acts. The substitution
is done in the order in which the arguments appear.

Commas and unmatched parentheses or braces cannot appear in the text of an argument
as written; leading spaces cannot appear in the text of the first argument as written. These
characters can be put into the argument value by variable substitution. First define variables
comma and space whose values are isolated comma and space characters, then substitute these
variables where such characters are wanted, like this:

comma:= ,

empty:=

space:= $(empty) $(empty)

foo:= a b c

bar:= $(subst $(space),$(comma),$(foo))

bar is now ‘a,b,c’.

Here the subst function replaces each space with a comma, through the value of foo, and
substitutes the result.

8.2 Functions for String Substitution and Analysis

Here are some functions that operate on strings:

$(subst from,to,text)

Performs a textual replacement on the text text: each occurrence of from is replaced
by to. The result is substituted for the function call. For example,

$(subst ee,EE,feet on the street)

74 GNU make

substitutes the string ‘fEEt on the strEEt’.

$(patsubst pattern,replacement,text)

Finds whitespace-separated words in text that match pattern and replaces them with
replacement. Here pattern may contain a ‘%’ which acts as a wildcard, matching
any number of any characters within a word. If replacement also contains a ‘%’, the
‘%’ is replaced by the text that matched the ‘%’ in pattern. Only the first ‘%’ in the
pattern and replacement is treated this way; any subsequent ‘%’ is unchanged.

‘%’ characters in patsubst function invocations can be quoted with preceding back-
slashes (‘\’). Backslashes that would otherwise quote ‘%’ characters can be quoted
with more backslashes. Backslashes that quote ‘%’ characters or other backslashes
are removed from the pattern before it is compared file names or has a stem sub-
stituted into it. Backslashes that are not in danger of quoting ‘%’ characters go
unmolested. For example, the pattern the\%weird\\%pattern\\ has ‘the%weird\’
preceding the operative ‘%’ character, and ‘pattern\\’ following it. The final two
backslashes are left alone because they cannot affect any ‘%’ character.

Whitespace between words is folded into single space characters; leading and trailing
whitespace is discarded.

For example,

$(patsubst %.c,%.o,x.c.c bar.c)

produces the value ‘x.c.o bar.o’.

Substitution references (see Section 6.3.1 [Substitution References], page 56) are a
simpler way to get the effect of the patsubst function:

$(var:pattern=replacement)

is equivalent to

$(patsubst pattern,replacement,$(var))

The second shorthand simplifies one of the most common uses of patsubst: replac-
ing the suffix at the end of file names.

$(var:suffix=replacement)

is equivalent to

$(patsubst %suffix,%replacement,$(var))

For example, you might have a list of object files:

objects = foo.o bar.o baz.o

To get the list of corresponding source files, you could simply write:

$(objects:.o=.c)

instead of using the general form:

$(patsubst %.o,%.c,$(objects))

$(strip string)

Removes leading and trailing whitespace from string and replaces each internal
sequence of one or more whitespace characters with a single space. Thus, ‘$(strip
a b c)’ results in ‘a b c’.

The function strip can be very useful when used in conjunction with conditionals.
When comparing something with the empty string ‘’ using ifeq or ifneq, you
usually want a string of just whitespace to match the empty string (see Chapter 7
[Conditionals], page 69).

Thus, the following may fail to have the desired results:

.PHONY: all

Chapter 8: Functions for Transforming Text 75

ifneq "$(needs_made)" ""

all: $(needs_made)

else

all:;@echo ’Nothing to make!’

endif

Replacing the variable reference ‘$(needs_made)’ with the function call
‘$(strip $(needs_made))’ in the ifneq directive would make it more robust.

$(findstring find,in)

Searches in for an occurrence of find. If it occurs, the value is find; otherwise, the
value is empty. You can use this function in a conditional to test for the presence
of a specific substring in a given string. Thus, the two examples,

$(findstring a,a b c)

$(findstring a,b c)

produce the values ‘a’ and ‘’ (the empty string), respectively. See Section 7.3 [Testing
Flags], page 72, for a practical application of findstring.

$(filter pattern...,text)

Returns all whitespace-separated words in text that do match any of the pattern
words, removing any words that do not match. The patterns are written using ‘%’,
just like the patterns used in the patsubst function above.

The filter function can be used to separate out different types of strings (such as
file names) in a variable. For example:

sources := foo.c bar.c baz.s ugh.h

foo: $(sources)

cc $(filter %.c %.s,$(sources)) -o foo

says that foo depends of foo.c, bar.c, baz.s and ugh.h but only foo.c, bar.c
and baz.s should be specified in the command to the compiler.

$(filter-out pattern...,text)

Returns all whitespace-separated words in text that do not match any of the pattern
words, removing the words that do match one or more. This is the exact opposite
of the filter function.

For example, given:

objects=main1.o foo.o main2.o bar.o

mains=main1.o main2.o

the following generates a list which contains all the object files not in ‘mains’:

$(filter-out $(mains),$(objects))

$(sort list)

Sorts the words of list in lexical order, removing duplicate words. The output is a
list of words separated by single spaces. Thus,

$(sort foo bar lose)

returns the value ‘bar foo lose’.

Incidentally, since sort removes duplicate words, you can use it for this purpose
even if you don’t care about the sort order.

$(word n,text)

Returns the nth word of text. The legitimate values of n start from 1. If n is bigger
than the number of words in text, the value is empty. For example,

$(word 2, foo bar baz)

returns ‘bar’.

76 GNU make

$(wordlist s,e,text)

Returns the list of words in text starting with word s and ending with word e
(inclusive). The legitimate values of s start from 1; e may start from 0. If s is bigger
than the number of words in text, the value is empty. If e is bigger than the number
of words in text, words up to the end of text are returned. If s is greater than e,
nothing is returned. For example,

$(wordlist 2, 3, foo bar baz)

returns ‘bar baz’.

$(words text)

Returns the number of words in text. Thus, the last word of text is
$(word $(words text),text).

$(firstword names...)

The argument names is regarded as a series of names, separated by whitespace. The
value is the first name in the series. The rest of the names are ignored.

For example,

$(firstword foo bar)

produces the result ‘foo’. Although $(firstword text) is the same as $(word

1,text), the firstword function is retained for its simplicity.

$(lastword names...)

The argument names is regarded as a series of names, separated by whitespace. The
value is the last name in the series.

For example,

$(lastword foo bar)

produces the result ‘bar’. Although $(lastword text) is the same as $(word

$(words text),text), the lastword function was added for its simplicity and bet-
ter performance.

Here is a realistic example of the use of subst and patsubst. Suppose that a makefile uses
the VPATH variable to specify a list of directories that make should search for prerequisite files
(see Section 4.4.1 [VPATH Search Path for All Prerequisites], page 23). This example shows how
to tell the C compiler to search for header files in the same list of directories.

The value of VPATH is a list of directories separated by colons, such as ‘src:../headers’.
First, the subst function is used to change the colons to spaces:

$(subst :, ,$(VPATH))

This produces ‘src ../headers’. Then patsubst is used to turn each directory name into a
‘-I’ flag. These can be added to the value of the variable CFLAGS, which is passed automatically
to the C compiler, like this:

override CFLAGS += $(patsubst %,-I%,$(subst :, ,$(VPATH)))

The effect is to append the text ‘-Isrc -I../headers’ to the previously given value of CFLAGS.
The override directive is used so that the new value is assigned even if the previous value
of CFLAGS was specified with a command argument (see Section 6.7 [The override Directive],
page 61).

8.3 Functions for File Names

Several of the built-in expansion functions relate specifically to taking apart file names or lists
of file names.

Each of the following functions performs a specific transformation on a file name. The
argument of the function is regarded as a series of file names, separated by whitespace. (Leading

Chapter 8: Functions for Transforming Text 77

and trailing whitespace is ignored.) Each file name in the series is transformed in the same way
and the results are concatenated with single spaces between them.

$(dir names...)

Extracts the directory-part of each file name in names. The directory-part of the
file name is everything up through (and including) the last slash in it. If the file
name contains no slash, the directory part is the string ‘./’. For example,

$(dir src/foo.c hacks)

produces the result ‘src/ ./’.

$(notdir names...)

Extracts all but the directory-part of each file name in names. If the file name
contains no slash, it is left unchanged. Otherwise, everything through the last slash
is removed from it.

A file name that ends with a slash becomes an empty string. This is unfortu-
nate, because it means that the result does not always have the same number of
whitespace-separated file names as the argument had; but we do not see any other
valid alternative.

For example,

$(notdir src/foo.c hacks)

produces the result ‘foo.c hacks’.

$(suffix names...)

Extracts the suffix of each file name in names. If the file name contains a period, the
suffix is everything starting with the last period. Otherwise, the suffix is the empty
string. This frequently means that the result will be empty when names is not, and
if names contains multiple file names, the result may contain fewer file names.

For example,

$(suffix src/foo.c src-1.0/bar.c hacks)

produces the result ‘.c .c’.

$(basename names...)

Extracts all but the suffix of each file name in names. If the file name contains a
period, the basename is everything starting up to (and not including) the last period.
Periods in the directory part are ignored. If there is no period, the basename is the
entire file name. For example,

$(basename src/foo.c src-1.0/bar hacks)

produces the result ‘src/foo src-1.0/bar hacks’.

$(addsuffix suffix,names...)

The argument names is regarded as a series of names, separated by whitespace;
suffix is used as a unit. The value of suffix is appended to the end of each individual
name and the resulting larger names are concatenated with single spaces between
them. For example,

$(addsuffix .c,foo bar)

produces the result ‘foo.c bar.c’.

$(addprefix prefix,names...)

The argument names is regarded as a series of names, separated by whitespace;
prefix is used as a unit. The value of prefix is prepended to the front of each
individual name and the resulting larger names are concatenated with single spaces
between them. For example,

$(addprefix src/,foo bar)

78 GNU make

produces the result ‘src/foo src/bar’.

$(join list1,list2)

Concatenates the two arguments word by word: the two first words (one from each
argument) concatenated form the first word of the result, the two second words form
the second word of the result, and so on. So the nth word of the result comes from
the nth word of each argument. If one argument has more words that the other, the
extra words are copied unchanged into the result.

For example, ‘$(join a b,.c .o)’ produces ‘a.c b.o’.

Whitespace between the words in the lists is not preserved; it is replaced with a
single space.

This function can merge the results of the dir and notdir functions, to produce
the original list of files which was given to those two functions.

$(wildcard pattern)

The argument pattern is a file name pattern, typically containing wildcard characters
(as in shell file name patterns). The result of wildcard is a space-separated list of
the names of existing files that match the pattern. See Section 4.3 [Using Wildcard
Characters in File Names], page 21.

$(realpath names...)

For each file name in names return the canonical absolute name. A canonical name
does not contain any . or .. components, nor any repeated path separators (/) or
symlinks. In case of a failure the empty string is returned. Consult the realpath(3)
documentation for a list of possible failure causes.

$(abspath names...)

For each file name in names return an absolute name that does not contain any .

or .. components, nor any repeated path separators (/). Note that, in contrast to
realpath function, abspath does not resolve symlinks and does not require the file
names to refer to an existing file or directory. Use the wildcard function to test for
existence.

8.4 Functions for Conditionals

There are three functions that provide conditional expansion. A key aspect of these functions
is that not all of the arguments are expanded initially. Only those arguments which need to be
expanded, will be expanded.

$(if condition,then-part[,else-part])

The if function provides support for conditional expansion in a functional context
(as opposed to the GNU make makefile conditionals such as ifeq (see Section 7.2
[Syntax of Conditionals], page 70).

The first argument, condition, first has all preceding and trailing whitespace
stripped, then is expanded. If it expands to any non-empty string, then the con-
dition is considered to be true. If it expands to an empty string, the condition is
considered to be false.

If the condition is true then the second argument, then-part, is evaluated and this
is used as the result of the evaluation of the entire if function.

If the condition is false then the third argument, else-part, is evaluated and this is
the result of the if function. If there is no third argument, the if function evaluates
to nothing (the empty string).

Note that only one of the then-part or the else-part will be evaluated, never both.
Thus, either can contain side-effects (such as shell function calls, etc.)

Chapter 8: Functions for Transforming Text 79

$(or condition1[,condition2[,condition3...]])

The or function provides a “short-circuiting” OR operation. Each argument is
expanded, in order. If an argument expands to a non-empty string the processing
stops and the result of the expansion is that string. If, after all arguments are
expanded, all of them are false (empty), then the result of the expansion is the
empty string.

$(and condition1[,condition2[,condition3...]])

The and function provides a “short-circuiting” AND operation. Each argument is
expanded, in order. If an argument expands to an empty string the processing stops
and the result of the expansion is the empty string. If all arguments expand to
a non-empty string then the result of the expansion is the expansion of the last
argument.

8.5 The foreach Function

The foreach function is very different from other functions. It causes one piece of text to be
used repeatedly, each time with a different substitution performed on it. It resembles the for

command in the shell sh and the foreach command in the C-shell csh.

The syntax of the foreach function is:

$(foreach var,list,text)

The first two arguments, var and list, are expanded before anything else is done; note that the
last argument, text, is not expanded at the same time. Then for each word of the expanded
value of list, the variable named by the expanded value of var is set to that word, and text is
expanded. Presumably text contains references to that variable, so its expansion will be different
each time.

The result is that text is expanded as many times as there are whitespace-separated words
in list. The multiple expansions of text are concatenated, with spaces between them, to make
the result of foreach.

This simple example sets the variable ‘files’ to the list of all files in the directories in the
list ‘dirs’:

dirs := a b c d

files := $(foreach dir,$(dirs),$(wildcard $(dir)/*))

Here text is ‘$(wildcard $(dir)/*)’. The first repetition finds the value ‘a’ for dir, so it
produces the same result as ‘$(wildcard a/*)’; the second repetition produces the result of
‘$(wildcard b/*)’; and the third, that of ‘$(wildcard c/*)’.

This example has the same result (except for setting ‘dirs’) as the following example:

files := $(wildcard a/* b/* c/* d/*)

When text is complicated, you can improve readability by giving it a name, with an additional
variable:

find_files = $(wildcard $(dir)/*)

dirs := a b c d

files := $(foreach dir,$(dirs),$(find_files))

Here we use the variable find_files this way. We use plain ‘=’ to define a recursively-expanding
variable, so that its value contains an actual function call to be re-expanded under the control
of foreach; a simply-expanded variable would not do, since wildcard would be called only once
at the time of defining find_files.

The foreach function has no permanent effect on the variable var; its value and flavor after
the foreach function call are the same as they were beforehand. The other values which are
taken from list are in effect only temporarily, during the execution of foreach. The variable

80 GNU make

var is a simply-expanded variable during the execution of foreach. If var was undefined before
the foreach function call, it is undefined after the call. See Section 6.2 [The Two Flavors of
Variables], page 54.

You must take care when using complex variable expressions that result in variable names
because many strange things are valid variable names, but are probably not what you intended.
For example,

files := $(foreach Esta-escrito-en-espanol!,b c ch,$(find_files))

might be useful if the value of find_files references the variable whose name is
‘Esta-escrito-en-espanol!’ (es un nombre bastante largo, no?), but it is more likely to be a
mistake.

8.6 The file Function

The file function allows the makefile to write to a file. Two modes of writing are supported:
overwrite, where the text is written to the beginning of the file and any existing content is lost,
and append, where the text is written to the end of the file, preserving the existing content. In
all cases the file is created if it does not exist.

The syntax of the file function is:

$(file op filename[,text])

The operator op can be either > which indicates overwrite mode, or >> which indicates append
mode. The filename indicates the file to be written to. There may optionally be whitespace
between the operator and the file name.

When the file function is expanded all its arguments are expanded first, then the file
indicated by filename will be opened in the mode described by op. Finally text will be written
to the file. If text does not already end in a newline, even if empty, a final newline will be
written. If the text argument is not given, nothing will be written. The result of evaluating the
file function is always the empty string.

It is a fatal error if the file cannot be opened for writing, or if the write operation fails.

For example, the file function can be useful if your build system has a limited command
line size and your recipe runs a command that can accept arguments from a file as well. Many
commands use the convention that an argument prefixed with an @ specifies a file containing
more arguments. Then you might write your recipe in this way:

program: $(OBJECTS)

$(file >$@.in,$^)

$(CMD) $(CMDFLAGS) @$@.in

@rm $@.in

If the command required each argument to be on a separate line of the input file, you might
write your recipe like this:

program: $(OBJECTS)

$(file >$@.in) $(foreach O,,(file >>$@.in,$O))

$(CMD) $(CMDFLAGS) @$@.in

@rm $@.in

8.7 The call Function

The call function is unique in that it can be used to create new parameterized functions. You
can write a complex expression as the value of a variable, then use call to expand it with
different values.

The syntax of the call function is:

$(call variable,param,param,...)

Chapter 8: Functions for Transforming Text 81

When make expands this function, it assigns each param to temporary variables $(1), $(2),
etc. The variable $(0) will contain variable. There is no maximum number of parameter argu-
ments. There is no minimum, either, but it doesn’t make sense to use call with no parameters.

Then variable is expanded as a make variable in the context of these temporary assignments.
Thus, any reference to $(1) in the value of variable will resolve to the first param in the
invocation of call.

Note that variable is the name of a variable, not a reference to that variable. Therefore you
would not normally use a ‘$’ or parentheses when writing it. (You can, however, use a variable
reference in the name if you want the name not to be a constant.)

If variable is the name of a built-in function, the built-in function is always invoked (even if
a make variable by that name also exists).

The call function expands the param arguments before assigning them to temporary vari-
ables. This means that variable values containing references to built-in functions that have
special expansion rules, like foreach or if, may not work as you expect.

Some examples may make this clearer.

This macro simply reverses its arguments:
reverse = $(2) $(1)

foo = $(call reverse,a,b)

Here foo will contain ‘b a’.

This one is slightly more interesting: it defines a macro to search for the first instance of a
program in PATH:

pathsearch = $(firstword $(wildcard $(addsuffix /$(1),$(subst :, ,$(PATH)))))

LS := $(call pathsearch,ls)

Now the variable LS contains /bin/ls or similar.

The call function can be nested. Each recursive invocation gets its own local values for
$(1), etc. that mask the values of higher-level call. For example, here is an implementation of
a map function:

map = $(foreach a,$(2),$(call $(1),$(a)))

Now you can map a function that normally takes only one argument, such as origin, to
multiple values in one step:

o = $(call map,origin,o map MAKE)

and end up with o containing something like ‘file file default’.

A final caution: be careful when adding whitespace to the arguments to call. As with other
functions, any whitespace contained in the second and subsequent arguments is kept; this can
cause strange effects. It’s generally safest to remove all extraneous whitespace when providing
parameters to call.

8.8 The value Function

The value function provides a way for you to use the value of a variable without having it
expanded. Please note that this does not undo expansions which have already occurred; for
example if you create a simply expanded variable its value is expanded during the definition; in
that case the value function will return the same result as using the variable directly.

The syntax of the value function is:

$(value variable)

Note that variable is the name of a variable, not a reference to that variable. Therefore you
would not normally use a ‘$’ or parentheses when writing it. (You can, however, use a variable
reference in the name if you want the name not to be a constant.)

82 GNU make

The result of this function is a string containing the value of variable, without any expansion
occurring. For example, in this makefile:

FOO = $PATH

all:

@echo $(FOO)

@echo $(value FOO)

The first output line would be ATH, since the “$P” would be expanded as a make variable, while
the second output line would be the current value of your $PATH environment variable, since the
value function avoided the expansion.

The value function is most often used in conjunction with the eval function (see Section 8.9
[Eval Function], page 82).

8.9 The eval Function

The eval function is very special: it allows you to define new makefile constructs that are not
constant; which are the result of evaluating other variables and functions. The argument to the
eval function is expanded, then the results of that expansion are parsed as makefile syntax.
The expanded results can define new make variables, targets, implicit or explicit rules, etc.

The result of the eval function is always the empty string; thus, it can be placed virtually
anywhere in a makefile without causing syntax errors.

It’s important to realize that the eval argument is expanded twice; first by the eval function,
then the results of that expansion are expanded again when they are parsed as makefile syntax.
This means you may need to provide extra levels of escaping for “$” characters when using eval.
The value function (see Section 8.8 [Value Function], page 81) can sometimes be useful in these
situations, to circumvent unwanted expansions.

Here is an example of how eval can be used; this example combines a number of concepts
and other functions. Although it might seem overly complex to use eval in this example, rather
than just writing out the rules, consider two things: first, the template definition (in PROGRAM_

template) could need to be much more complex than it is here; and second, you might put
the complex, “generic” part of this example into another makefile, then include it in all the
individual makefiles. Now your individual makefiles are quite straightforward.

Chapter 8: Functions for Transforming Text 83

PROGRAMS = server client

server_OBJS = server.o server_priv.o server_access.o

server_LIBS = priv protocol

client_OBJS = client.o client_api.o client_mem.o

client_LIBS = protocol

Everything after this is generic

.PHONY: all

all: $(PROGRAMS)

define PROGRAM_template =

$(1): $$($(1)_OBJS) $$($(1)_LIBS:%=-l%)

ALL_OBJS += $$($(1)_OBJS)

endef

$(foreach prog,$(PROGRAMS),$(eval $(call PROGRAM_template,$(prog))))

$(PROGRAMS):

$(LINK.o) $^ $(LDLIBS) -o $@

clean:

rm -f $(ALL_OBJS) $(PROGRAMS)

8.10 The origin Function

The origin function is unlike most other functions in that it does not operate on the values of
variables; it tells you something about a variable. Specifically, it tells you where it came from.

The syntax of the origin function is:

$(origin variable)

Note that variable is the name of a variable to inquire about, not a reference to that variable.
Therefore you would not normally use a ‘$’ or parentheses when writing it. (You can, however,
use a variable reference in the name if you want the name not to be a constant.)

The result of this function is a string telling you how the variable variable was defined:

‘undefined’
if variable was never defined.

‘default’

if variable has a default definition, as is usual with CC and so on. See Section 10.3
[Variables Used by Implicit Rules], page 101. Note that if you have redefined a
default variable, the origin function will return the origin of the later definition.

‘environment’
if variable was inherited from the environment provided to make.

‘environment override’
if variable was inherited from the environment provided to make, and is overriding
a setting for variable in the makefile as a result of the ‘-e’ option (see Section 9.7
[Summary of Options], page 91).

‘file’

84 GNU make

if variable was defined in a makefile.

‘command line’
if variable was defined on the command line.

‘override’
if variable was defined with an override directive in a makefile (see Section 6.7
[The override Directive], page 61).

‘automatic’
if variable is an automatic variable defined for the execution of the recipe for each
rule (see Section 10.5.3 [Automatic Variables], page 105).

This information is primarily useful (other than for your curiosity) to determine if you want
to believe the value of a variable. For example, suppose you have a makefile foo that includes
another makefile bar. You want a variable bletch to be defined in bar if you run the command
‘make -f bar’, even if the environment contains a definition of bletch. However, if foo defined
bletch before including bar, you do not want to override that definition. This could be done by
using an override directive in foo, giving that definition precedence over the later definition
in bar; unfortunately, the override directive would also override any command line definitions.
So, bar could include:

ifdef bletch

ifeq "$(origin bletch)" "environment"

bletch = barf, gag, etc.

endif

endif

If bletch has been defined from the environment, this will redefine it.

If you want to override a previous definition of bletch if it came from the environment, even
under ‘-e’, you could instead write:

ifneq "$(findstring environment,$(origin bletch))" ""

bletch = barf, gag, etc.

endif

Here the redefinition takes place if ‘$(origin bletch)’ returns either ‘environment’ or
‘environment override’. See Section 8.2 [Functions for String Substitution and Analysis],
page 73.

8.11 The flavor Function

The flavor function, like the origin function, does not operate on the values of variables but
rather it tells you something about a variable. Specifically, it tells you the flavor of a variable
(see Section 6.2 [The Two Flavors of Variables], page 54).

The syntax of the flavor function is:

$(flavor variable)

Note that variable is the name of a variable to inquire about, not a reference to that variable.
Therefore you would not normally use a ‘$’ or parentheses when writing it. (You can, however,
use a variable reference in the name if you want the name not to be a constant.)

The result of this function is a string that identifies the flavor of the variable variable:

‘undefined’
if variable was never defined.

‘recursive’
if variable is a recursively expanded variable.

Chapter 8: Functions for Transforming Text 85

‘simple’

if variable is a simply expanded variable.

8.12 Functions That Control Make

These functions control the way make runs. Generally, they are used to provide information to
the user of the makefile or to cause make to stop if some sort of environmental error is detected.

$(error text...)

Generates a fatal error where the message is text. Note that the error is generated
whenever this function is evaluated. So, if you put it inside a recipe or on the right
side of a recursive variable assignment, it won’t be evaluated until later. The text
will be expanded before the error is generated.

For example,

ifdef ERROR1

$(error error is $(ERROR1))

endif

will generate a fatal error during the read of the makefile if the make variable ERROR1
is defined. Or,

ERR = $(error found an error!)

.PHONY: err

err: ; $(ERR)

will generate a fatal error while make is running, if the err target is invoked.

$(warning text...)

This function works similarly to the error function, above, except that make doesn’t
exit. Instead, text is expanded and the resulting message is displayed, but processing
of the makefile continues.

The result of the expansion of this function is the empty string.

$(info text...)

This function does nothing more than print its (expanded) argument(s) to standard
output. No makefile name or line number is added. The result of the expansion of
this function is the empty string.

8.13 The shell Function

The shell function is unlike any other function other than the wildcard function (see
Section 4.3.3 [The Function wildcard], page 22) in that it communicates with the world outside
of make.

The shell function performs the same function that backquotes (‘‘’) perform in most shells:
it does command expansion. This means that it takes as an argument a shell command and
evaluates to the output of the command. The only processing make does on the result is to
convert each newline (or carriage-return / newline pair) to a single space. If there is a trailing
(carriage-return and) newline it will simply be removed.

The commands run by calls to the shell function are run when the function calls are ex-
panded (see Section 3.7 [How make Reads a Makefile], page 13). Because this function in-
volves spawning a new shell, you should carefully consider the performance implications of using
the shell function within recursively expanded variables vs. simply expanded variables (see
Section 6.2 [The Two Flavors of Variables], page 54).

86 GNU make

Here are some examples of the use of the shell function:

contents := $(shell cat foo)

sets contents to the contents of the file foo, with a space (rather than a newline) separating
each line.

files := $(shell echo *.c)

sets files to the expansion of ‘*.c’. Unless make is using a very strange shell, this has the same
result as ‘$(wildcard *.c)’ (as long as at least one ‘.c’ file exists).

8.14 The guile Function

If GNU make is built with support for GNU Guile as an embedded extension language then
the guile function will be available. The guile function takes one argument which is first
expanded by make in the normal fashion, then passed to the GNU Guile evaluator. The result of
the evaluator is converted into a string and used as the expansion of the guile function in the
makefile. See Section 12.1 [GNU Guile Integration], page 117, for details on writing extensions
to make in Guile.

You can determine whether GNU Guile support is available by checking the .FEATURES

variable for the word guile.

87

9 How to Run make

A makefile that says how to recompile a program can be used in more than one way. The
simplest use is to recompile every file that is out of date. Usually, makefiles are written so that
if you run make with no arguments, it does just that.

But you might want to update only some of the files; you might want to use a different
compiler or different compiler options; you might want just to find out which files are out of
date without changing them.

By giving arguments when you run make, you can do any of these things and many others.

The exit status of make is always one of three values:

0 The exit status is zero if make is successful.

2 The exit status is two if make encounters any errors. It will print messages describing
the particular errors.

1 The exit status is one if you use the ‘-q’ flag and make determines that some target
is not already up to date. See Section 9.3 [Instead of Executing Recipes], page 89.

9.1 Arguments to Specify the Makefile

The way to specify the name of the makefile is with the ‘-f’ or ‘--file’ option (‘--makefile’
also works). For example, ‘-f altmake’ says to use the file altmake as the makefile.

If you use the ‘-f’ flag several times and follow each ‘-f’ with an argument, all the specified
files are used jointly as makefiles.

If you do not use the ‘-f’ or ‘--file’ flag, the default is to try GNUmakefile, makefile,
and Makefile, in that order, and use the first of these three which exists or can be made (see
Chapter 3 [Writing Makefiles], page 9).

9.2 Arguments to Specify the Goals

The goals are the targets that make should strive ultimately to update. Other targets are
updated as well if they appear as prerequisites of goals, or prerequisites of prerequisites of goals,
etc.

By default, the goal is the first target in the makefile (not counting targets that start with
a period). Therefore, makefiles are usually written so that the first target is for compiling the
entire program or programs they describe. If the first rule in the makefile has several targets,
only the first target in the rule becomes the default goal, not the whole list. You can manage
the selection of the default goal from within your makefile using the .DEFAULT_GOAL variable
(see Section 6.14 [Other Special Variables], page 65).

You can also specify a different goal or goals with command line arguments to make. Use the
name of the goal as an argument. If you specify several goals, make processes each of them in
turn, in the order you name them.

Any target in the makefile may be specified as a goal (unless it starts with ‘-’ or contains an
‘=’, in which case it will be parsed as a switch or variable definition, respectively). Even targets
not in the makefile may be specified, if make can find implicit rules that say how to make them.

Make will set the special variable MAKECMDGOALS to the list of goals you specified on the
command line. If no goals were given on the command line, this variable is empty. Note that
this variable should be used only in special circumstances.

An example of appropriate use is to avoid including .d files during clean rules (see
Section 4.13 [Automatic Prerequisites], page 34), so make won’t create them only to immediately
remove them again:

88 GNU make

sources = foo.c bar.c

ifneq ($(MAKECMDGOALS),clean)

include $(sources:.c=.d)

endif

One use of specifying a goal is if you want to compile only a part of the program, or only one
of several programs. Specify as a goal each file that you wish to remake. For example, consider
a directory containing several programs, with a makefile that starts like this:

.PHONY: all

all: size nm ld ar as

If you are working on the program size, you might want to say ‘make size’ so that only the
files of that program are recompiled.

Another use of specifying a goal is to make files that are not normally made. For example,
there may be a file of debugging output, or a version of the program that is compiled specially
for testing, which has a rule in the makefile but is not a prerequisite of the default goal.

Another use of specifying a goal is to run the recipe associated with a phony target (see
Section 4.5 [Phony Targets], page 26) or empty target (see Section 4.7 [Empty Target Files to
Record Events], page 28). Many makefiles contain a phony target named clean which deletes
everything except source files. Naturally, this is done only if you request it explicitly with
‘make clean’. Following is a list of typical phony and empty target names. See Section 15.6
[Standard Targets], page 140, for a detailed list of all the standard target names which GNU
software packages use.

all Make all the top-level targets the makefile knows about.

clean Delete all files that are normally created by running make.

mostlyclean

Like ‘clean’, but may refrain from deleting a few files that people normally don’t
want to recompile. For example, the ‘mostlyclean’ target for GCC does not delete
libgcc.a, because recompiling it is rarely necessary and takes a lot of time.

distclean

realclean

clobber Any of these targets might be defined to delete more files than ‘clean’ does. For
example, this would delete configuration files or links that you would normally create
as preparation for compilation, even if the makefile itself cannot create these files.

install Copy the executable file into a directory that users typically search for commands;
copy any auxiliary files that the executable uses into the directories where it will
look for them.

print Print listings of the source files that have changed.

tar Create a tar file of the source files.

shar Create a shell archive (shar file) of the source files.

dist Create a distribution file of the source files. This might be a tar file, or a shar file,
or a compressed version of one of the above, or even more than one of the above.

TAGS Update a tags table for this program.

check

test Perform self tests on the program this makefile builds.

Chapter 9: How to Run make 89

9.3 Instead of Executing Recipes

The makefile tells make how to tell whether a target is up to date, and how to update each
target. But updating the targets is not always what you want. Certain options specify other
activities for make.

‘-n’
‘--just-print’
‘--dry-run’
‘--recon’

“No-op”. Causes make to print the recipes that are needed to make the targets up
to date, but not actually execute them. Note that some recipes are still executed,
even with this flag (see Section 5.7.1 [How the MAKE Variable Works], page 46). Also
any recipes needed to update included makefiles are still executed (see Section 3.5
[How Makefiles Are Remade], page 12).

‘-t’
‘--touch’

“Touch”. Marks targets as up to date without actually changing them. In other
words, make pretends to update the targets but does not really change their contents;
instead only their modified times are updated.

‘-q’
‘--question’

“Question”. Silently check whether the targets are up to date, but do not execute
recipes; the exit code shows whether any updates are needed.

‘-W file’
‘--what-if=file’
‘--assume-new=file’
‘--new-file=file’

“What if”. Each ‘-W’ flag is followed by a file name. The given files’ modification
times are recorded by make as being the present time, although the actual modifica-
tion times remain the same. You can use the ‘-W’ flag in conjunction with the ‘-n’
flag to see what would happen if you were to modify specific files.

With the ‘-n’ flag, make prints the recipe that it would normally execute but usually does
not execute it.

With the ‘-t’ flag, make ignores the recipes in the rules and uses (in effect) the command
touch for each target that needs to be remade. The touch command is also printed, unless ‘-s’
or .SILENT is used. For speed, make does not actually invoke the program touch. It does the
work directly.

With the ‘-q’ flag, make prints nothing and executes no recipes, but the exit status code it
returns is zero if and only if the targets to be considered are already up to date. If the exit
status is one, then some updating needs to be done. If make encounters an error, the exit status
is two, so you can distinguish an error from a target that is not up to date.

It is an error to use more than one of these three flags in the same invocation of make.

The ‘-n’, ‘-t’, and ‘-q’ options do not affect recipe lines that begin with ‘+’ characters or
contain the strings ‘$(MAKE)’ or ‘${MAKE}’. Note that only the line containing the ‘+’ character
or the strings ‘$(MAKE)’ or ‘${MAKE}’ is run regardless of these options. Other lines in the
same rule are not run unless they too begin with ‘+’ or contain ‘$(MAKE)’ or ‘${MAKE}’ (See
Section 5.7.1 [How the MAKE Variable Works], page 46.)

The ‘-t’ flag prevents phony targets (see Section 4.5 [Phony Targets], page 26) from being
updated, unless there are recipe lines beginning with ‘+’ or containing ‘$(MAKE)’ or ‘${MAKE}’.

90 GNU make

The ‘-W’ flag provides two features:

• If you also use the ‘-n’ or ‘-q’ flag, you can see what make would do if you were to modify
some files.

• Without the ‘-n’ or ‘-q’ flag, when make is actually executing recipes, the ‘-W’ flag can
direct make to act as if some files had been modified, without actually running the recipes
for those files.

Note that the options ‘-p’ and ‘-v’ allow you to obtain other information about make or
about the makefiles in use (see Section 9.7 [Summary of Options], page 91).

9.4 Avoiding Recompilation of Some Files

Sometimes you may have changed a source file but you do not want to recompile all the files
that depend on it. For example, suppose you add a macro or a declaration to a header file that
many other files depend on. Being conservative, make assumes that any change in the header
file requires recompilation of all dependent files, but you know that they do not need to be
recompiled and you would rather not waste the time waiting for them to compile.

If you anticipate the problem before changing the header file, you can use the ‘-t’ flag. This
flag tells make not to run the recipes in the rules, but rather to mark the target up to date by
changing its last-modification date. You would follow this procedure:

1. Use the command ‘make’ to recompile the source files that really need recompilation, en-
suring that the object files are up-to-date before you begin.

2. Make the changes in the header files.

3. Use the command ‘make -t’ to mark all the object files as up to date. The next time you
run make, the changes in the header files will not cause any recompilation.

If you have already changed the header file at a time when some files do need recompilation,
it is too late to do this. Instead, you can use the ‘-o file’ flag, which marks a specified file as
“old” (see Section 9.7 [Summary of Options], page 91). This means that the file itself will not
be remade, and nothing else will be remade on its account. Follow this procedure:

1. Recompile the source files that need compilation for reasons independent of the particular
header file, with ‘make -o headerfile’. If several header files are involved, use a separate
‘-o’ option for each header file.

2. Touch all the object files with ‘make -t’.

9.5 Overriding Variables

An argument that contains ‘=’ specifies the value of a variable: ‘v=x’ sets the value of the variable
v to x. If you specify a value in this way, all ordinary assignments of the same variable in the
makefile are ignored; we say they have been overridden by the command line argument.

The most common way to use this facility is to pass extra flags to compilers. For example,
in a properly written makefile, the variable CFLAGS is included in each recipe that runs the C
compiler, so a file foo.c would be compiled something like this:

cc -c $(CFLAGS) foo.c

Thus, whatever value you set for CFLAGS affects each compilation that occurs. The makefile
probably specifies the usual value for CFLAGS, like this:

CFLAGS=-g

Each time you run make, you can override this value if you wish. For example, if you say ‘make
CFLAGS=’-g -O’’, each C compilation will be done with ‘cc -c -g -O’. (This also illustrates how
you can use quoting in the shell to enclose spaces and other special characters in the value of a
variable when you override it.)

Chapter 9: How to Run make 91

The variable CFLAGS is only one of many standard variables that exist just so that you can
change them this way. See Section 10.3 [Variables Used by Implicit Rules], page 101, for a
complete list.

You can also program the makefile to look at additional variables of your own, giving the
user the ability to control other aspects of how the makefile works by changing the variables.

When you override a variable with a command line argument, you can define either a
recursively-expanded variable or a simply-expanded variable. The examples shown above make
a recursively-expanded variable; to make a simply-expanded variable, write ‘:=’ or ‘::=’ instead
of ‘=’. But, unless you want to include a variable reference or function call in the value that you
specify, it makes no difference which kind of variable you create.

There is one way that the makefile can change a variable that you have overridden. This is
to use the override directive, which is a line that looks like this: ‘override variable = value’
(see Section 6.7 [The override Directive], page 61).

9.6 Testing the Compilation of a Program

Normally, when an error happens in executing a shell command, make gives up immediately,
returning a nonzero status. No further recipes are executed for any target. The error implies
that the goal cannot be correctly remade, and make reports this as soon as it knows.

When you are compiling a program that you have just changed, this is not what you want.
Instead, you would rather that make try compiling every file that can be tried, to show you as
many compilation errors as possible.

On these occasions, you should use the ‘-k’ or ‘--keep-going’ flag. This tells make to
continue to consider the other prerequisites of the pending targets, remaking them if necessary,
before it gives up and returns nonzero status. For example, after an error in compiling one
object file, ‘make -k’ will continue compiling other object files even though it already knows
that linking them will be impossible. In addition to continuing after failed shell commands,
‘make -k’ will continue as much as possible after discovering that it does not know how to make
a target or prerequisite file. This will always cause an error message, but without ‘-k’, it is a
fatal error (see Section 9.7 [Summary of Options], page 91).

The usual behavior of make assumes that your purpose is to get the goals up to date; once
make learns that this is impossible, it might as well report the failure immediately. The ‘-k’ flag
says that the real purpose is to test as much as possible of the changes made in the program,
perhaps to find several independent problems so that you can correct them all before the next
attempt to compile. This is why Emacs’ M-x compile command passes the ‘-k’ flag by default.

9.7 Summary of Options

Here is a table of all the options make understands:

‘-b’
‘-m’ These options are ignored for compatibility with other versions of make.

‘-B’
‘--always-make’

Consider all targets out-of-date. GNU make proceeds to consider targets and their
prerequisites using the normal algorithms; however, all targets so considered are
always remade regardless of the status of their prerequisites. To avoid infinite re-
cursion, if MAKE_RESTARTS (see Section 6.14 [Other Special Variables], page 65) is
set to a number greater than 0 this option is disabled when considering whether to
remake makefiles (see Section 3.5 [How Makefiles Are Remade], page 12).

92 GNU make

‘-C dir’
‘--directory=dir’

Change to directory dir before reading the makefiles. If multiple ‘-C’ options are
specified, each is interpreted relative to the previous one: ‘-C / -C etc’ is equiv-
alent to ‘-C /etc’. This is typically used with recursive invocations of make (see
Section 5.7 [Recursive Use of make], page 45).

‘-d’

Print debugging information in addition to normal processing. The debugging infor-
mation says which files are being considered for remaking, which file-times are being
compared and with what results, which files actually need to be remade, which im-
plicit rules are considered and which are applied—everything interesting about how
make decides what to do. The -d option is equivalent to ‘--debug=a’ (see below).

‘--debug[=options]’
Print debugging information in addition to normal processing. Various levels and
types of output can be chosen. With no arguments, print the “basic” level of
debugging. Possible arguments are below; only the first character is considered,
and values must be comma- or space-separated.

a (all) All types of debugging output are enabled. This is equivalent to using
‘-d’.

b (basic) Basic debugging prints each target that was found to be out-of-date,
and whether the build was successful or not.

v (verbose)

A level above ‘basic’; includes messages about which makefiles were
parsed, prerequisites that did not need to be rebuilt, etc. This option
also enables ‘basic’ messages.

i (implicit)

Prints messages describing the implicit rule searches for each target.
This option also enables ‘basic’ messages.

j (jobs) Prints messages giving details on the invocation of specific
sub-commands.

m (makefile)

By default, the above messages are not enabled while trying to remake
the makefiles. This option enables messages while rebuilding makefiles,
too. Note that the ‘all’ option does enable this option. This option
also enables ‘basic’ messages.

n (none) Disable all debugging currently enabled. If additional debugging flags
are encountered after this they will still take effect.

‘-e’
‘--environment-overrides’

Give variables taken from the environment precedence over variables from makefiles.
See Section 6.10 [Variables from the Environment], page 63.

‘--eval=string’
Evaluate string as makefile syntax. This is a command-line version of the eval

function (see Section 8.9 [Eval Function], page 82). The evaluation is performed
after the default rules and variables have been defined, but before any makefiles are
read.

Chapter 9: How to Run make 93

‘-f file’
‘--file=file’
‘--makefile=file’

Read the file named file as a makefile. See Chapter 3 [Writing Makefiles], page 9.

‘-h’
‘--help’

Remind you of the options that make understands and then exit.

‘-i’
‘--ignore-errors’

Ignore all errors in recipes executed to remake files. See Section 5.5 [Errors in
Recipes], page 44.

‘-I dir’
‘--include-dir=dir’

Specifies a directory dir to search for included makefiles. See Section 3.3 [Includ-
ing Other Makefiles], page 10. If several ‘-I’ options are used to specify several
directories, the directories are searched in the order specified.

‘-j [jobs]’
‘--jobs[=jobs]’

Specifies the number of recipes (jobs) to run simultaneously. With no argument,
make runs as many recipes simultaneously as possible. If there is more than one
‘-j’ option, the last one is effective. See Section 5.4 [Parallel Execution], page 42,
for more information on how recipes are run. Note that this option is ignored on
MS-DOS.

‘-k’
‘--keep-going’

Continue as much as possible after an error. While the target that failed, and those
that depend on it, cannot be remade, the other prerequisites of these targets can
be processed all the same. See Section 9.6 [Testing the Compilation of a Program],
page 91.

‘-l [load]’
‘--load-average[=load]’
‘--max-load[=load]’

Specifies that no new recipes should be started if there are other recipes running
and the load average is at least load (a floating-point number). With no argument,
removes a previous load limit. See Section 5.4 [Parallel Execution], page 42.

‘-L’
‘--check-symlink-times’

On systems that support symbolic links, this option causes make to consider the
timestamps on any symbolic links in addition to the timestamp on the file referenced
by those links. When this option is provided, the most recent timestamp among the
file and the symbolic links is taken as the modification time for this target file.

‘-n’
‘--just-print’
‘--dry-run’
‘--recon’

Print the recipe that would be executed, but do not execute it (except in certain
circumstances). See Section 9.3 [Instead of Executing Recipes], page 89.

94 GNU make

‘-o file’
‘--old-file=file’
‘--assume-old=file’

Do not remake the file file even if it is older than its prerequisites, and do not
remake anything on account of changes in file. Essentially the file is treated as very
old and its rules are ignored. See Section 9.4 [Avoiding Recompilation of Some
Files], page 90.

‘-O[type]’
‘--output-sync[=type]’

Ensure that the complete output from each recipe is printed in one uninterrupted
sequence. This option is only useful when using the --jobs option to run multiple
recipes simultaneously (see Section 5.4 [Parallel Execution], page 42) Without this
option output will be displayed as it is generated by the recipes.

With no type or the type ‘target’, output from the entire recipe of each target
is grouped together. With the type ‘line’, output from each line in the recipe is
grouped together. With the type ‘recurse’, the output from an entire recursive
make is grouped together. With the type ‘none’, no output synchronization is
performed. See Section 5.4.1 [Output During Parallel Execution], page 43.

‘-p’
‘--print-data-base’

Print the data base (rules and variable values) that results from reading the make-
files; then execute as usual or as otherwise specified. This also prints the version
information given by the ‘-v’ switch (see below). To print the data base without
trying to remake any files, use ‘make -qp’. To print the data base of predefined
rules and variables, use ‘make -p -f /dev/null’. The data base output contains file
name and line number information for recipe and variable definitions, so it can be
a useful debugging tool in complex environments.

‘-q’
‘--question’

“Question mode”. Do not run any recipes, or print anything; just return an exit
status that is zero if the specified targets are already up to date, one if any remaking
is required, or two if an error is encountered. See Section 9.3 [Instead of Executing
Recipes], page 89.

‘-r’
‘--no-builtin-rules’

Eliminate use of the built-in implicit rules (see Chapter 10 [Using Implicit Rules],
page 97). You can still define your own by writing pattern rules (see Section 10.5
[Defining and Redefining Pattern Rules], page 103). The ‘-r’ option also clears
out the default list of suffixes for suffix rules (see Section 10.7 [Old-Fashioned Suf-
fix Rules], page 110). But you can still define your own suffixes with a rule for
.SUFFIXES, and then define your own suffix rules. Note that only rules are affected
by the -r option; default variables remain in effect (see Section 10.3 [Variables Used
by Implicit Rules], page 101); see the ‘-R’ option below.

‘-R’
‘--no-builtin-variables’

Eliminate use of the built-in rule-specific variables (see Section 10.3 [Variables Used
by Implicit Rules], page 101). You can still define your own, of course. The ‘-R’
option also automatically enables the ‘-r’ option (see above), since it doesn’t make
sense to have implicit rules without any definitions for the variables that they use.

Chapter 9: How to Run make 95

‘-s’
‘--silent’
‘--quiet’

Silent operation; do not print the recipes as they are executed. See Section 5.2
[Recipe Echoing], page 39.

‘-S’
‘--no-keep-going’
‘--stop’

Cancel the effect of the ‘-k’ option. This is never necessary except in a recursive
make where ‘-k’ might be inherited from the top-level make via MAKEFLAGS (see
Section 5.7 [Recursive Use of make], page 45) or if you set ‘-k’ in MAKEFLAGS in your
environment.

‘-t’
‘--touch’

Touch files (mark them up to date without really changing them) instead of running
their recipes. This is used to pretend that the recipes were done, in order to fool
future invocations of make. See Section 9.3 [Instead of Executing Recipes], page 89.

‘--trace’ Show tracing information for make execution. Prints the entire recipe to be executed,
even for recipes that are normally silent (due to .SILENT or ‘@’). Also prints the
makefile name and line number where the recipe was defined, and information on
why the target is being rebuilt.

‘-v’
‘--version’

Print the version of the make program plus a copyright, a list of authors, and a
notice that there is no warranty; then exit.

‘-w’
‘--print-directory’

Print a message containing the working directory both before and after executing
the makefile. This may be useful for tracking down errors from complicated nests
of recursive make commands. See Section 5.7 [Recursive Use of make], page 45. (In
practice, you rarely need to specify this option since ‘make’ does it for you; see
Section 5.7.4 [The ‘--print-directory’ Option], page 50.)

‘--no-print-directory’
Disable printing of the working directory under -w. This option is useful when -w

is turned on automatically, but you do not want to see the extra messages. See
Section 5.7.4 [The ‘--print-directory’ Option], page 50.

‘-W file’
‘--what-if=file’
‘--new-file=file’
‘--assume-new=file’

Pretend that the target file has just been modified. When used with the ‘-n’ flag,
this shows you what would happen if you were to modify that file. Without ‘-n’,
it is almost the same as running a touch command on the given file before running
make, except that the modification time is changed only in the imagination of make.
See Section 9.3 [Instead of Executing Recipes], page 89.

‘--warn-undefined-variables’
Issue a warning message whenever make sees a reference to an undefined variable.
This can be helpful when you are trying to debug makefiles which use variables in
complex ways.

97

10 Using Implicit Rules

Certain standard ways of remaking target files are used very often. For example, one customary
way to make an object file is from a C source file using the C compiler, cc.

Implicit rules tell make how to use customary techniques so that you do not have to specify
them in detail when you want to use them. For example, there is an implicit rule for C compi-
lation. File names determine which implicit rules are run. For example, C compilation typically
takes a .c file and makes a .o file. So make applies the implicit rule for C compilation when it
sees this combination of file name endings.

A chain of implicit rules can apply in sequence; for example, make will remake a .o file from
a .y file by way of a .c file. See Section 10.4 [Chains of Implicit Rules], page 103.

The built-in implicit rules use several variables in their recipes so that, by changing the
values of the variables, you can change the way the implicit rule works. For example, the
variable CFLAGS controls the flags given to the C compiler by the implicit rule for C compilation.
See Section 10.3 [Variables Used by Implicit Rules], page 101.

You can define your own implicit rules by writing pattern rules. See Section 10.5 [Defining
and Redefining Pattern Rules], page 103.

Suffix rules are a more limited way to define implicit rules. Pattern rules are more general
and clearer, but suffix rules are retained for compatibility. See Section 10.7 [Old-Fashioned
Suffix Rules], page 110.

10.1 Using Implicit Rules

To allow make to find a customary method for updating a target file, all you have to do is refrain
from specifying recipes yourself. Either write a rule with no recipe, or don’t write a rule at all.
Then make will figure out which implicit rule to use based on which kind of source file exists or
can be made.

For example, suppose the makefile looks like this:

foo : foo.o bar.o

cc -o foo foo.o bar.o $(CFLAGS) $(LDFLAGS)

Because you mention foo.o but do not give a rule for it, make will automatically look for an
implicit rule that tells how to update it. This happens whether or not the file foo.o currently
exists.

If an implicit rule is found, it can supply both a recipe and one or more prerequisites (the
source files). You would want to write a rule for foo.o with no recipe if you need to specify
additional prerequisites, such as header files, that the implicit rule cannot supply.

Each implicit rule has a target pattern and prerequisite patterns. There may be many implicit
rules with the same target pattern. For example, numerous rules make ‘.o’ files: one, from a
‘.c’ file with the C compiler; another, from a ‘.p’ file with the Pascal compiler; and so on. The
rule that actually applies is the one whose prerequisites exist or can be made. So, if you have a
file foo.c, make will run the C compiler; otherwise, if you have a file foo.p, make will run the
Pascal compiler; and so on.

Of course, when you write the makefile, you know which implicit rule you want make to use,
and you know it will choose that one because you know which possible prerequisite files are
supposed to exist. See Section 10.2 [Catalogue of Built-In Rules], page 98, for a catalogue of all
the predefined implicit rules.

Above, we said an implicit rule applies if the required prerequisites “exist or can be made”.
A file “can be made” if it is mentioned explicitly in the makefile as a target or a prerequisite, or
if an implicit rule can be recursively found for how to make it. When an implicit prerequisite is

98 GNU make

the result of another implicit rule, we say that chaining is occurring. See Section 10.4 [Chains
of Implicit Rules], page 103.

In general, make searches for an implicit rule for each target, and for each double-colon rule,
that has no recipe. A file that is mentioned only as a prerequisite is considered a target whose
rule specifies nothing, so implicit rule search happens for it. See Section 10.8 [Implicit Rule
Search Algorithm], page 111, for the details of how the search is done.

Note that explicit prerequisites do not influence implicit rule search. For example, consider
this explicit rule:

foo.o: foo.p

The prerequisite on foo.p does not necessarily mean that make will remake foo.o according to
the implicit rule to make an object file, a .o file, from a Pascal source file, a .p file. For example,
if foo.c also exists, the implicit rule to make an object file from a C source file is used instead,
because it appears before the Pascal rule in the list of predefined implicit rules (see Section 10.2
[Catalogue of Built-In Rules], page 98).

If you do not want an implicit rule to be used for a target that has no recipe, you can give
that target an empty recipe by writing a semicolon (see Section 5.9 [Defining Empty Recipes],
page 51).

10.2 Catalogue of Built-In Rules

Here is a catalogue of predefined implicit rules which are always available unless the makefile
explicitly overrides or cancels them. See Section 10.5.6 [Canceling Implicit Rules], page 109,
for information on canceling or overriding an implicit rule. The ‘-r’ or ‘--no-builtin-rules’
option cancels all predefined rules.

This manual only documents the default rules available on POSIX-based operating systems.
Other operating systems, such as VMS, Windows, OS/2, etc. may have different sets of default
rules. To see the full list of default rules and variables available in your version of GNU make,
run ‘make -p’ in a directory with no makefile.

Not all of these rules will always be defined, even when the ‘-r’ option is not given. Many
of the predefined implicit rules are implemented in make as suffix rules, so which ones will be
defined depends on the suffix list (the list of prerequisites of the special target .SUFFIXES). The
default suffix list is: .out, .a, .ln, .o, .c, .cc, .C, .cpp, .p, .f, .F, .m, .r, .y, .l, .ym, .lm,
.s, .S, .mod, .sym, .def, .h, .info, .dvi, .tex, .texinfo, .texi, .txinfo, .w, .ch .web,
.sh, .elc, .el. All of the implicit rules described below whose prerequisites have one of these
suffixes are actually suffix rules. If you modify the suffix list, the only predefined suffix rules in
effect will be those named by one or two of the suffixes that are on the list you specify; rules
whose suffixes fail to be on the list are disabled. See Section 10.7 [Old-Fashioned Suffix Rules],
page 110, for full details on suffix rules.

Compiling C programs
n.o is made automatically from n.c with a recipe of the form ‘$(CC) $(CPPFLAGS)

$(CFLAGS) -c’.

Compiling C++ programs
n.o is made automatically from n.cc, n.cpp, or n.C with a recipe of the form
‘$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c’. We encourage you to use the suffix ‘.cc’
for C++ source files instead of ‘.C’.

Compiling Pascal programs
n.o is made automatically from n.p with the recipe ‘$(PC) $(PFLAGS) -c’.

Compiling Fortran and Ratfor programs
n.o is made automatically from n.r, n.F or n.f by running the Fortran compiler.
The precise recipe used is as follows:

Chapter 10: Using Implicit Rules 99

‘.f’ ‘$(FC) $(FFLAGS) -c’.

‘.F’ ‘$(FC) $(FFLAGS) $(CPPFLAGS) -c’.

‘.r’ ‘$(FC) $(FFLAGS) $(RFLAGS) -c’.

Preprocessing Fortran and Ratfor programs
n.f is made automatically from n.r or n.F. This rule runs just the preprocessor to
convert a Ratfor or preprocessable Fortran program into a strict Fortran program.
The precise recipe used is as follows:

‘.F’ ‘$(FC) $(CPPFLAGS) $(FFLAGS) -F’.

‘.r’ ‘$(FC) $(FFLAGS) $(RFLAGS) -F’.

Compiling Modula-2 programs
n.sym is made from n.def with a recipe of the form ‘$(M2C)
$(M2FLAGS) $(DEFFLAGS)’. n.o is made from n.mod; the form is:
‘$(M2C) $(M2FLAGS) $(MODFLAGS)’.

Assembling and preprocessing assembler programs
n.o is made automatically from n.s by running the assembler, as. The precise
recipe is ‘$(AS) $(ASFLAGS)’.

n.s is made automatically from n.S by running the C preprocessor, cpp. The precise
recipe is ‘$(CPP) $(CPPFLAGS)’.

Linking a single object file
n is made automatically from n.o by running the linker (usu-
ally called ld) via the C compiler. The precise recipe used is
‘$(CC) $(LDFLAGS) n.o $(LOADLIBES) $(LDLIBS)’.

This rule does the right thing for a simple program with only one source file. It will
also do the right thing if there are multiple object files (presumably coming from
various other source files), one of which has a name matching that of the executable
file. Thus,

x: y.o z.o

when x.c, y.c and z.c all exist will execute:

cc -c x.c -o x.o

cc -c y.c -o y.o

cc -c z.c -o z.o

cc x.o y.o z.o -o x

rm -f x.o

rm -f y.o

rm -f z.o

In more complicated cases, such as when there is no object file whose name derives
from the executable file name, you must write an explicit recipe for linking.

Each kind of file automatically made into ‘.o’ object files will be automatically
linked by using the compiler (‘$(CC)’, ‘$(FC)’ or ‘$(PC)’; the C compiler ‘$(CC)’ is
used to assemble ‘.s’ files) without the ‘-c’ option. This could be done by using the
‘.o’ object files as intermediates, but it is faster to do the compiling and linking in
one step, so that’s how it’s done.

Yacc for C programs
n.c is made automatically from n.y by running Yacc with the recipe ‘$(YACC)
$(YFLAGS)’.

100 GNU make

Lex for C programs
n.c is made automatically from n.l by running Lex. The actual recipe is ‘$(LEX)
$(LFLAGS)’.

Lex for Ratfor programs
n.r is made automatically from n.l by running Lex. The actual recipe is ‘$(LEX)
$(LFLAGS)’.

The convention of using the same suffix ‘.l’ for all Lex files regardless of whether
they produce C code or Ratfor code makes it impossible for make to determine
automatically which of the two languages you are using in any particular case. If
make is called upon to remake an object file from a ‘.l’ file, it must guess which
compiler to use. It will guess the C compiler, because that is more common. If you
are using Ratfor, make sure make knows this by mentioning n.r in the makefile.
Or, if you are using Ratfor exclusively, with no C files, remove ‘.c’ from the list of
implicit rule suffixes with:

.SUFFIXES:

.SUFFIXES: .o .r .f .l ...

Making Lint Libraries from C, Yacc, or Lex programs
n.ln is made from n.c by running lint. The precise recipe is
‘$(LINT) $(LINTFLAGS) $(CPPFLAGS) -i’. The same recipe is used on
the C code produced from n.y or n.l.

TEX and Web
n.dvi is made from n.tex with the recipe ‘$(TEX)’. n.tex is made from n.web

with ‘$(WEAVE)’, or from n.w (and from n.ch if it exists or can be made) with
‘$(CWEAVE)’. n.p is made from n.web with ‘$(TANGLE)’ and n.c is made from n.w

(and from n.ch if it exists or can be made) with ‘$(CTANGLE)’.

Texinfo and Info
n.dvi is made from n.texinfo, n.texi, or n.txinfo, with the recipe
‘$(TEXI2DVI) $(TEXI2DVI_FLAGS)’. n.info is made from n.texinfo, n.texi, or
n.txinfo, with the recipe ‘$(MAKEINFO) $(MAKEINFO_FLAGS)’.

RCS Any file n is extracted if necessary from an RCS file named either n,v or RCS/n,v.
The precise recipe used is ‘$(CO) $(COFLAGS)’. n will not be extracted from RCS if
it already exists, even if the RCS file is newer. The rules for RCS are terminal (see
Section 10.5.5 [Match-Anything Pattern Rules], page 108), so RCS files cannot be
generated from another source; they must actually exist.

SCCS Any file n is extracted if necessary from an SCCS file named either s.n or SCCS/s.n.
The precise recipe used is ‘$(GET) $(GFLAGS)’. The rules for SCCS are terminal
(see Section 10.5.5 [Match-Anything Pattern Rules], page 108), so SCCS files cannot
be generated from another source; they must actually exist.

For the benefit of SCCS, a file n is copied from n.sh and made executable (by
everyone). This is for shell scripts that are checked into SCCS. Since RCS preserves
the execution permission of a file, you do not need to use this feature with RCS.

We recommend that you avoid using of SCCS. RCS is widely held to be superior,
and is also free. By choosing free software in place of comparable (or inferior)
proprietary software, you support the free software movement.

Usually, you want to change only the variables listed in the table above, which are documented
in the following section.

However, the recipes in built-in implicit rules actually use variables such as COMPILE.c,
LINK.p, and PREPROCESS.S, whose values contain the recipes listed above.

Chapter 10: Using Implicit Rules 101

make follows the convention that the rule to compile a .x source file uses the variable
COMPILE.x. Similarly, the rule to produce an executable from a .x file uses LINK.x; and the
rule to preprocess a .x file uses PREPROCESS.x.

Every rule that produces an object file uses the variable OUTPUT_OPTION. make defines this
variable either to contain ‘-o $@’, or to be empty, depending on a compile-time option. You
need the ‘-o’ option to ensure that the output goes into the right file when the source file
is in a different directory, as when using VPATH (see Section 4.4 [Directory Search], page 22).
However, compilers on some systems do not accept a ‘-o’ switch for object files. If you use such
a system, and use VPATH, some compilations will put their output in the wrong place. A possible
workaround for this problem is to give OUTPUT_OPTION the value ‘; mv $*.o $@’.

10.3 Variables Used by Implicit Rules

The recipes in built-in implicit rules make liberal use of certain predefined variables. You can
alter the values of these variables in the makefile, with arguments to make, or in the environment
to alter how the implicit rules work without redefining the rules themselves. You can cancel all
variables used by implicit rules with the ‘-R’ or ‘--no-builtin-variables’ option.

For example, the recipe used to compile a C source file actually says ‘$(CC) -c $(CFLAGS)

$(CPPFLAGS)’. The default values of the variables used are ‘cc’ and nothing, resulting in the
command ‘cc -c’. By redefining ‘CC’ to ‘ncc’, you could cause ‘ncc’ to be used for all C
compilations performed by the implicit rule. By redefining ‘CFLAGS’ to be ‘-g’, you could pass
the ‘-g’ option to each compilation. All implicit rules that do C compilation use ‘$(CC)’ to get
the program name for the compiler and all include ‘$(CFLAGS)’ among the arguments given to
the compiler.

The variables used in implicit rules fall into two classes: those that are names of programs
(like CC) and those that contain arguments for the programs (like CFLAGS). (The “name of
a program” may also contain some command arguments, but it must start with an actual
executable program name.) If a variable value contains more than one argument, separate them
with spaces.

The following tables describe of some of the more commonly-used predefined variables. This
list is not exhaustive, and the default values shown here may not be what make selects for your
environment. To see the complete list of predefined variables for your instance of GNU make

you can run ‘make -p’ in a directory with no makefiles.

Here is a table of some of the more common variables used as names of programs in built-in
rules:

AR Archive-maintaining program; default ‘ar’.

AS Program for compiling assembly files; default ‘as’.

CC Program for compiling C programs; default ‘cc’.

CXX Program for compiling C++ programs; default ‘g++’.

CPP Program for running the C preprocessor, with results to standard output; default
‘$(CC) -E’.

FC Program for compiling or preprocessing Fortran and Ratfor programs; default ‘f77’.

M2C Program to use to compile Modula-2 source code; default ‘m2c’.

PC Program for compiling Pascal programs; default ‘pc’.

CO Program for extracting a file from RCS; default ‘co’.

GET Program for extracting a file from SCCS; default ‘get’.

102 GNU make

LEX Program to use to turn Lex grammars into source code; default ‘lex’.

YACC Program to use to turn Yacc grammars into source code; default ‘yacc’.

LINT Program to use to run lint on source code; default ‘lint’.

MAKEINFO Program to convert a Texinfo source file into an Info file; default ‘makeinfo’.

TEX Program to make TEX dvi files from TEX source; default ‘tex’.

TEXI2DVI Program to make TEX dvi files from Texinfo source; default ‘texi2dvi’.

WEAVE Program to translate Web into TEX; default ‘weave’.

CWEAVE Program to translate C Web into TEX; default ‘cweave’.

TANGLE Program to translate Web into Pascal; default ‘tangle’.

CTANGLE Program to translate C Web into C; default ‘ctangle’.

RM Command to remove a file; default ‘rm -f’.

Here is a table of variables whose values are additional arguments for the programs above.
The default values for all of these is the empty string, unless otherwise noted.

ARFLAGS Flags to give the archive-maintaining program; default ‘rv’.

ASFLAGS Extra flags to give to the assembler (when explicitly invoked on a ‘.s’ or ‘.S’ file).

CFLAGS Extra flags to give to the C compiler.

CXXFLAGS Extra flags to give to the C++ compiler.

COFLAGS Extra flags to give to the RCS co program.

CPPFLAGS Extra flags to give to the C preprocessor and programs that use it (the C and Fortran
compilers).

FFLAGS Extra flags to give to the Fortran compiler.

GFLAGS Extra flags to give to the SCCS get program.

LDFLAGS Extra flags to give to compilers when they are supposed to invoke the linker, ‘ld’,
such as -L. Libraries (-lfoo) should be added to the LDLIBS variable instead.

LDLIBS Library flags or names given to compilers when they are supposed to invoke the
linker, ‘ld’. LOADLIBES is a deprecated (but still supported) alternative to LDLIBS.
Non-library linker flags, such as -L, should go in the LDFLAGS variable.

LFLAGS Extra flags to give to Lex.

YFLAGS Extra flags to give to Yacc.

PFLAGS Extra flags to give to the Pascal compiler.

RFLAGS Extra flags to give to the Fortran compiler for Ratfor programs.

LINTFLAGS

Extra flags to give to lint.

Chapter 10: Using Implicit Rules 103

10.4 Chains of Implicit Rules

Sometimes a file can be made by a sequence of implicit rules. For example, a file n.o could be
made from n.y by running first Yacc and then cc. Such a sequence is called a chain.

If the file n.c exists, or is mentioned in the makefile, no special searching is required: make
finds that the object file can be made by C compilation from n.c; later on, when considering
how to make n.c, the rule for running Yacc is used. Ultimately both n.c and n.o are updated.

However, even if n.c does not exist and is not mentioned, make knows how to envision it as
the missing link between n.o and n.y! In this case, n.c is called an intermediate file. Once
make has decided to use the intermediate file, it is entered in the data base as if it had been
mentioned in the makefile, along with the implicit rule that says how to create it.

Intermediate files are remade using their rules just like all other files. But intermediate files
are treated differently in two ways.

The first difference is what happens if the intermediate file does not exist. If an ordinary
file b does not exist, and make considers a target that depends on b, it invariably creates b and
then updates the target from b. But if b is an intermediate file, then make can leave well enough
alone. It won’t bother updating b, or the ultimate target, unless some prerequisite of b is newer
than that target or there is some other reason to update that target.

The second difference is that if make does create b in order to update something else, it
deletes b later on after it is no longer needed. Therefore, an intermediate file which did not exist
before make also does not exist after make. make reports the deletion to you by printing a ‘rm
-f’ command showing which file it is deleting.

Ordinarily, a file cannot be intermediate if it is mentioned in the makefile as a target or
prerequisite. However, you can explicitly mark a file as intermediate by listing it as a prerequisite
of the special target .INTERMEDIATE. This takes effect even if the file is mentioned explicitly in
some other way.

You can prevent automatic deletion of an intermediate file by marking it as a secondary
file. To do this, list it as a prerequisite of the special target .SECONDARY. When a file is
secondary, make will not create the file merely because it does not already exist, but make does
not automatically delete the file. Marking a file as secondary also marks it as intermediate.

You can list the target pattern of an implicit rule (such as ‘%.o’) as a prerequisite of the
special target .PRECIOUS to preserve intermediate files made by implicit rules whose target
patterns match that file’s name; see Section 5.6 [Interrupts], page 45.

A chain can involve more than two implicit rules. For example, it is possible to make a
file foo from RCS/foo.y,v by running RCS, Yacc and cc. Then both foo.y and foo.c are
intermediate files that are deleted at the end.

No single implicit rule can appear more than once in a chain. This means that make will not
even consider such a ridiculous thing as making foo from foo.o.o by running the linker twice.
This constraint has the added benefit of preventing any infinite loop in the search for an implicit
rule chain.

There are some special implicit rules to optimize certain cases that would otherwise be
handled by rule chains. For example, making foo from foo.c could be handled by compiling
and linking with separate chained rules, using foo.o as an intermediate file. But what actually
happens is that a special rule for this case does the compilation and linking with a single cc

command. The optimized rule is used in preference to the step-by-step chain because it comes
earlier in the ordering of rules.

10.5 Defining and Redefining Pattern Rules

You define an implicit rule by writing a pattern rule. A pattern rule looks like an ordinary
rule, except that its target contains the character ‘%’ (exactly one of them). The target is

104 GNU make

considered a pattern for matching file names; the ‘%’ can match any nonempty substring, while
other characters match only themselves. The prerequisites likewise use ‘%’ to show how their
names relate to the target name.

Thus, a pattern rule ‘%.o : %.c’ says how to make any file stem.o from another file stem.c.

Note that expansion using ‘%’ in pattern rules occurs after any variable or function expansions,
which take place when the makefile is read. See Chapter 6 [How to Use Variables], page 53, and
Chapter 8 [Functions for Transforming Text], page 73.

10.5.1 Introduction to Pattern Rules

A pattern rule contains the character ‘%’ (exactly one of them) in the target; otherwise, it looks
exactly like an ordinary rule. The target is a pattern for matching file names; the ‘%’ matches
any nonempty substring, while other characters match only themselves.

For example, ‘%.c’ as a pattern matches any file name that ends in ‘.c’. ‘s.%.c’ as a pattern
matches any file name that starts with ‘s.’, ends in ‘.c’ and is at least five characters long.
(There must be at least one character to match the ‘%’.) The substring that the ‘%’ matches is
called the stem.

‘%’ in a prerequisite of a pattern rule stands for the same stem that was matched by the ‘%’
in the target. In order for the pattern rule to apply, its target pattern must match the file name
under consideration and all of its prerequisites (after pattern substitution) must name files that
exist or can be made. These files become prerequisites of the target.

Thus, a rule of the form

%.o : %.c ; recipe...

specifies how to make a file n.o, with another file n.c as its prerequisite, provided that n.c

exists or can be made.

There may also be prerequisites that do not use ‘%’; such a prerequisite attaches to every file
made by this pattern rule. These unvarying prerequisites are useful occasionally.

A pattern rule need not have any prerequisites that contain ‘%’, or in fact any prerequisites
at all. Such a rule is effectively a general wildcard. It provides a way to make any file that
matches the target pattern. See Section 10.6 [Last Resort], page 109.

More than one pattern rule may match a target. In this case make will choose the “best fit”
rule. See Section 10.5.4 [How Patterns Match], page 107.

Pattern rules may have more than one target. Unlike normal rules, this does not act as many
different rules with the same prerequisites and recipe. If a pattern rule has multiple targets,
make knows that the rule’s recipe is responsible for making all of the targets. The recipe is
executed only once to make all the targets. When searching for a pattern rule to match a target,
the target patterns of a rule other than the one that matches the target in need of a rule are
incidental: make worries only about giving a recipe and prerequisites to the file presently in
question. However, when this file’s recipe is run, the other targets are marked as having been
updated themselves.

10.5.2 Pattern Rule Examples

Here are some examples of pattern rules actually predefined in make. First, the rule that compiles
‘.c’ files into ‘.o’ files:

%.o : %.c

$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

defines a rule that can make any file x.o from x.c. The recipe uses the automatic variables ‘$@’
and ‘$<’ to substitute the names of the target file and the source file in each case where the rule
applies (see Section 10.5.3 [Automatic Variables], page 105).

Chapter 10: Using Implicit Rules 105

Here is a second built-in rule:

% :: RCS/%,v

$(CO) $(COFLAGS) $<

defines a rule that can make any file x whatsoever from a corresponding file x,v in the sub-
directory RCS. Since the target is ‘%’, this rule will apply to any file whatever, provided the
appropriate prerequisite file exists. The double colon makes the rule terminal, which means that
its prerequisite may not be an intermediate file (see Section 10.5.5 [Match-Anything Pattern
Rules], page 108).

This pattern rule has two targets:

%.tab.c %.tab.h: %.y

bison -d $<

This tells make that the recipe ‘bison -d x.y’ will make both x.tab.c and x.tab.h. If the
file foo depends on the files parse.tab.o and scan.o and the file scan.o depends on the file
parse.tab.h, when parse.y is changed, the recipe ‘bison -d parse.y’ will be executed only
once, and the prerequisites of both parse.tab.o and scan.o will be satisfied. (Presumably the
file parse.tab.o will be recompiled from parse.tab.c and the file scan.o from scan.c, while
foo is linked from parse.tab.o, scan.o, and its other prerequisites, and it will execute happily
ever after.)

10.5.3 Automatic Variables

Suppose you are writing a pattern rule to compile a ‘.c’ file into a ‘.o’ file: how do you write
the ‘cc’ command so that it operates on the right source file name? You cannot write the name
in the recipe, because the name is different each time the implicit rule is applied.

What you do is use a special feature of make, the automatic variables. These variables have
values computed afresh for each rule that is executed, based on the target and prerequisites of
the rule. In this example, you would use ‘$@’ for the object file name and ‘$<’ for the source file
name.

It’s very important that you recognize the limited scope in which automatic variable values
are available: they only have values within the recipe. In particular, you cannot use them
anywhere within the target list of a rule; they have no value there and will expand to the empty
string. Also, they cannot be accessed directly within the prerequisite list of a rule. A common
mistake is attempting to use $@ within the prerequisites list; this will not work. However, there
is a special feature of GNU make, secondary expansion (see Section 3.8 [Secondary Expansion],
page 15), which will allow automatic variable values to be used in prerequisite lists.

Here is a table of automatic variables:

$@ The file name of the target of the rule. If the target is an archive member, then
‘$@’ is the name of the archive file. In a pattern rule that has multiple targets
(see Section 10.5.1 [Introduction to Pattern Rules], page 104), ‘$@’ is the name of
whichever target caused the rule’s recipe to be run.

$% The target member name, when the target is an archive member. See Chapter 11
[Archives], page 113. For example, if the target is foo.a(bar.o) then ‘$%’ is bar.o
and ‘$@’ is foo.a. ‘$%’ is empty when the target is not an archive member.

$< The name of the first prerequisite. If the target got its recipe from an implicit rule,
this will be the first prerequisite added by the implicit rule (see Chapter 10 [Implicit
Rules], page 97).

$? The names of all the prerequisites that are newer than the target, with spaces be-
tween them. For prerequisites which are archive members, only the named member
is used (see Chapter 11 [Archives], page 113).

106 GNU make

$^ The names of all the prerequisites, with spaces between them. For prerequisites
which are archive members, only the named member is used (see Chapter 11
[Archives], page 113). A target has only one prerequisite on each other file it de-
pends on, no matter how many times each file is listed as a prerequisite. So if you
list a prerequisite more than once for a target, the value of $^ contains just one copy
of the name. This list does not contain any of the order-only prerequisites; for those
see the ‘$|’ variable, below.

$+ This is like ‘$^’, but prerequisites listed more than once are duplicated in the order
they were listed in the makefile. This is primarily useful for use in linking commands
where it is meaningful to repeat library file names in a particular order.

$| The names of all the order-only prerequisites, with spaces between them.

$* The stem with which an implicit rule matches (see Section 10.5.4 [How Patterns
Match], page 107). If the target is dir/a.foo.b and the target pattern is a.%.b

then the stem is dir/foo. The stem is useful for constructing names of related files.

In a static pattern rule, the stem is part of the file name that matched the ‘%’ in the
target pattern.

In an explicit rule, there is no stem; so ‘$*’ cannot be determined in that way.
Instead, if the target name ends with a recognized suffix (see Section 10.7 [Old-
Fashioned Suffix Rules], page 110), ‘$*’ is set to the target name minus the suffix.
For example, if the target name is ‘foo.c’, then ‘$*’ is set to ‘foo’, since ‘.c’
is a suffix. GNU make does this bizarre thing only for compatibility with other
implementations of make. You should generally avoid using ‘$*’ except in implicit
rules or static pattern rules.

If the target name in an explicit rule does not end with a recognized suffix, ‘$*’ is
set to the empty string for that rule.

‘$?’ is useful even in explicit rules when you wish to operate on only the prerequisites that
have changed. For example, suppose that an archive named lib is supposed to contain copies
of several object files. This rule copies just the changed object files into the archive:

lib: foo.o bar.o lose.o win.o

ar r lib $?

Of the variables listed above, four have values that are single file names, and three have values
that are lists of file names. These seven have variants that get just the file’s directory name or
just the file name within the directory. The variant variables’ names are formed by appending
‘D’ or ‘F’, respectively. These variants are semi-obsolete in GNU make since the functions dir
and notdir can be used to get a similar effect (see Section 8.3 [Functions for File Names],
page 76). Note, however, that the ‘D’ variants all omit the trailing slash which always appears
in the output of the dir function. Here is a table of the variants:

‘$(@D)’ The directory part of the file name of the target, with the trailing slash removed. If
the value of ‘$@’ is dir/foo.o then ‘$(@D)’ is dir. This value is . if ‘$@’ does not
contain a slash.

‘$(@F)’ The file-within-directory part of the file name of the target. If the value of ‘$@’ is
dir/foo.o then ‘$(@F)’ is foo.o. ‘$(@F)’ is equivalent to ‘$(notdir $@)’.

‘$(*D)’
‘$(*F)’ The directory part and the file-within-directory part of the stem; dir and foo in

this example.

‘$(%D)’
‘$(%F)’ The directory part and the file-within-directory part of the target archive mem-

ber name. This makes sense only for archive member targets of the form

Chapter 10: Using Implicit Rules 107

archive(member) and is useful only when member may contain a directory name.
(See Section 11.1 [Archive Members as Targets], page 113.)

‘$(<D)’
‘$(<F)’ The directory part and the file-within-directory part of the first prerequisite.

‘$(^D)’
‘$(^F)’ Lists of the directory parts and the file-within-directory parts of all prerequisites.

‘$(+D)’
‘$(+F)’ Lists of the directory parts and the file-within-directory parts of all prerequisites,

including multiple instances of duplicated prerequisites.

‘$(?D)’
‘$(?F)’ Lists of the directory parts and the file-within-directory parts of all prerequisites

that are newer than the target.

Note that we use a special stylistic convention when we talk about these automatic variables;
we write “the value of ‘$<’”, rather than “the variable <” as we would write for ordinary variables
such as objects and CFLAGS. We think this convention looks more natural in this special case.
Please do not assume it has a deep significance; ‘$<’ refers to the variable named < just as
‘$(CFLAGS)’ refers to the variable named CFLAGS. You could just as well use ‘$(<)’ in place of
‘$<’.

10.5.4 How Patterns Match

A target pattern is composed of a ‘%’ between a prefix and a suffix, either or both of which may
be empty. The pattern matches a file name only if the file name starts with the prefix and ends
with the suffix, without overlap. The text between the prefix and the suffix is called the stem.
Thus, when the pattern ‘%.o’ matches the file name test.o, the stem is ‘test’. The pattern
rule prerequisites are turned into actual file names by substituting the stem for the character ‘%’.
Thus, if in the same example one of the prerequisites is written as ‘%.c’, it expands to ‘test.c’.

When the target pattern does not contain a slash (and it usually does not), directory names
in the file names are removed from the file name before it is compared with the target prefix
and suffix. After the comparison of the file name to the target pattern, the directory names,
along with the slash that ends them, are added on to the prerequisite file names generated from
the pattern rule’s prerequisite patterns and the file name. The directories are ignored only for
the purpose of finding an implicit rule to use, not in the application of that rule. Thus, ‘e%t’
matches the file name src/eat, with ‘src/a’ as the stem. When prerequisites are turned into
file names, the directories from the stem are added at the front, while the rest of the stem is
substituted for the ‘%’. The stem ‘src/a’ with a prerequisite pattern ‘c%r’ gives the file name
src/car.

A pattern rule can be used to build a given file only if there is a target pattern that matches
the file name, and all prerequisites in that rule either exist or can be built. The rules you write
take precedence over those that are built in. Note however, that a rule whose prerequisites
actually exist or are mentioned always takes priority over a rule with prerequisites that must be
made by chaining other implicit rules.

It is possible that more than one pattern rule will meet these criteria. In that case, make will
choose the rule with the shortest stem (that is, the pattern that matches most specifically). If
more than one pattern rule has the shortest stem, make will choose the first one found in the
makefile.

This algorithm results in more specific rules being preferred over more generic ones; for
example:

%.o: %.c

108 GNU make

$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

%.o : %.f

$(COMPILE.F) $(OUTPUT_OPTION) $<

lib/%.o: lib/%.c

$(CC) -fPIC -c $(CFLAGS) $(CPPFLAGS) $< -o $@

Given these rules and asked to build bar.o where both bar.c and bar.f exist, make will
choose the first rule and compile bar.c into bar.o. In the same situation where bar.c does not
exist, then make will choose the second rule and compile bar.f into bar.o.

If make is asked to build lib/bar.o and both lib/bar.c and lib/bar.f exist, then the third
rule will be chosen since the stem for this rule (‘bar’) is shorter than the stem for the first rule
(‘lib/bar’). If lib/bar.c does not exist then the third rule is not eligible and the second rule
will be used, even though the stem is longer.

10.5.5 Match-Anything Pattern Rules

When a pattern rule’s target is just ‘%’, it matches any file name whatever. We call these rules
match-anything rules. They are very useful, but it can take a lot of time for make to think about
them, because it must consider every such rule for each file name listed either as a target or as
a prerequisite.

Suppose the makefile mentions foo.c. For this target, make would have to consider making
it by linking an object file foo.c.o, or by C compilation-and-linking in one step from foo.c.c,
or by Pascal compilation-and-linking from foo.c.p, and many other possibilities.

We know these possibilities are ridiculous since foo.c is a C source file, not an executable.
If make did consider these possibilities, it would ultimately reject them, because files such as
foo.c.o and foo.c.p would not exist. But these possibilities are so numerous that make would
run very slowly if it had to consider them.

To gain speed, we have put various constraints on the way make considers match-anything
rules. There are two different constraints that can be applied, and each time you define a
match-anything rule you must choose one or the other for that rule.

One choice is to mark the match-anything rule as terminal by defining it with a double colon.
When a rule is terminal, it does not apply unless its prerequisites actually exist. Prerequisites
that could be made with other implicit rules are not good enough. In other words, no further
chaining is allowed beyond a terminal rule.

For example, the built-in implicit rules for extracting sources from RCS and SCCS files are
terminal; as a result, if the file foo.c,v does not exist, make will not even consider trying to make
it as an intermediate file from foo.c,v.o or from RCS/SCCS/s.foo.c,v. RCS and SCCS files
are generally ultimate source files, which should not be remade from any other files; therefore,
make can save time by not looking for ways to remake them.

If you do not mark the match-anything rule as terminal, then it is non-terminal. A non-
terminal match-anything rule cannot apply to a file name that indicates a specific type of data.
A file name indicates a specific type of data if some non-match-anything implicit rule target
matches it.

For example, the file name foo.c matches the target for the pattern rule ‘%.c : %.y’ (the
rule to run Yacc). Regardless of whether this rule is actually applicable (which happens only if
there is a file foo.y), the fact that its target matches is enough to prevent consideration of any
non-terminal match-anything rules for the file foo.c. Thus, make will not even consider trying
to make foo.c as an executable file from foo.c.o, foo.c.c, foo.c.p, etc.

Chapter 10: Using Implicit Rules 109

The motivation for this constraint is that non-terminal match-anything rules are used for
making files containing specific types of data (such as executable files) and a file name with a
recognized suffix indicates some other specific type of data (such as a C source file).

Special built-in dummy pattern rules are provided solely to recognize certain file names so
that non-terminal match-anything rules will not be considered. These dummy rules have no
prerequisites and no recipes, and they are ignored for all other purposes. For example, the
built-in implicit rule

%.p :

exists to make sure that Pascal source files such as foo.p match a specific target pattern and
thereby prevent time from being wasted looking for foo.p.o or foo.p.c.

Dummy pattern rules such as the one for ‘%.p’ are made for every suffix listed as valid for
use in suffix rules (see Section 10.7 [Old-Fashioned Suffix Rules], page 110).

10.5.6 Canceling Implicit Rules

You can override a built-in implicit rule (or one you have defined yourself) by defining a new
pattern rule with the same target and prerequisites, but a different recipe. When the new rule
is defined, the built-in one is replaced. The new rule’s position in the sequence of implicit rules
is determined by where you write the new rule.

You can cancel a built-in implicit rule by defining a pattern rule with the same target and
prerequisites, but no recipe. For example, the following would cancel the rule that runs the
assembler:

%.o : %.s

10.6 Defining Last-Resort Default Rules

You can define a last-resort implicit rule by writing a terminal match-anything pattern rule with
no prerequisites (see Section 10.5.5 [Match-Anything Rules], page 108). This is just like any
other pattern rule; the only thing special about it is that it will match any target. So such a
rule’s recipe is used for all targets and prerequisites that have no recipe of their own and for
which no other implicit rule applies.

For example, when testing a makefile, you might not care if the source files contain real data,
only that they exist. Then you might do this:

%::

touch $@

to cause all the source files needed (as prerequisites) to be created automatically.

You can instead define a recipe to be used for targets for which there are no rules at all, even
ones which don’t specify recipes. You do this by writing a rule for the target .DEFAULT. Such a
rule’s recipe is used for all prerequisites which do not appear as targets in any explicit rule, and
for which no implicit rule applies. Naturally, there is no .DEFAULT rule unless you write one.

If you use .DEFAULT with no recipe or prerequisites:

.DEFAULT:

the recipe previously stored for .DEFAULT is cleared. Then make acts as if you had never defined
.DEFAULT at all.

If you do not want a target to get the recipe from a match-anything pattern rule or .DEFAULT,
but you also do not want any recipe to be run for the target, you can give it an empty recipe
(see Section 5.9 [Defining Empty Recipes], page 51).

You can use a last-resort rule to override part of another makefile. See Section 3.6 [Overriding
Part of Another Makefile], page 13.

110 GNU make

10.7 Old-Fashioned Suffix Rules

Suffix rules are the old-fashioned way of defining implicit rules for make. Suffix rules are obsolete
because pattern rules are more general and clearer. They are supported in GNU make for
compatibility with old makefiles. They come in two kinds: double-suffix and single-suffix.

A double-suffix rule is defined by a pair of suffixes: the target suffix and the source suffix. It
matches any file whose name ends with the target suffix. The corresponding implicit prerequisite
is made by replacing the target suffix with the source suffix in the file name. A two-suffix rule
whose target and source suffixes are ‘.o’ and ‘.c’ is equivalent to the pattern rule ‘%.o : %.c’.

A single-suffix rule is defined by a single suffix, which is the source suffix. It matches any file
name, and the corresponding implicit prerequisite name is made by appending the source suffix.
A single-suffix rule whose source suffix is ‘.c’ is equivalent to the pattern rule ‘% : %.c’.

Suffix rule definitions are recognized by comparing each rule’s target against a defined list of
known suffixes. When make sees a rule whose target is a known suffix, this rule is considered a
single-suffix rule. When make sees a rule whose target is two known suffixes concatenated, this
rule is taken as a double-suffix rule.

For example, ‘.c’ and ‘.o’ are both on the default list of known suffixes. Therefore, if you
define a rule whose target is ‘.c.o’, make takes it to be a double-suffix rule with source suffix
‘.c’ and target suffix ‘.o’. Here is the old-fashioned way to define the rule for compiling a C
source file:

.c.o:

$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

Suffix rules cannot have any prerequisites of their own. If they have any, they are treated as
normal files with funny names, not as suffix rules. Thus, the rule:

.c.o: foo.h

$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

tells how to make the file .c.o from the prerequisite file foo.h, and is not at all like the pattern
rule:

%.o: %.c foo.h

$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

which tells how to make ‘.o’ files from ‘.c’ files, and makes all ‘.o’ files using this pattern rule
also depend on foo.h.

Suffix rules with no recipe are also meaningless. They do not remove previous rules as do
pattern rules with no recipe (see Section 10.5.6 [Canceling Implicit Rules], page 109). They
simply enter the suffix or pair of suffixes concatenated as a target in the data base.

The known suffixes are simply the names of the prerequisites of the special target .SUFFIXES.
You can add your own suffixes by writing a rule for .SUFFIXES that adds more prerequisites, as
in:

.SUFFIXES: .hack .win

which adds ‘.hack’ and ‘.win’ to the end of the list of suffixes.

If you wish to eliminate the default known suffixes instead of just adding to them, write a
rule for .SUFFIXES with no prerequisites. By special dispensation, this eliminates all existing
prerequisites of .SUFFIXES. You can then write another rule to add the suffixes you want. For
example,

.SUFFIXES: # Delete the default suffixes

.SUFFIXES: .c .o .h # Define our suffix list

The ‘-r’ or ‘--no-builtin-rules’ flag causes the default list of suffixes to be empty.

Chapter 10: Using Implicit Rules 111

The variable SUFFIXES is defined to the default list of suffixes before make reads any makefiles.
You can change the list of suffixes with a rule for the special target .SUFFIXES, but that does
not alter this variable.

10.8 Implicit Rule Search Algorithm

Here is the procedure make uses for searching for an implicit rule for a target t. This procedure
is followed for each double-colon rule with no recipe, for each target of ordinary rules none of
which have a recipe, and for each prerequisite that is not the target of any rule. It is also followed
recursively for prerequisites that come from implicit rules, in the search for a chain of rules.

Suffix rules are not mentioned in this algorithm because suffix rules are converted to equiva-
lent pattern rules once the makefiles have been read in.

For an archive member target of the form ‘archive(member)’, the following algorithm is run
twice, first using the entire target name t, and second using ‘(member)’ as the target t if the
first run found no rule.

1. Split t into a directory part, called d, and the rest, called n. For example, if t is ‘src/foo.o’,
then d is ‘src/’ and n is ‘foo.o’.

2. Make a list of all the pattern rules one of whose targets matches t or n. If the target pattern
contains a slash, it is matched against t; otherwise, against n.

3. If any rule in that list is not a match-anything rule, then remove all non-terminal match-
anything rules from the list.

4. Remove from the list all rules with no recipe.

5. For each pattern rule in the list:

a. Find the stem s, which is the nonempty part of t or n matched by the ‘%’ in the target
pattern.

b. Compute the prerequisite names by substituting s for ‘%’; if the target pattern does
not contain a slash, append d to the front of each prerequisite name.

c. Test whether all the prerequisites exist or ought to exist. (If a file name is mentioned
in the makefile as a target or as an explicit prerequisite, then we say it ought to exist.)

If all prerequisites exist or ought to exist, or there are no prerequisites, then this rule
applies.

6. If no pattern rule has been found so far, try harder. For each pattern rule in the list:

a. If the rule is terminal, ignore it and go on to the next rule.

b. Compute the prerequisite names as before.

c. Test whether all the prerequisites exist or ought to exist.

d. For each prerequisite that does not exist, follow this algorithm recursively to see if the
prerequisite can be made by an implicit rule.

e. If all prerequisites exist, ought to exist, or can be made by implicit rules, then this rule
applies.

7. If no implicit rule applies, the rule for .DEFAULT, if any, applies. In that case, give t the
same recipe that .DEFAULT has. Otherwise, there is no recipe for t.

Once a rule that applies has been found, for each target pattern of the rule other than the
one that matched t or n, the ‘%’ in the pattern is replaced with s and the resultant file name is
stored until the recipe to remake the target file t is executed. After the recipe is executed, each
of these stored file names are entered into the data base and marked as having been updated
and having the same update status as the file t.

When the recipe of a pattern rule is executed for t, the automatic variables are set corre-
sponding to the target and prerequisites. See Section 10.5.3 [Automatic Variables], page 105.

113

11 Using make to Update Archive Files

Archive files are files containing named sub-files called members; they are maintained with the
program ar and their main use is as subroutine libraries for linking.

11.1 Archive Members as Targets

An individual member of an archive file can be used as a target or prerequisite in make. You
specify the member named member in archive file archive as follows:

archive(member)

This construct is available only in targets and prerequisites, not in recipes! Most programs that
you might use in recipes do not support this syntax and cannot act directly on archive members.
Only ar and other programs specifically designed to operate on archives can do so. Therefore,
valid recipes to update an archive member target probably must use ar. For example, this rule
says to create a member hack.o in archive foolib by copying the file hack.o:

foolib(hack.o) : hack.o

ar cr foolib hack.o

In fact, nearly all archive member targets are updated in just this way and there is an implicit
rule to do it for you. Please note: The ‘c’ flag to ar is required if the archive file does not already
exist.

To specify several members in the same archive, you can write all the member names together
between the parentheses. For example:

foolib(hack.o kludge.o)

is equivalent to:

foolib(hack.o) foolib(kludge.o)

You can also use shell-style wildcards in an archive member reference. See Section 4.3 [Using
Wildcard Characters in File Names], page 21. For example, ‘foolib(*.o)’ expands to all
existing members of the foolib archive whose names end in ‘.o’; perhaps ‘foolib(hack.o)
foolib(kludge.o)’.

11.2 Implicit Rule for Archive Member Targets

Recall that a target that looks like a(m) stands for the member named m in the archive file a.

When make looks for an implicit rule for such a target, as a special feature it considers implicit
rules that match (m), as well as those that match the actual target a(m).

This causes one special rule whose target is (%) to match. This rule updates the target a(m)
by copying the file m into the archive. For example, it will update the archive member target
foo.a(bar.o) by copying the file bar.o into the archive foo.a as a member named bar.o.

When this rule is chained with others, the result is very powerful. Thus, ‘make
"foo.a(bar.o)"’ (the quotes are needed to protect the ‘(’ and ‘)’ from being interpreted
specially by the shell) in the presence of a file bar.c is enough to cause the following recipe to
be run, even without a makefile:

cc -c bar.c -o bar.o

ar r foo.a bar.o

rm -f bar.o

Here make has envisioned the file bar.o as an intermediate file. See Section 10.4 [Chains of
Implicit Rules], page 103.

Implicit rules such as this one are written using the automatic variable ‘$%’. See Section 10.5.3
[Automatic Variables], page 105.

114 GNU make

An archive member name in an archive cannot contain a directory name, but it may be useful
in a makefile to pretend that it does. If you write an archive member target foo.a(dir/file.o),
make will perform automatic updating with this recipe:

ar r foo.a dir/file.o

which has the effect of copying the file dir/file.o into a member named file.o. In connection
with such usage, the automatic variables %D and %F may be useful.

11.2.1 Updating Archive Symbol Directories

An archive file that is used as a library usually contains a special member named __.SYMDEF

that contains a directory of the external symbol names defined by all the other members. After
you update any other members, you need to update __.SYMDEF so that it will summarize the
other members properly. This is done by running the ranlib program:

ranlib archivefile

Normally you would put this command in the rule for the archive file, and make all the
members of the archive file prerequisites of that rule. For example,

libfoo.a: libfoo.a(x.o) libfoo.a(y.o) ...

ranlib libfoo.a

The effect of this is to update archive members x.o, y.o, etc., and then update the symbol
directory member __.SYMDEF by running ranlib. The rules for updating the members are not
shown here; most likely you can omit them and use the implicit rule which copies files into the
archive, as described in the preceding section.

This is not necessary when using the GNU ar program, which updates the __.SYMDEFmember
automatically.

11.3 Dangers When Using Archives

It is important to be careful when using parallel execution (the -j switch; see Section 5.4 [Parallel
Execution], page 42) and archives. If multiple ar commands run at the same time on the same
archive file, they will not know about each other and can corrupt the file.

Possibly a future version of make will provide a mechanism to circumvent this problem by
serializing all recipes that operate on the same archive file. But for the time being, you must
either write your makefiles to avoid this problem in some other way, or not use -j.

11.4 Suffix Rules for Archive Files

You can write a special kind of suffix rule for dealing with archive files. See Section 10.7 [Suffix
Rules], page 110, for a full explanation of suffix rules. Archive suffix rules are obsolete in GNU
make, because pattern rules for archives are a more general mechanism (see Section 11.2 [Archive
Update], page 113). But they are retained for compatibility with other makes.

To write a suffix rule for archives, you simply write a suffix rule using the target suffix ‘.a’
(the usual suffix for archive files). For example, here is the old-fashioned suffix rule to update a
library archive from C source files:

.c.a:

$(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $*.o

$(AR) r $@ $*.o

$(RM) $*.o

This works just as if you had written the pattern rule:

(%.o): %.c

$(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $*.o

$(AR) r $@ $*.o

$(RM) $*.o

Chapter 11: Using make to Update Archive Files 115

In fact, this is just what make does when it sees a suffix rule with ‘.a’ as the target suffix.
Any double-suffix rule ‘.x.a’ is converted to a pattern rule with the target pattern ‘(%.o)’ and
a prerequisite pattern of ‘%.x’.

Since you might want to use ‘.a’ as the suffix for some other kind of file, make also converts
archive suffix rules to pattern rules in the normal way (see Section 10.7 [Suffix Rules], page 110).
Thus a double-suffix rule ‘.x.a’ produces two pattern rules: ‘(%.o): %.x’ and ‘%.a: %.x’.

117

12 Extending GNU make

GNU make provides many advanced capabilities, including many useful functions. However, it
does not contain a complete programming language and so it has limitations. Sometimes these
limitations can be overcome through use of the shell function to invoke a separate program,
although this can be inefficient.

In cases where the built-in capabilities of GNU make are insufficient to your requirements
there are two options for extending make. On systems where it’s provided, you can utilize GNU
Guile as an embedded scripting language (see Section 12.1 [GNU Guile Integration], page 117).
On systems which support dynamically loadable objects, you can write your own extension in
any language (which can be compiled into such an object) and load it to provide extended
capabilities (see Section 12.2.1 [The load Directive], page 120).

12.1 GNU Guile Integration

GNU make may be built with support for GNU Guile as an embedded extension language. Guile
implements the Scheme language. A review of GNU Guile and the Scheme language and its
features is beyond the scope of this manual: see the documentation for GNU Guile and Scheme.

You can determine if make contains support for Guile by examining the .FEATURES variable;
it will contain the word guile if Guile support is available.

The Guile integration provides one new make function: guile. The guile function takes one
argument which is first expanded by make in the normal fashion, then passed to the GNU Guile
evaluator. The result of the evaluator is converted into a string and used as the expansion of
the guile function in the makefile.

In addition, GNU make exposes Guile procedures for use in Guile scripts.

12.1.1 Conversion of Guile Types

There is only one “data type” in make: a string. GNU Guile, on the other hand, provides a rich
variety of different data types. An important aspect of the interface between make and GNU
Guile is the conversion of Guile data types into make strings.

This conversion is relevant in two places: when a makefile invokes the guile function to
evaluate a Guile expression, the result of that evaluation must be converted into a make string
so it can be further evaluated by make. And secondly, when a Guile script invokes one of the
procedures exported by make the argument provided to the procedure must be converted into a
string.

The conversion of Guile types into make strings is as below:

#f False is converted into the empty string: in make conditionals the empty string is
considered false.

#t True is converted to the string ‘#t’: in make conditionals any non-empty string is
considered true.

symbol

number A symbol or number is converted into the string representation of that symbol or
number.

character

A printable character is converted to the same character.

string A string containing only printable characters is converted to the same string.

list A list is converted recursively according to the above rules. This implies that any
structured list will be flattened (that is, a result of ‘’(a b (c d) e)’ will be converted
to the make string ‘a b c d e’).

118 GNU make

other Any other Guile type results in an error. In future versions of make, other Guile
types may be converted.

The translation of ‘#f’ (to the empty string) and ‘#t’ (to the non-empty string ‘#t’) is
designed to allow you to use Guile boolean results directly as make boolean conditions. For
example:

$(if $(guile (access? "myfile" R_OK)),$(info myfile exists))

As a consequence of these conversion rules you must consider the result of your Guile script,
as that result will be converted into a string and parsed by make. If there is no natural result
for the script (that is, the script exists solely for its side-effects), you should add ‘#f’ as the final
expression in order to avoid syntax errors in your makefile.

12.1.2 Interfaces from Guile to make

In addition to the guile function available in makefiles, make exposes some procedures for use
in your Guile scripts. At startup make creates a new Guile module, gnu make, and exports these
procedures as public interfaces from that module:

gmk-expand

This procedure takes a single argument which is converted into a string. The string
is expanded by make using normal make expansion rules. The result of the expansion
is converted into a Guile string and provided as the result of the procedure.

gmk-eval This procedure takes a single argument which is converted into a string. The string
is evaluated by make as if it were a makefile. This is the same capability available
via the eval function (see Section 8.9 [Eval Function], page 82). The result of the
gmk-eval procedure is always the empty string.

Note that gmk-eval is not quite the same as using gmk-expand with the eval

function: in the latter case the evaluated string will be expanded twice; first by
gmk-expand, then again by the eval function.

12.1.3 Example Using Guile in make

Here is a very simple example using GNU Guile to manage writing to a file. These Guile
procedures simply open a file, allow writing to the file (one string per line), and close the file.
Note that because we cannot store complex values such as Guile ports in make variables, we’ll
keep the port as a global variable in the Guile interpreter.

You can create Guile functions easily using define/endef to create a Guile script, then use
the guile function to internalize it:

Chapter 12: Extending GNU make 119

define GUILEIO

;; A simple Guile IO library for GNU make

(define MKPORT #f)

(define (mkopen name mode)

(set! MKPORT (open-file name mode))

#f)

(define (mkwrite s)

(display s MKPORT)

(newline MKPORT)

#f)

(define (mkclose)

(close-port MKPORT)

#f)

#f

endef

Internalize the Guile IO functions

$(guile $(GUILEIO))

If you have a significant amount of Guile support code, you might consider keeping it in a
different file (e.g., guileio.scm) and then loading it in your makefile using the guile function:

$(guile (load "guileio.scm"))

An advantage to this method is that when editing guileio.scm, your editor will understand
that this file contains Scheme syntax rather than makefile syntax.

Now you can use these Guile functions to create files. Suppose you need to operate on a very
large list, which cannot fit on the command line, but the utility you’re using accepts the list as
input as well:

prog: $(PREREQS)

@$(guile (mkopen "tmp.out" "w")) \

$(foreach X,,(guile (mkwrite "$(X)"))) \

$(guile (mkclose))

$(LINK) < tmp.out

A more comprehensive suite of file manipulation procedures is possible of course. You could,
for example, maintain multiple output files at the same time by choosing a symbol for each one
and using it as the key to a hash table, where the value is a port, then returning the symbol to
be stored in a make variable.

12.2 Loading Dynamic Objects� �
Warning: The load directive and extension capability is considered a “technology
preview” in this release of GNU make. We encourage you to experiment with this
feature and we appreciate any feedback on it. However we cannot guarantee to
maintain backward-compatibility in the next release. Consider using GNU Guile
instead for extending GNU make (see Section 8.14 [The guile Function], page 86).
 	

120 GNU make

Many operating systems provide a facility for dynamically loading compiled objects. If your
system provides this facility, GNU make can make use of it to load dynamic objects at runtime,
providing new capabilities which may then be invoked by your makefile.

The load directive is used to load a dynamic object. Once the object is loaded, a “setup”
function will be invoked to allow the object to initialize itself and register new facilities with
GNU make. A dynamic object might include new make functions, for example, and the “setup”
function would register them with GNU make’s function handling system.

12.2.1 The load Directive

Objects are loaded into GNU make by placing the load directive into your makefile. The syntax
of the load directive is as follows:

load object-file ...

or:

load object-file(symbol-name) ...

The file object-file is dynamically loaded by GNU make. If object-file does not include a
directory path then it is first looked for in the current directory. If it is not found there, or a
directory path is included, then system-specific paths will be searched. If the load fails for any
reason, make will print a message and exit.

If the load succeeds make will invoke an initializing function.

If symbol-name is provided, it will be used as the name of the initializing function.

If no symbol-name is provided, the initializing function name is created by taking the base
file name of object-file, up to the first character which is not a valid symbol name character (al-
phanumerics and underscores are valid symbol name characters). To this prefix will be appended
the suffix _gmk_setup.

More than one object file may be loaded with a single load directive, and both forms of load
arguments may be used in the same directive.

The initializing function will be provided the file name and line number of the invocation of
the load operation. It should return a value of type int, which must be 0 on failure and non-0
on success. If the return value is -1, then GNU make will not attempt to rebuild the object file
(see Section 12.2.2 [How Loaded Objects Are Remade], page 121).

For example:

load ../mk_funcs.so

will load the dynamic object ../mk_funcs.so. After the object is loaded, make will invoke
the function (assumed to be defined by the shared object) mk_funcs_gmk_setup.

On the other hand:

load ../mk_funcs.so(init_mk_func)

will load the dynamic object ../mk_funcs.so. After the object is loaded, make will invoke
the function init_mk_func.

Regardless of how many times an object file appears in a load directive, it will only be loaded
(and its setup function will only be invoked) once.

After an object has been successfully loaded, its file name is appended to the .LOADED variable.

If you would prefer that failure to load a dynamic object not be reported as an error, you
can use the -load directive instead of load. GNU make will not fail and no message will be
generated if an object fails to load. The failed object is not added to the .LOADED variable,
which can then be consulted to determine if the load was successful.

Chapter 12: Extending GNU make 121

12.2.2 How Loaded Objects Are Remade

Loaded objects undergo the same re-make procedure as makefiles (see Section 3.5 [How Makefiles
Are Remade], page 12). If any loaded object is recreated, then make will start from scratch and
re-read all the makefiles, and reload the object files again. It is not necessary for the loaded
object to do anything special to support this.

It’s up to the makefile author to provide the rules needed for rebuilding the loaded object.

12.2.3 Loaded Object Interface� �
Warning: For this feature to be useful your extensions will need to invoke various
functions internal to GNU make. The programming interfaces provided in this re-
lease should not be considered stable: functions may be added, removed, or change
calling signatures or implementations in future versions of GNU make.
 	

To be useful, loaded objects must be able to interact with GNU make. This interaction
includes both interfaces the loaded object provides to makefiles and also interfaces make provides
to the loaded object to manipulate make’s operation.

The interface between loaded objects and make is defined by the gnumake.h C header file.
All loaded objects written in C should include this header file. Any loaded object not written
in C will need to implement the interface defined in this header file.

Typically, a loaded object will register one or more new GNU make functions using the
gmk_add_function routine from within its setup function. The implementations of these make

functions may make use of the gmk_expand and gmk_eval routines to perform their tasks, then
optionally return a string as the result of the function expansion.

Loaded Object Licensing

Every dynamic extension should define the global symbol plugin_is_GPL_compatible to assert
that it has been licensed under a GPL-compatible license. If this symbol does not exist, make
emits a fatal error and exits when it tries to load your extension.

The declared type of the symbol should be int. It does not need to be in any allocated
section, though. The code merely asserts that the symbol exists in the global scope. Something
like this is enough:

int plugin_is_GPL_compatible;

Data Structures

gmk_floc This structure represents a filename/location pair. It is provided when defining
items, so GNU make can inform the user later where the definition occurred if
necessary.

Registering Functions

There is currently one way for makefiles to invoke operations provided by the loaded object:
through the make function call interface. A loaded object can register one or more new functions
which may then be invoked from within the makefile in the same way as any other function.

Use gmk_add_function to create a new make function. Its arguments are as follows:

name The function name. This is what the makefile should use to invoke the function.
The name must be between 1 and 255 characters long and it may only contain
alphanumeric, period (‘.’), dash (‘-’), and underscore (‘_’) characters. It may not
begin with a period.

122 GNU make

func_ptr A pointer to a function that make will invoke when it expands the function in a
makefile. This function must be defined by the loaded object.

min_args The minimum number of arguments the function will accept. Must be between 0
and 255. GNU make will check this and fail before invoking func_ptr if the function
was invoked with too few arguments.

max_args The maximum number of arguments the function will accept. Must be between 0
and 255. GNU make will check this and fail before invoking func_ptr if the function
was invoked with too few arguments. If the value is 0, then any number of arguments
is accepted. If the value is greater than 0, then it must be greater than or equal to
min_args.

flags Flags that specify how this function will operate; the desired flags should be OR’d
together. If the GMK_FUNC_NOEXPAND flag is given then the function arguments will
not be expanded before the function is called; otherwise they will be expanded first.

Registered Function Interface

A function registered with make must match the gmk_func_ptr type. It will be invoked with
three parameters: name (the name of the function), argc (the number of arguments to the
function), and argv (an array of pointers to arguments to the function). The last pointer (that
is, argv[argc]) will be null (0).

The return value of the function is the result of expanding the function. If the function
expands to nothing the return value may be null. Otherwise, it must be a pointer to a string
created with gmk_alloc. Once the function returns, make owns this string and will free it when
appropriate; it cannot be accessed by the loaded object.

GNU make Facilities

There are some facilities exported by GNU make for use by loaded objects. Typically these would
be run from within the setup function and/or the functions registered via gmk_add_function,
to retrieve or modify the data make works with.

gmk_expand

This function takes a string and expands it using make expansion rules. The result of
the expansion is returned in a nil-terminated string buffer. The caller is responsible
for calling gmk_free with a pointer to the returned buffer when done.

gmk_eval This function takes a buffer and evaluates it as a segment of makefile syntax. This
function can be used to define new variables, new rules, etc. It is equivalent to using
the eval make function.

Note that there is a difference between gmk_eval and calling gmk_expand with a string using
the eval function: in the latter case the string will be expanded twice; once by gmk_expand and
then again by the eval function. Using gmk_eval the buffer is only expanded once, at most (as
it’s read by the make parser).

Memory Management

Some systems allow for different memory management schemes. Thus you should never pass
memory that you’ve allocated directly to any make function, nor should you attempt to directly
free any memory returned to you by any make function. Instead, use the gmk_alloc and gmk_

free functions.

In particular, the string returned to make by a function registered using gmk_add_function

must be allocated using gmk_alloc, and the string returned from the make gmk_expand function
must be freed (when no longer needed) using gmk_free.

Chapter 12: Extending GNU make 123

gmk_alloc

Return a pointer to a newly-allocated buffer. This function will always return a
valid pointer; if not enough memory is available make will exit.

gmk_free Free a buffer returned to you by make. Once the gmk_free function returns the
string will no longer be valid.

12.2.4 Example Loaded Object

Let’s suppose we wanted to write a new GNU make function that would create a temporary file
and return its name. We would like our function to take a prefix as an argument. First we can
write the function in a file mk_temp.c:

124 GNU make

#include <stdlib.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <errno.h>

#include <gnumake.h>

int plugin_is_GPL_compatible;

char *

gen_tmpfile(const char *nm, int argc, char **argv)

{

int fd;

/* Compute the size of the filename and allocate space for it. */

int len = strlen (argv[0]) + 6 + 1;

char *buf = gmk_alloc (len);

strcpy (buf, argv[0]);

strcat (buf, "XXXXXX");

fd = mkstemp(buf);

if (fd >= 0)

{

/* Don’t leak the file descriptor. */

close (fd);

return buf;

}

/* Failure. */

fprintf (stderr, "mkstemp(%s) failed: %s\n", buf, strerror (errno));

gmk_free (buf);

return NULL;

}

int

mk_temp_gmk_setup ()

{

/* Register the function with make name "mk-temp". */

gmk_add_function ("mk-temp", gen_tmpfile, 1, 1, 1);

return 1;

}

Next, we will write a makefile that can build this shared object, load it, and use it:

125

all:

@echo Temporary file: $(mk-temp tmpfile.)

load mk_temp.so

mk_temp.so: mk_temp.c

$(CC) -shared -fPIC -o $ $<

On MS-Windows, due to peculiarities of how shared objects are produced, the
compiler needs to scan the import library produced when building make, typically called
libgnumake-version.dll.a, where version is the version of the load object API. So the recipe
to produce a shared object will look on Windows like this (assuming the API version is 1):

mk_temp.dll: mk_temp.c

$(CC) -shared -o $ $< -lgnumake-1

Now when you run make you’ll see something like:

$ make

cc -shared -fPIC -o mk_temp.so mk_temp.c

Temporary filename: tmpfile.A7JEwd

127

13 Features of GNU make

Here is a summary of the features of GNU make, for comparison with and credit to other versions
of make. We consider the features of make in 4.2 BSD systems as a baseline. If you are concerned
with writing portable makefiles, you should not use the features of make listed here, nor the ones
in Chapter 14 [Missing], page 131.

Many features come from the version of make in System V.

• The VPATH variable and its special meaning. See Section 4.4 [Searching Directories for
Prerequisites], page 22. This feature exists in System V make, but is undocumented. It is
documented in 4.3 BSD make (which says it mimics System V’s VPATH feature).

• Included makefiles. See Section 3.3 [Including Other Makefiles], page 10. Allowing multiple
files to be included with a single directive is a GNU extension.

• Variables are read from and communicated via the environment. See Section 6.10 [Variables
from the Environment], page 63.

• Options passed through the variable MAKEFLAGS to recursive invocations of make. See
Section 5.7.3 [Communicating Options to a Sub-make], page 48.

• The automatic variable $% is set to the member name in an archive reference. See
Section 10.5.3 [Automatic Variables], page 105.

• The automatic variables $@, $*, $<, $%, and $? have corresponding forms like $(@F) and
$(@D). We have generalized this to $^ as an obvious extension. See Section 10.5.3 [Auto-
matic Variables], page 105.

• Substitution variable references. See Section 6.1 [Basics of Variable References], page 53.

• The command line options ‘-b’ and ‘-m’, accepted and ignored. In System V make, these
options actually do something.

• Execution of recursive commands to run make via the variable MAKE even if ‘-n’, ‘-q’ or ‘-t’
is specified. See Section 5.7 [Recursive Use of make], page 45.

• Support for suffix ‘.a’ in suffix rules. See Section 11.4 [Archive Suffix Rules], page 114.
This feature is obsolete in GNU make, because the general feature of rule chaining (see
Section 10.4 [Chains of Implicit Rules], page 103) allows one pattern rule for installing
members in an archive (see Section 11.2 [Archive Update], page 113) to be sufficient.

• The arrangement of lines and backslash/newline combinations in recipes is retained when
the recipes are printed, so they appear as they do in the makefile, except for the stripping
of initial whitespace.

The following features were inspired by various other versions of make. In some cases it is
unclear exactly which versions inspired which others.

• Pattern rules using ‘%’. This has been implemented in several versions of make. We’re not
sure who invented it first, but it’s been spread around a bit. See Section 10.5 [Defining and
Redefining Pattern Rules], page 103.

• Rule chaining and implicit intermediate files. This was implemented by Stu Feldman in his
version of make for AT&T Eighth Edition Research Unix, and later by Andrew Hume of
AT&T Bell Labs in his mk program (where he terms it “transitive closure”). We do not
really know if we got this from either of them or thought it up ourselves at the same time.
See Section 10.4 [Chains of Implicit Rules], page 103.

• The automatic variable $^ containing a list of all prerequisites of the current target. We
did not invent this, but we have no idea who did. See Section 10.5.3 [Automatic Variables],
page 105. The automatic variable $+ is a simple extension of $^.

• The “what if” flag (‘-W’ in GNU make) was (as far as we know) invented by Andrew Hume
in mk. See Section 9.3 [Instead of Executing Recipes], page 89.

128 GNU make

• The concept of doing several things at once (parallelism) exists in many incarnations of
make and similar programs, though not in the System V or BSD implementations. See
Section 5.3 [Recipe Execution], page 39.

• A number of different build tools that support parallelism also support collecting output
and displaying as a single block. See Section 5.4.1 [Output During Parallel Execution],
page 43.

• Modified variable references using pattern substitution come from SunOS 4. See Section 6.1
[Basics of Variable References], page 53. This functionality was provided in GNU make by
the patsubst function before the alternate syntax was implemented for compatibility with
SunOS 4. It is not altogether clear who inspired whom, since GNU make had patsubst

before SunOS 4 was released.

• The special significance of ‘+’ characters preceding recipe lines (see Section 9.3 [Instead of
Executing Recipes], page 89) is mandated by IEEE Standard 1003.2-1992 (POSIX.2).

• The ‘+=’ syntax to append to the value of a variable comes from SunOS 4 make. See
Section 6.6 [Appending More Text to Variables], page 59.

• The syntax ‘archive(mem1 mem2...)’ to list multiple members in a single archive file comes
from SunOS 4 make. See Section 11.1 [Archive Members], page 113.

• The -include directive to include makefiles with no error for a nonexistent file comes from
SunOS 4 make. (But note that SunOS 4 make does not allow multiple makefiles to be
specified in one -include directive.) The same feature appears with the name sinclude

in SGI make and perhaps others.

• The != shell assignment operator exists in many BSD of make and is purposefully imple-
mented here to behave identically to those implementations.

• Various build management tools are implemented using scripting languages such as Perl or
Python and thus provide a natural embedded scripting language, similar to GNU make’s
integration of GNU Guile.

The remaining features are inventions new in GNU make:

• Use the ‘-v’ or ‘--version’ option to print version and copyright information.

• Use the ‘-h’ or ‘--help’ option to summarize the options to make.

• Simply-expanded variables. See Section 6.2 [The Two Flavors of Variables], page 54.

• Pass command line variable assignments automatically through the variable MAKE to recur-
sive make invocations. See Section 5.7 [Recursive Use of make], page 45.

• Use the ‘-C’ or ‘--directory’ command option to change directory. See Section 9.7 [Sum-
mary of Options], page 91.

• Make verbatim variable definitions with define. See Section 6.8 [Defining Multi-Line Vari-
ables], page 61.

• Declare phony targets with the special target .PHONY.

Andrew Hume of AT&T Bell Labs implemented a similar feature with a different syntax
in his mk program. This seems to be a case of parallel discovery. See Section 4.5 [Phony
Targets], page 26.

• Manipulate text by calling functions. See Chapter 8 [Functions for Transforming Text],
page 73.

• Use the ‘-o’ or ‘--old-file’ option to pretend a file’s modification-time is old. See
Section 9.4 [Avoiding Recompilation of Some Files], page 90.

• Conditional execution.

This feature has been implemented numerous times in various versions of make; it seems
a natural extension derived from the features of the C preprocessor and similar macro

Chapter 13: Features of GNU make 129

languages and is not a revolutionary concept. See Chapter 7 [Conditional Parts of Makefiles],
page 69.

• Specify a search path for included makefiles. See Section 3.3 [Including Other Makefiles],
page 10.

• Specify extra makefiles to read with an environment variable. See Section 3.4 [The Variable
MAKEFILES], page 11.

• Strip leading sequences of ‘./’ from file names, so that ./file and file are considered to
be the same file.

• Use a special search method for library prerequisites written in the form ‘-lname’. See
Section 4.4.6 [Directory Search for Link Libraries], page 25.

• Allow suffixes for suffix rules (see Section 10.7 [Old-Fashioned Suffix Rules], page 110) to
contain any characters. In other versions of make, they must begin with ‘.’ and not contain
any ‘/’ characters.

• Keep track of the current level of make recursion using the variable MAKELEVEL. See
Section 5.7 [Recursive Use of make], page 45.

• Provide any goals given on the command line in the variable MAKECMDGOALS. See Section 9.2
[Arguments to Specify the Goals], page 87.

• Specify static pattern rules. See Section 4.11 [Static Pattern Rules], page 32.

• Provide selective vpath search. See Section 4.4 [Searching Directories for Prerequisites],
page 22.

• Provide computed variable references. See Section 6.1 [Basics of Variable References],
page 53.

• Update makefiles. See Section 3.5 [How Makefiles Are Remade], page 12. System V make

has a very, very limited form of this functionality in that it will check out SCCS files for
makefiles.

• Various new built-in implicit rules. See Section 10.2 [Catalogue of Built-In Rules], page 98.

• Load dynamic objects which can modify the behavior of make. See Section 12.2 [Loading
Dynamic Objects], page 119.

131

14 Incompatibilities and Missing Features

The make programs in various other systems support a few features that are not implemented
in GNU make. The POSIX.2 standard (IEEE Standard 1003.2-1992) which specifies make does
not require any of these features.

• A target of the form ‘file((entry))’ stands for a member of archive file file. The member
is chosen, not by name, but by being an object file which defines the linker symbol entry.

This feature was not put into GNU make because of the non-modularity of putting knowledge
into make of the internal format of archive file symbol tables. See Section 11.2.1 [Updating
Archive Symbol Directories], page 114.

• Suffixes (used in suffix rules) that end with the character ‘~’ have a special meaning to
System V make; they refer to the SCCS file that corresponds to the file one would get
without the ‘~’. For example, the suffix rule ‘.c~.o’ would make the file n.o from the
SCCS file s.n.c. For complete coverage, a whole series of such suffix rules is required. See
Section 10.7 [Old-Fashioned Suffix Rules], page 110.

In GNU make, this entire series of cases is handled by two pattern rules for extraction from
SCCS, in combination with the general feature of rule chaining. See Section 10.4 [Chains
of Implicit Rules], page 103.

• In System V and 4.3 BSD make, files found by VPATH search (see Section 4.4 [Searching
Directories for Prerequisites], page 22) have their names changed inside recipes. We feel it
is much cleaner to always use automatic variables and thus make this feature obsolete.

• In some Unix makes, the automatic variable $* appearing in the prerequisites of a rule has
the amazingly strange “feature” of expanding to the full name of the target of that rule. We
cannot imagine what went on in the minds of Unix make developers to do this; it is utterly
inconsistent with the normal definition of $*.

• In some Unix makes, implicit rule search (see Chapter 10 [Using Implicit Rules], page 97)
is apparently done for all targets, not just those without recipes. This means you can do:

foo.o:

cc -c foo.c

and Unix make will intuit that foo.o depends on foo.c.

We feel that such usage is broken. The prerequisite properties of make are well-defined (for
GNU make, at least), and doing such a thing simply does not fit the model.

• GNU make does not include any built-in implicit rules for compiling or preprocessing EFL
programs. If we hear of anyone who is using EFL, we will gladly add them.

• It appears that in SVR4 make, a suffix rule can be specified with no recipe, and it is treated
as if it had an empty recipe (see Section 5.9 [Empty Recipes], page 51). For example:

.c.a:

will override the built-in .c.a suffix rule.

We feel that it is cleaner for a rule without a recipe to always simply add to the prerequisite
list for the target. The above example can be easily rewritten to get the desired behavior
in GNU make:

.c.a: ;

• Some versions of make invoke the shell with the ‘-e’ flag, except under ‘-k’ (see Section 9.6
[Testing the Compilation of a Program], page 91). The ‘-e’ flag tells the shell to exit as
soon as any program it runs returns a nonzero status. We feel it is cleaner to write each
line of the recipe to stand on its own and not require this special treatment.

133

15 Makefile Conventions

This chapter describes conventions for writing the Makefiles for GNU programs. Using Automake
will help you write a Makefile that follows these conventions. For more information on portable
Makefiles, see posix and Section “Portable Make” in Autoconf .

15.1 General Conventions for Makefiles

Every Makefile should contain this line:

SHELL = /bin/sh

to avoid trouble on systems where the SHELL variable might be inherited from the environment.
(This is never a problem with GNU make.)

Different make programs have incompatible suffix lists and implicit rules, and this sometimes
creates confusion or misbehavior. So it is a good idea to set the suffix list explicitly using only
the suffixes you need in the particular Makefile, like this:

.SUFFIXES:

.SUFFIXES: .c .o

The first line clears out the suffix list, the second introduces all suffixes which may be subject
to implicit rules in this Makefile.

Don’t assume that . is in the path for command execution. When you need to run programs
that are a part of your package during the make, please make sure that it uses ./ if the program
is built as part of the make or $(srcdir)/ if the file is an unchanging part of the source code.
Without one of these prefixes, the current search path is used.

The distinction between ./ (the build directory) and $(srcdir)/ (the source directory)
is important because users can build in a separate directory using the ‘--srcdir’ option to
configure. A rule of the form:

foo.1 : foo.man sedscript

sed -f sedscript foo.man > foo.1

will fail when the build directory is not the source directory, because foo.man and sedscript

are in the source directory.

When using GNU make, relying on ‘VPATH’ to find the source file will work in the case where
there is a single dependency file, since the make automatic variable ‘$<’ will represent the source
file wherever it is. (Many versions of make set ‘$<’ only in implicit rules.) A Makefile target like

foo.o : bar.c

$(CC) -I. -I$(srcdir) $(CFLAGS) -c bar.c -o foo.o

should instead be written as
foo.o : bar.c

$(CC) -I. -I$(srcdir) $(CFLAGS) -c $< -o $@

in order to allow ‘VPATH’ to work correctly. When the target has multiple dependencies, using
an explicit ‘$(srcdir)’ is the easiest way to make the rule work well. For example, the target
above for foo.1 is best written as:

foo.1 : foo.man sedscript

sed -f $(srcdir)/sedscript $(srcdir)/foo.man > $@

GNU distributions usually contain some files which are not source files—for example, Info
files, and the output from Autoconf, Automake, Bison or Flex. Since these files normally appear
in the source directory, they should always appear in the source directory, not in the build
directory. So Makefile rules to update them should put the updated files in the source directory.

However, if a file does not appear in the distribution, then the Makefile should not put it in
the source directory, because building a program in ordinary circumstances should not modify
the source directory in any way.

134 GNU make

Try to make the build and installation targets, at least (and all their subtargets) work cor-
rectly with a parallel make.

15.2 Utilities in Makefiles

Write the Makefile commands (and any shell scripts, such as configure) to run under sh (both
the traditional Bourne shell and the posix shell), not csh. Don’t use any special features of ksh
or bash, or posix features not widely supported in traditional Bourne sh.

The configure script and the Makefile rules for building and installation should not use any
utilities directly except these:

awk cat cmp cp diff echo egrep expr false grep install-info ln ls

mkdir mv printf pwd rm rmdir sed sleep sort tar test touch tr true

Compression programs such as gzip can be used in the dist rule.

Generally, stick to the widely-supported (usually posix-specified) options and features of
these programs. For example, don’t use ‘mkdir -p’, convenient as it may be, because a few
systems don’t support it at all and with others, it is not safe for parallel execution. For a list of
known incompatibilities, see Section “Portable Shell” in Autoconf .

It is a good idea to avoid creating symbolic links in makefiles, since a few file systems don’t
support them.

The Makefile rules for building and installation can also use compilers and related programs,
but should do so via make variables so that the user can substitute alternatives. Here are some
of the programs we mean:

ar bison cc flex install ld ldconfig lex

make makeinfo ranlib texi2dvi yacc

Use the following make variables to run those programs:

$(AR) $(BISON) $(CC) $(FLEX) $(INSTALL) $(LD) $(LDCONFIG) $(LEX)

$(MAKE) $(MAKEINFO) $(RANLIB) $(TEXI2DVI) $(YACC)

When you use ranlib or ldconfig, you should make sure nothing bad happens if the system
does not have the program in question. Arrange to ignore an error from that command, and
print a message before the command to tell the user that failure of this command does not mean
a problem. (The Autoconf ‘AC_PROG_RANLIB’ macro can help with this.)

If you use symbolic links, you should implement a fallback for systems that don’t have
symbolic links.

Additional utilities that can be used via Make variables are:

chgrp chmod chown mknod

It is ok to use other utilities in Makefile portions (or scripts) intended only for particular
systems where you know those utilities exist.

15.3 Variables for Specifying Commands

Makefiles should provide variables for overriding certain commands, options, and so on.

In particular, you should run most utility programs via variables. Thus, if you use Bison,
have a variable named BISON whose default value is set with ‘BISON = bison’, and refer to it
with $(BISON) whenever you need to use Bison.

File management utilities such as ln, rm, mv, and so on, need not be referred to through
variables in this way, since users don’t need to replace them with other programs.

Each program-name variable should come with an options variable that is used to supply
options to the program. Append ‘FLAGS’ to the program-name variable name to get the options
variable name—for example, BISONFLAGS. (The names CFLAGS for the C compiler, YFLAGS

Chapter 15: Makefile Conventions 135

for yacc, and LFLAGS for lex, are exceptions to this rule, but we keep them because they are
standard.) Use CPPFLAGS in any compilation command that runs the preprocessor, and use
LDFLAGS in any compilation command that does linking as well as in any direct use of ld.

If there are C compiler options that must be used for proper compilation of certain files,
do not include them in CFLAGS. Users expect to be able to specify CFLAGS freely themselves.
Instead, arrange to pass the necessary options to the C compiler independently of CFLAGS, by
writing them explicitly in the compilation commands or by defining an implicit rule, like this:

CFLAGS = -g

ALL_CFLAGS = -I. $(CFLAGS)

.c.o:

$(CC) -c $(CPPFLAGS) $(ALL_CFLAGS) $<

Do include the ‘-g’ option in CFLAGS, because that is not required for proper compilation.
You can consider it a default that is only recommended. If the package is set up so that it
is compiled with GCC by default, then you might as well include ‘-O’ in the default value of
CFLAGS as well.

Put CFLAGS last in the compilation command, after other variables containing compiler op-
tions, so the user can use CFLAGS to override the others.

CFLAGS should be used in every invocation of the C compiler, both those which do compilation
and those which do linking.

Every Makefile should define the variable INSTALL, which is the basic command for installing
a file into the system.

Every Makefile should also define the variables INSTALL_PROGRAM and INSTALL_DATA. (The
default for INSTALL_PROGRAM should be $(INSTALL); the default for INSTALL_DATA should be
${INSTALL} -m 644.) Then it should use those variables as the commands for actual installation,
for executables and non-executables respectively. Minimal use of these variables is as follows:

$(INSTALL_PROGRAM) foo $(bindir)/foo

$(INSTALL_DATA) libfoo.a $(libdir)/libfoo.a

However, it is preferable to support a DESTDIR prefix on the target files, as explained in the
next section.

It is acceptable, but not required, to install multiple files in one command, with the final
argument being a directory, as in:

$(INSTALL_PROGRAM) foo bar baz $(bindir)

15.4 DESTDIR: Support for Staged Installs

DESTDIR is a variable prepended to each installed target file, like this:

$(INSTALL_PROGRAM) foo $(DESTDIR)$(bindir)/foo

$(INSTALL_DATA) libfoo.a $(DESTDIR)$(libdir)/libfoo.a

The DESTDIR variable is specified by the user on the make command line as an absolute file
name. For example:

make DESTDIR=/tmp/stage install

DESTDIR should be supported only in the install* and uninstall* targets, as those are the
only targets where it is useful.

If your installation step would normally install /usr/local/bin/foo and /usr/

local/lib/libfoo.a, then an installation invoked as in the example above would install
/tmp/stage/usr/local/bin/foo and /tmp/stage/usr/local/lib/libfoo.a instead.

Prepending the variable DESTDIR to each target in this way provides for staged installs,
where the installed files are not placed directly into their expected location but are instead

136 GNU make

copied into a temporary location (DESTDIR). However, installed files maintain their relative
directory structure and any embedded file names will not be modified.

You should not set the value of DESTDIR in your Makefile at all; then the files are in-
stalled into their expected locations by default. Also, specifying DESTDIR should not change the
operation of the software in any way, so its value should not be included in any file contents.

DESTDIR support is commonly used in package creation. It is also helpful to users who want to
understand what a given package will install where, and to allow users who don’t normally have
permissions to install into protected areas to build and install before gaining those permissions.
Finally, it can be useful with tools such as stow, where code is installed in one place but made to
appear to be installed somewhere else using symbolic links or special mount operations. So, we
strongly recommend GNU packages support DESTDIR, though it is not an absolute requirement.

15.5 Variables for Installation Directories

Installation directories should always be named by variables, so it is easy to install in a nonstan-
dard place. The standard names for these variables and the values they should have in GNU
packages are described below. They are based on a standard file system layout; variants of it
are used in GNU/Linux and other modern operating systems.

Installers are expected to override these values when calling make (e.g., make prefix=/usr

install or configure (e.g., configure --prefix=/usr). GNU packages should not try to guess
which value should be appropriate for these variables on the system they are being installed onto:
use the default settings specified here so that all GNU packages behave identically, allowing the
installer to achieve any desired layout.

All installation directories, and their parent directories, should be created (if necessary)
before they are installed into.

These first two variables set the root for the installation. All the other installation directories
should be subdirectories of one of these two, and nothing should be directly installed into these
two directories.

prefix A prefix used in constructing the default values of the variables listed below. The
default value of prefix should be /usr/local. When building the complete GNU
system, the prefix will be empty and /usr will be a symbolic link to /. (If you are
using Autoconf, write it as ‘@prefix@’.)

Running ‘make install’ with a different value of prefix from the one used to build
the program should not recompile the program.

exec_prefix

A prefix used in constructing the default values of some of the variables listed below.
The default value of exec_prefix should be $(prefix). (If you are using Autoconf,
write it as ‘@exec_prefix@’.)

Generally, $(exec_prefix) is used for directories that contain machine-specific files
(such as executables and subroutine libraries), while $(prefix) is used directly for
other directories.

Running ‘make install’ with a different value of exec_prefix from the one used
to build the program should not recompile the program.

Executable programs are installed in one of the following directories.

bindir The directory for installing executable programs that users can run. This should
normally be /usr/local/bin, but write it as $(exec_prefix)/bin. (If you are
using Autoconf, write it as ‘@bindir@’.)

Chapter 15: Makefile Conventions 137

sbindir The directory for installing executable programs that can be run from the shell,
but are only generally useful to system administrators. This should normally be
/usr/local/sbin, but write it as $(exec_prefix)/sbin. (If you are using Auto-
conf, write it as ‘@sbindir@’.)

libexecdir

The directory for installing executable programs to be run by other programs
rather than by users. This directory should normally be /usr/local/libexec,
but write it as $(exec_prefix)/libexec. (If you are using Autoconf, write it as
‘@libexecdir@’.)

The definition of ‘libexecdir’ is the same for all packages, so you should in-
stall your data in a subdirectory thereof. Most packages install their data under
$(libexecdir)/package-name/, possibly within additional subdirectories thereof,
such as $(libexecdir)/package-name/machine/version.

Data files used by the program during its execution are divided into categories in two ways.

• Some files are normally modified by programs; others are never normally modified (though
users may edit some of these).

• Some files are architecture-independent and can be shared by all machines at a site; some are
architecture-dependent and can be shared only by machines of the same kind and operating
system; others may never be shared between two machines.

This makes for six different possibilities. However, we want to discourage the use of
architecture-dependent files, aside from object files and libraries. It is much cleaner to make
other data files architecture-independent, and it is generally not hard.

Here are the variables Makefiles should use to specify directories to put these various kinds
of files in:

‘datarootdir’
The root of the directory tree for read-only architecture-independent data files. This
should normally be /usr/local/share, but write it as $(prefix)/share. (If you
are using Autoconf, write it as ‘@datarootdir@’.) ‘datadir’’s default value is based
on this variable; so are ‘infodir’, ‘mandir’, and others.

‘datadir’ The directory for installing idiosyncratic read-only architecture-independent data
files for this program. This is usually the same place as ‘datarootdir’, but we use
the two separate variables so that you can move these program-specific files without
altering the location for Info files, man pages, etc.

This should normally be /usr/local/share, but write it as $(datarootdir). (If
you are using Autoconf, write it as ‘@datadir@’.)

The definition of ‘datadir’ is the same for all packages, so you should install
your data in a subdirectory thereof. Most packages install their data under
$(datadir)/package-name/.

‘sysconfdir’
The directory for installing read-only data files that pertain to a single machine–
that is to say, files for configuring a host. Mailer and network configuration files,
/etc/passwd, and so forth belong here. All the files in this directory should be
ordinary ASCII text files. This directory should normally be /usr/local/etc, but
write it as $(prefix)/etc. (If you are using Autoconf, write it as ‘@sysconfdir@’.)

Do not install executables here in this directory (they probably belong in
$(libexecdir) or $(sbindir)). Also do not install files that are modified in the
normal course of their use (programs whose purpose is to change the configuration
of the system excluded). Those probably belong in $(localstatedir).

138 GNU make

‘sharedstatedir’
The directory for installing architecture-independent data files which the programs
modify while they run. This should normally be /usr/local/com, but write it as
$(prefix)/com. (If you are using Autoconf, write it as ‘@sharedstatedir@’.)

‘localstatedir’
The directory for installing data files which the programs modify while they run, and
that pertain to one specific machine. Users should never need to modify files in this
directory to configure the package’s operation; put such configuration information in
separate files that go in $(datadir) or $(sysconfdir). $(localstatedir) should
normally be /usr/local/var, but write it as $(prefix)/var. (If you are using
Autoconf, write it as ‘@localstatedir@’.)

‘runstatedir’
The directory for installing data files which the programs modify while they run,
that pertain to one specific machine, and which need not persist longer than the
execution of the program—which is generally long-lived, for example, until the
next reboot. PID files for system daemons are a typical use. In addition, this
directory should not be cleaned except perhaps at reboot, while the general /tmp
(TMPDIR) may be cleaned arbitrarily. This should normally be /var/run, but write
it as $(localstatedir)/run. Having it as a separate variable allows the use of
/run if desired, for example. (If you are using Autoconf 2.70 or later, write it as
‘@runstatedir@’.)

These variables specify the directory for installing certain specific types of files, if your pro-
gram has them. Every GNU package should have Info files, so every program needs ‘infodir’,
but not all need ‘libdir’ or ‘lispdir’.

‘includedir’
The directory for installing header files to be included by user programs with the C
‘#include’ preprocessor directive. This should normally be /usr/local/include,
but write it as $(prefix)/include. (If you are using Autoconf, write it as
‘@includedir@’.)

Most compilers other than GCC do not look for header files in directory
/usr/local/include. So installing the header files this way is only useful with
GCC. Sometimes this is not a problem because some libraries are only really
intended to work with GCC. But some libraries are intended to work with other
compilers. They should install their header files in two places, one specified by
includedir and one specified by oldincludedir.

‘oldincludedir’
The directory for installing ‘#include’ header files for use with compilers other than
GCC. This should normally be /usr/include. (If you are using Autoconf, you can
write it as ‘@oldincludedir@’.)

The Makefile commands should check whether the value of oldincludedir is empty.
If it is, they should not try to use it; they should cancel the second installation of
the header files.

A package should not replace an existing header in this directory unless the header
came from the same package. Thus, if your Foo package provides a header file foo.h,
then it should install the header file in the oldincludedir directory if either (1)
there is no foo.h there or (2) the foo.h that exists came from the Foo package.

To tell whether foo.h came from the Foo package, put a magic string in the file—
part of a comment—and grep for that string.

Chapter 15: Makefile Conventions 139

‘docdir’ The directory for installing documentation files (other than Info) for this pack-
age. By default, it should be /usr/local/share/doc/yourpkg, but it should be
written as $(datarootdir)/doc/yourpkg. (If you are using Autoconf, write it as
‘@docdir@’.) The yourpkg subdirectory, which may include a version number, pre-
vents collisions among files with common names, such as README.

‘infodir’ The directory for installing the Info files for this package. By default, it should be
/usr/local/share/info, but it should be written as $(datarootdir)/info. (If
you are using Autoconf, write it as ‘@infodir@’.) infodir is separate from docdir

for compatibility with existing practice.

‘htmldir’
‘dvidir’
‘pdfdir’
‘psdir’ Directories for installing documentation files in the particular format. They should

all be set to $(docdir) by default. (If you are using Autoconf, write them as
‘@htmldir@’, ‘@dvidir@’, etc.) Packages which supply several translations of their
documentation should install them in ‘$(htmldir)/’ll, ‘$(pdfdir)/’ll, etc. where
ll is a locale abbreviation such as ‘en’ or ‘pt_BR’.

‘libdir’ The directory for object files and libraries of object code. Do not install executables
here, they probably ought to go in $(libexecdir) instead. The value of libdir
should normally be /usr/local/lib, but write it as $(exec_prefix)/lib. (If you
are using Autoconf, write it as ‘@libdir@’.)

‘lispdir’ The directory for installing any Emacs Lisp files in this package. By default,
it should be /usr/local/share/emacs/site-lisp, but it should be written as
$(datarootdir)/emacs/site-lisp.

If you are using Autoconf, write the default as ‘@lispdir@’. In order to make
‘@lispdir@’ work, you need the following lines in your configure.ac file:

lispdir=’${datarootdir}/emacs/site-lisp’

AC_SUBST(lispdir)

‘localedir’
The directory for installing locale-specific message catalogs for this package. By
default, it should be /usr/local/share/locale, but it should be written as
$(datarootdir)/locale. (If you are using Autoconf, write it as ‘@localedir@’.)
This directory usually has a subdirectory per locale.

Unix-style man pages are installed in one of the following:

‘mandir’ The top-level directory for installing the man pages (if any) for this package.
It will normally be /usr/local/share/man, but you should write it as
$(datarootdir)/man. (If you are using Autoconf, write it as ‘@mandir@’.)

‘man1dir’ The directory for installing section 1 man pages. Write it as $(mandir)/man1.

‘man2dir’ The directory for installing section 2 man pages. Write it as $(mandir)/man2

‘...’

Don’t make the primary documentation for any GNU software be a man page.
Write a manual in Texinfo instead. Man pages are just for the sake of people
running GNU software on Unix, which is a secondary application only.

‘manext’ The file name extension for the installed man page. This should contain a period
followed by the appropriate digit; it should normally be ‘.1’.

‘man1ext’ The file name extension for installed section 1 man pages.

140 GNU make

‘man2ext’ The file name extension for installed section 2 man pages.

‘...’ Use these names instead of ‘manext’ if the package needs to install man pages in
more than one section of the manual.

And finally, you should set the following variable:

‘srcdir’ The directory for the sources being compiled. The value of this variable is normally
inserted by the configure shell script. (If you are using Autoconf, use ‘srcdir =

@srcdir@’.)

For example:
Common prefix for installation directories.

NOTE: This directory must exist when you start the install.

prefix = /usr/local

datarootdir = $(prefix)/share

datadir = $(datarootdir)

exec_prefix = $(prefix)

Where to put the executable for the command ‘gcc’.

bindir = $(exec_prefix)/bin

Where to put the directories used by the compiler.

libexecdir = $(exec_prefix)/libexec

Where to put the Info files.

infodir = $(datarootdir)/info

If your program installs a large number of files into one of the standard user-specified direc-
tories, it might be useful to group them into a subdirectory particular to that program. If you
do this, you should write the install rule to create these subdirectories.

Do not expect the user to include the subdirectory name in the value of any of the variables
listed above. The idea of having a uniform set of variable names for installation directories is
to enable the user to specify the exact same values for several different GNU packages. In order
for this to be useful, all the packages must be designed so that they will work sensibly when the
user does so.

At times, not all of these variables may be implemented in the current release of Autoconf
and/or Automake; but as of Autoconf 2.60, we believe all of them are. When any are missing, the
descriptions here serve as specifications for what Autoconf will implement. As a programmer,
you can either use a development version of Autoconf or avoid using these variables until a stable
release is made which supports them.

15.6 Standard Targets for Users

All GNU programs should have the following targets in their Makefiles:

‘all’ Compile the entire program. This should be the default target. This target need
not rebuild any documentation files; Info files should normally be included in the
distribution, and DVI (and other documentation format) files should be made only
when explicitly asked for.

By default, the Make rules should compile and link with ‘-g’, so that executable
programs have debugging symbols. Otherwise, you are essentially helpless in the
face of a crash, and it is often far from easy to reproduce with a fresh build.

‘install’ Compile the program and copy the executables, libraries, and so on to the file names
where they should reside for actual use. If there is a simple test to verify that a
program is properly installed, this target should run that test.

Do not strip executables when installing them. This helps eventual debugging that
may be needed later, and nowadays disk space is cheap and dynamic loaders typically
ensure debug sections are not loaded during normal execution. Users that need
stripped binaries may invoke the install-strip target to do that.

Chapter 15: Makefile Conventions 141

If possible, write the install target rule so that it does not modify anything in
the directory where the program was built, provided ‘make all’ has just been done.
This is convenient for building the program under one user name and installing it
under another.

The commands should create all the directories in which files are to be installed, if
they don’t already exist. This includes the directories specified as the values of the
variables prefix and exec_prefix, as well as all subdirectories that are needed.
One way to do this is by means of an installdirs target as described below.

Use ‘-’ before any command for installing a man page, so that make will ignore
any errors. This is in case there are systems that don’t have the Unix man page
documentation system installed.

The way to install Info files is to copy them into $(infodir) with $(INSTALL_DATA)

(see Section 15.3 [Command Variables], page 134), and then run the install-info
program if it is present. install-info is a program that edits the Info dir file
to add or update the menu entry for the given Info file; it is part of the Texinfo
package.

Here is a sample rule to install an Info file that also tries to handle some additional
situations, such as install-info not being present.

do-install-info: foo.info installdirs

$(NORMAL_INSTALL)

Prefer an info file in . to one in srcdir.

if test -f foo.info; then d=.; \

else d="$(srcdir)"; fi; \

$(INSTALL_DATA) $$d/foo.info \

"$(DESTDIR)$(infodir)/foo.info"

Run install-info only if it exists.

Use ‘if’ instead of just prepending ‘-’ to the

line so we notice real errors from install-info.

Use ‘$(SHELL) -c’ because some shells do not

fail gracefully when there is an unknown command.

$(POST_INSTALL)

if $(SHELL) -c ’install-info --version’ \

>/dev/null 2>&1; then \

install-info --dir-file="$(DESTDIR)$(infodir)/dir" \

"$(DESTDIR)$(infodir)/foo.info"; \

else true; fi

When writing the install target, you must classify all the commands into three cat-
egories: normal ones, pre-installation commands and post-installation commands.
See Section 15.7 [Install Command Categories], page 144.

‘install-html’
‘install-dvi’
‘install-pdf’
‘install-ps’

These targets install documentation in formats other than Info; they’re intended to
be called explicitly by the person installing the package, if that format is desired.
GNU prefers Info files, so these must be installed by the install target.

When you have many documentation files to install, we recommend that you avoid
collisions and clutter by arranging for these targets to install in subdirectories of
the appropriate installation directory, such as htmldir. As one example, if your
package has multiple manuals, and you wish to install HTML documentation with
many files (such as the “split” mode output by makeinfo --html), you’ll certainly
want to use subdirectories, or two nodes with the same name in different manuals
will overwrite each other.

142 GNU make

Please make these install-format targets invoke the commands for the format
target, for example, by making format a dependency.

‘uninstall’
Delete all the installed files—the copies that the ‘install’ and ‘install-*’ targets
create.

This rule should not modify the directories where compilation is done, only the
directories where files are installed.

The uninstallation commands are divided into three categories, just like the instal-
lation commands. See Section 15.7 [Install Command Categories], page 144.

‘install-strip’
Like install, but strip the executable files while installing them. In simple cases,
this target can use the install target in a simple way:

install-strip:

$(MAKE) INSTALL_PROGRAM=’$(INSTALL_PROGRAM) -s’ \

install

But if the package installs scripts as well as real executables, the install-strip

target can’t just refer to the install target; it has to strip the executables but not
the scripts.

install-strip should not strip the executables in the build directory which are
being copied for installation. It should only strip the copies that are installed.

Normally we do not recommend stripping an executable unless you are sure the
program has no bugs. However, it can be reasonable to install a stripped executable
for actual execution while saving the unstripped executable elsewhere in case there
is a bug.

‘clean’ Delete all files in the current directory that are normally created by building the
program. Also delete files in other directories if they are created by this makefile.
However, don’t delete the files that record the configuration. Also preserve files that
could be made by building, but normally aren’t because the distribution comes with
them. There is no need to delete parent directories that were created with ‘mkdir
-p’, since they could have existed anyway.

Delete .dvi files here if they are not part of the distribution.

‘distclean’
Delete all files in the current directory (or created by this makefile) that are created
by configuring or building the program. If you have unpacked the source and built
the program without creating any other files, ‘make distclean’ should leave only
the files that were in the distribution. However, there is no need to delete parent
directories that were created with ‘mkdir -p’, since they could have existed anyway.

‘mostlyclean’
Like ‘clean’, but may refrain from deleting a few files that people normally don’t
want to recompile. For example, the ‘mostlyclean’ target for GCC does not delete
libgcc.a, because recompiling it is rarely necessary and takes a lot of time.

‘maintainer-clean’
Delete almost everything that can be reconstructed with this Makefile. This typi-
cally includes everything deleted by distclean, plus more: C source files produced
by Bison, tags tables, Info files, and so on.

The reason we say “almost everything” is that running the command ‘make
maintainer-clean’ should not delete configure even if configure can be remade
using a rule in the Makefile. More generally, ‘make maintainer-clean’ should not

Chapter 15: Makefile Conventions 143

delete anything that needs to exist in order to run configure and then begin to
build the program. Also, there is no need to delete parent directories that were
created with ‘mkdir -p’, since they could have existed anyway. These are the only
exceptions; maintainer-clean should delete everything else that can be rebuilt.

The ‘maintainer-clean’ target is intended to be used by a maintainer of the pack-
age, not by ordinary users. You may need special tools to reconstruct some of the
files that ‘make maintainer-clean’ deletes. Since these files are normally included
in the distribution, we don’t take care to make them easy to reconstruct. If you find
you need to unpack the full distribution again, don’t blame us.

To help make users aware of this, the commands for the special maintainer-clean
target should start with these two:

@echo ’This command is intended for maintainers to use; it’

@echo ’deletes files that may need special tools to rebuild.’

‘TAGS’ Update a tags table for this program.

‘info’ Generate any Info files needed. The best way to write the rules is as follows:

info: foo.info

foo.info: foo.texi chap1.texi chap2.texi

$(MAKEINFO) $(srcdir)/foo.texi

You must define the variable MAKEINFO in the Makefile. It should run the makeinfo
program, which is part of the Texinfo distribution.

Normally a GNU distribution comes with Info files, and that means the Info files
are present in the source directory. Therefore, the Make rule for an info file should
update it in the source directory. When users build the package, ordinarily Make
will not update the Info files because they will already be up to date.

‘dvi’
‘html’
‘pdf’
‘ps’ Generate documentation files in the given format. These targets should always exist,

but any or all can be a no-op if the given output format cannot be generated. These
targets should not be dependencies of the all target; the user must manually invoke
them.

Here’s an example rule for generating DVI files from Texinfo:

dvi: foo.dvi

foo.dvi: foo.texi chap1.texi chap2.texi

$(TEXI2DVI) $(srcdir)/foo.texi

You must define the variable TEXI2DVI in the Makefile. It should run the program
texi2dvi, which is part of the Texinfo distribution. (texi2dvi uses TEX to do the
real work of formatting. TEX is not distributed with Texinfo.) Alternatively, write
only the dependencies, and allow GNU make to provide the command.

Here’s another example, this one for generating HTML from Texinfo:

html: foo.html

foo.html: foo.texi chap1.texi chap2.texi

$(TEXI2HTML) $(srcdir)/foo.texi

Again, you would define the variable TEXI2HTML in the Makefile; for example, it
might run makeinfo --no-split --html (makeinfo is part of the Texinfo distribu-
tion).

144 GNU make

‘dist’ Create a distribution tar file for this program. The tar file should be set up so that
the file names in the tar file start with a subdirectory name which is the name of
the package it is a distribution for. This name can include the version number.

For example, the distribution tar file of GCC version 1.40 unpacks into a subdirec-
tory named gcc-1.40.

The easiest way to do this is to create a subdirectory appropriately named, use ln

or cp to install the proper files in it, and then tar that subdirectory.

Compress the tar file with gzip. For example, the actual distribution file for GCC
version 1.40 is called gcc-1.40.tar.gz. It is ok to support other free compression
formats as well.

The dist target should explicitly depend on all non-source files that are in the
distribution, to make sure they are up to date in the distribution. See Section
“Making Releases” in GNU Coding Standards.

‘check’ Perform self-tests (if any). The user must build the program before running the
tests, but need not install the program; you should write the self-tests so that they
work when the program is built but not installed.

The following targets are suggested as conventional names, for programs in which they are
useful.

installcheck

Perform installation tests (if any). The user must build and install the program
before running the tests. You should not assume that $(bindir) is in the search
path.

installdirs

It’s useful to add a target named ‘installdirs’ to create the directories where files
are installed, and their parent directories. There is a script called mkinstalldirs

which is convenient for this; you can find it in the Gnulib package. You can use a
rule like this:

Make sure all installation directories (e.g. $(bindir))

actually exist by making them if necessary.

installdirs: mkinstalldirs

$(srcdir)/mkinstalldirs $(bindir) $(datadir) \

$(libdir) $(infodir) \

$(mandir)

or, if you wish to support DESTDIR (strongly encouraged),

Make sure all installation directories (e.g. $(bindir))

actually exist by making them if necessary.

installdirs: mkinstalldirs

$(srcdir)/mkinstalldirs \

$(DESTDIR)$(bindir) $(DESTDIR)$(datadir) \

$(DESTDIR)$(libdir) $(DESTDIR)$(infodir) \

$(DESTDIR)$(mandir)

This rule should not modify the directories where compilation is done. It should do
nothing but create installation directories.

15.7 Install Command Categories

When writing the install target, you must classify all the commands into three categories:
normal ones, pre-installation commands and post-installation commands.

Normal commands move files into their proper places, and set their modes. They may not
alter any files except the ones that come entirely from the package they belong to.

Chapter 15: Makefile Conventions 145

Pre-installation and post-installation commands may alter other files; in particular, they can
edit global configuration files or data bases.

Pre-installation commands are typically executed before the normal commands, and post-
installation commands are typically run after the normal commands.

The most common use for a post-installation command is to run install-info. This cannot
be done with a normal command, since it alters a file (the Info directory) which does not come
entirely and solely from the package being installed. It is a post-installation command because
it needs to be done after the normal command which installs the package’s Info files.

Most programs don’t need any pre-installation commands, but we have the feature just in
case it is needed.

To classify the commands in the install rule into these three categories, insert category
lines among them. A category line specifies the category for the commands that follow.

A category line consists of a tab and a reference to a special Make variable, plus an optional
comment at the end. There are three variables you can use, one for each category; the variable
name specifies the category. Category lines are no-ops in ordinary execution because these three
Make variables are normally undefined (and you should not define them in the makefile).

Here are the three possible category lines, each with a comment that explains what it means:
$(PRE_INSTALL) # Pre-install commands follow.
$(POST_INSTALL) # Post-install commands follow.
$(NORMAL_INSTALL) # Normal commands follow.

If you don’t use a category line at the beginning of the install rule, all the commands are
classified as normal until the first category line. If you don’t use any category lines, all the
commands are classified as normal.

These are the category lines for uninstall:
$(PRE_UNINSTALL) # Pre-uninstall commands follow.
$(POST_UNINSTALL) # Post-uninstall commands follow.
$(NORMAL_UNINSTALL) # Normal commands follow.

Typically, a pre-uninstall command would be used for deleting entries from the Info directory.

If the install or uninstall target has any dependencies which act as subroutines of instal-
lation, then you should start each dependency’s commands with a category line, and start the
main target’s commands with a category line also. This way, you can ensure that each command
is placed in the right category regardless of which of the dependencies actually run.

Pre-installation and post-installation commands should not run any programs except for
these:

[basename bash cat chgrp chmod chown cmp cp dd diff echo

egrep expand expr false fgrep find getopt grep gunzip gzip

hostname install install-info kill ldconfig ln ls md5sum

mkdir mkfifo mknod mv printenv pwd rm rmdir sed sort tee

test touch true uname xargs yes

The reason for distinguishing the commands in this way is for the sake of making binary
packages. Typically a binary package contains all the executables and other files that need
to be installed, and has its own method of installing them—so it does not need to run the
normal installation commands. But installing the binary package does need to execute the
pre-installation and post-installation commands.

Programs to build binary packages work by extracting the pre-installation and post-
installation commands. Here is one way of extracting the pre-installation commands (the -s

option to make is needed to silence messages about entering subdirectories):
make -s -n install -o all \

PRE_INSTALL=pre-install \

POST_INSTALL=post-install \

146 GNU make

NORMAL_INSTALL=normal-install \

| gawk -f pre-install.awk

where the file pre-install.awk could contain this:
$0 ~ /^(normal-install|post-install)[\t]*$/ {on = 0}

on {print $0}

$0 ~ /^pre-install[\t]*$/ {on = 1}

147

Appendix A Quick Reference

This appendix summarizes the directives, text manipulation functions, and special variables
which GNU make understands. See Section 4.8 [Special Targets], page 28, Section 10.2 [Catalogue
of Built-In Rules], page 98, and Section 9.7 [Summary of Options], page 91, for other summaries.

Here is a summary of the directives GNU make recognizes:

define variable

define variable =

define variable :=

define variable ::=

define variable +=

define variable ?=

endef Define multi-line variables.
See Section 6.8 [Multi-Line], page 61.

undefine variable

Undefining variables.
See Section 6.9 [Undefine Directive], page 62.

ifdef variable

ifndef variable

ifeq (a,b)

ifeq "a" "b"

ifeq ’a’ ’b’

ifneq (a,b)

ifneq "a" "b"

ifneq ’a’ ’b’

else

endif Conditionally evaluate part of the makefile.
See Chapter 7 [Conditionals], page 69.

include file

-include file

sinclude file

Include another makefile.
See Section 3.3 [Including Other Makefiles], page 10.

override variable-assignment

Define a variable, overriding any previous definition, even one from the command
line.
See Section 6.7 [The override Directive], page 61.

export Tell make to export all variables to child processes by default.
See Section 5.7.2 [Communicating Variables to a Sub-make], page 46.

export variable

export variable-assignment

unexport variable

Tell make whether or not to export a particular variable to child processes.
See Section 5.7.2 [Communicating Variables to a Sub-make], page 46.

private variable-assignment

Do not allow this variable assignment to be inherited by prerequisites.
See Section 6.13 [Suppressing Inheritance], page 65.

148 GNU make

vpath pattern path

Specify a search path for files matching a ‘%’ pattern.
See Section 4.4.2 [The vpath Directive], page 23.

vpath pattern

Remove all search paths previously specified for pattern.

vpath Remove all search paths previously specified in any vpath directive.

Here is a summary of the built-in functions (see Chapter 8 [Functions], page 73):

$(subst from,to,text)

Replace from with to in text.
See Section 8.2 [Functions for String Substitution and Analysis], page 73.

$(patsubst pattern,replacement,text)

Replace words matching pattern with replacement in text.
See Section 8.2 [Functions for String Substitution and Analysis], page 73.

$(strip string)

Remove excess whitespace characters from string.
See Section 8.2 [Functions for String Substitution and Analysis], page 73.

$(findstring find,text)

Locate find in text.
See Section 8.2 [Functions for String Substitution and Analysis], page 73.

$(filter pattern...,text)

Select words in text that match one of the pattern words.
See Section 8.2 [Functions for String Substitution and Analysis], page 73.

$(filter-out pattern...,text)

Select words in text that do not match any of the pattern words.
See Section 8.2 [Functions for String Substitution and Analysis], page 73.

$(sort list)

Sort the words in list lexicographically, removing duplicates.
See Section 8.2 [Functions for String Substitution and Analysis], page 73.

$(word n,text)

Extract the nth word (one-origin) of text.
See Section 8.2 [Functions for String Substitution and Analysis], page 73.

$(words text)

Count the number of words in text.
See Section 8.2 [Functions for String Substitution and Analysis], page 73.

$(wordlist s,e,text)

Returns the list of words in text from s to e.
See Section 8.2 [Functions for String Substitution and Analysis], page 73.

$(firstword names...)

Extract the first word of names.
See Section 8.2 [Functions for String Substitution and Analysis], page 73.

$(lastword names...)

Extract the last word of names.
See Section 8.2 [Functions for String Substitution and Analysis], page 73.

$(dir names...)

Extract the directory part of each file name.
See Section 8.3 [Functions for File Names], page 76.

Appendix A: Quick Reference 149

$(notdir names...)

Extract the non-directory part of each file name.
See Section 8.3 [Functions for File Names], page 76.

$(suffix names...)

Extract the suffix (the last ‘.’ and following characters) of each file name.
See Section 8.3 [Functions for File Names], page 76.

$(basename names...)

Extract the base name (name without suffix) of each file name.
See Section 8.3 [Functions for File Names], page 76.

$(addsuffix suffix,names...)

Append suffix to each word in names.
See Section 8.3 [Functions for File Names], page 76.

$(addprefix prefix,names...)

Prepend prefix to each word in names.
See Section 8.3 [Functions for File Names], page 76.

$(join list1,list2)

Join two parallel lists of words.
See Section 8.3 [Functions for File Names], page 76.

$(wildcard pattern...)

Find file names matching a shell file name pattern (not a ‘%’ pattern).
See Section 4.3.3 [The Function wildcard], page 22.

$(realpath names...)

For each file name in names, expand to an absolute name that does not contain any
., .., nor symlinks.
See Section 8.3 [Functions for File Names], page 76.

$(abspath names...)

For each file name in names, expand to an absolute name that does not contain any
. or .. components, but preserves symlinks.
See Section 8.3 [Functions for File Names], page 76.

$(error text...)

When this function is evaluated, make generates a fatal error with the message text.
See Section 8.12 [Functions That Control Make], page 85.

$(warning text...)

When this function is evaluated, make generates a warning with the message text.
See Section 8.12 [Functions That Control Make], page 85.

$(shell command)

Execute a shell command and return its output.
See Section 8.13 [The shell Function], page 85.

$(origin variable)

Return a string describing how the make variable variable was defined.
See Section 8.10 [The origin Function], page 83.

$(flavor variable)

Return a string describing the flavor of the make variable variable.
See Section 8.11 [The flavor Function], page 84.

$(foreach var,words,text)

Evaluate text with var bound to each word in words, and concatenate the results.
See Section 8.5 [The foreach Function], page 79.

150 GNU make

$(if condition,then-part[,else-part])

Evaluate the condition condition; if it’s non-empty substitute the expansion of the
then-part otherwise substitute the expansion of the else-part.
See Section 8.4 [Functions for Conditionals], page 78.

$(or condition1[,condition2[,condition3...]])

Evaluate each condition conditionN one at a time; substitute the first non-empty
expansion. If all expansions are empty, substitute the empty string.
See Section 8.4 [Functions for Conditionals], page 78.

$(and condition1[,condition2[,condition3...]])

Evaluate each condition conditionN one at a time; if any expansion results in the
empty string substitute the empty string. If all expansions result in a non-empty
string, substitute the expansion of the last condition.
See Section 8.4 [Functions for Conditionals], page 78.

$(call var,param,...)

Evaluate the variable var replacing any references to $(1), $(2) with the first,
second, etc. param values.
See Section 8.7 [The call Function], page 80.

$(eval text)

Evaluate text then read the results as makefile commands. Expands to the empty
string.
See Section 8.9 [The eval Function], page 82.

$(file op filename,text)

Expand the arguments, then open the file filename using mode op and write text
to that file.
See Section 8.6 [The file Function], page 80.

$(value var)

Evaluates to the contents of the variable var, with no expansion performed on it.
See Section 8.8 [The value Function], page 81.

Here is a summary of the automatic variables. See Section 10.5.3 [Automatic Variables],
page 105, for full information.

$@ The file name of the target.

$% The target member name, when the target is an archive member.

$< The name of the first prerequisite.

$? The names of all the prerequisites that are newer than the target, with spaces be-
tween them. For prerequisites which are archive members, only the named member
is used (see Chapter 11 [Archives], page 113).

$^

$+ The names of all the prerequisites, with spaces between them. For prerequisites
which are archive members, only the named member is used (see Chapter 11
[Archives], page 113). The value of $^ omits duplicate prerequisites, while $+ retains
them and preserves their order.

$* The stem with which an implicit rule matches (see Section 10.5.4 [How Patterns
Match], page 107).

$(@D)

$(@F) The directory part and the file-within-directory part of $@.

Appendix A: Quick Reference 151

$(*D)

$(*F) The directory part and the file-within-directory part of $*.

$(%D)

$(%F) The directory part and the file-within-directory part of $%.

$(<D)

$(<F) The directory part and the file-within-directory part of $<.

$(^D)

$(^F) The directory part and the file-within-directory part of $^.

$(+D)

$(+F) The directory part and the file-within-directory part of $+.

$(?D)

$(?F) The directory part and the file-within-directory part of $?.

These variables are used specially by GNU make:

MAKEFILES

Makefiles to be read on every invocation of make.
See Section 3.4 [The Variable MAKEFILES], page 11.

VPATH

Directory search path for files not found in the current directory.
See Section 4.4.1 [VPATH Search Path for All Prerequisites], page 23.

SHELL

The name of the system default command interpreter, usually /bin/sh. You can set
SHELL in the makefile to change the shell used to run recipes. See Section 5.3 [Recipe
Execution], page 39. The SHELL variable is handled specially when importing from
and exporting to the environment. See Section 5.3.2 [Choosing the Shell], page 41.

MAKESHELL

On MS-DOS only, the name of the command interpreter that is to be used by make.
This value takes precedence over the value of SHELL. See Section 5.3 [MAKESHELL
variable], page 39.

MAKE

The name with which make was invoked. Using this variable in recipes has special
meaning. See Section 5.7.1 [How the MAKE Variable Works], page 46.

MAKE_VERSION

The built-in variable ‘MAKE_VERSION’ expands to the version number of the GNU
make program.

MAKE_HOST

The built-in variable ‘MAKE_HOST’ expands to a string representing the host that
GNU make was built to run on.

MAKELEVEL

The number of levels of recursion (sub-makes).
See Section 5.7.2 [Variables/Recursion], page 46.

MAKEFLAGS

The flags given to make. You can set this in the environment or a makefile to set
flags.
See Section 5.7.3 [Communicating Options to a Sub-make], page 48.

152 GNU make

It is never appropriate to use MAKEFLAGS directly in a recipe line: its contents may
not be quoted correctly for use in the shell. Always allow recursive make’s to obtain
these values through the environment from its parent.

GNUMAKEFLAGS

Other flags parsed by make. You can set this in the environment or a makefile to set
make command-line flags. GNU make never sets this variable itself. This variable
is only needed if you’d like to set GNU make-specific flags in a POSIX-compliant
makefile. This variable will be seen by GNU make and ignored by other make imple-
mentations. It’s not needed if you only use GNU make; just use MAKEFLAGS directly.
See Section 5.7.3 [Communicating Options to a Sub-make], page 48.

MAKECMDGOALS

The targets given to make on the command line. Setting this variable has no effect
on the operation of make.
See Section 9.2 [Arguments to Specify the Goals], page 87.

CURDIR

Set to the pathname of the current working directory (after all -C options are pro-
cessed, if any). Setting this variable has no effect on the operation of make.
See Section 5.7 [Recursive Use of make], page 45.

SUFFIXES

The default list of suffixes before make reads any makefiles.

.LIBPATTERNS

Defines the naming of the libraries make searches for, and their order.
See Section 4.4.6 [Directory Search for Link Libraries], page 25.

153

Appendix B Errors Generated by Make

Here is a list of the more common errors you might see generated by make, and some information
about what they mean and how to fix them.

Sometimes make errors are not fatal, especially in the presence of a - prefix on a recipe line,
or the -k command line option. Errors that are fatal are prefixed with the string ***.

Error messages are all either prefixed with the name of the program (usually ‘make’), or, if
the error is found in a makefile, the name of the file and line number containing the problem.

In the table below, these common prefixes are left off.

‘[foo] Error NN’
‘[foo] signal description’

These errors are not really make errors at all. They mean that a program that make
invoked as part of a recipe returned a non-0 error code (‘Error NN’), which make

interprets as failure, or it exited in some other abnormal fashion (with a signal of
some type). See Section 5.5 [Errors in Recipes], page 44.

If no *** is attached to the message, then the sub-process failed but the rule in the
makefile was prefixed with the - special character, so make ignored the error.

‘missing separator. Stop.’
‘missing separator (did you mean TAB instead of 8 spaces?). Stop.’

This means that make could not understand much of anything about the makefile line
it just read. GNU make looks for various separators (:, =, recipe prefix characters,
etc.) to indicate what kind of line it’s parsing. This message means it couldn’t find
a valid one.

One of the most common reasons for this message is that you (or perhaps your
oh-so-helpful editor, as is the case with many MS-Windows editors) have attempted
to indent your recipe lines with spaces instead of a tab character. In this case, make
will use the second form of the error above. Remember that every line in the recipe
must begin with a tab character (unless you set .RECIPEPREFIX; see Section 6.14
[Special Variables], page 65). Eight spaces do not count. See Section 4.1 [Rule
Syntax], page 19.

‘recipe commences before first target. Stop.’
‘missing rule before recipe. Stop.’

This means the first thing in the makefile seems to be part of a recipe: it begins
with a recipe prefix character and doesn’t appear to be a legal make directive (such
as a variable assignment). Recipes must always be associated with a target.

The second form is generated if the line has a semicolon as the first non-whitespace
character; make interprets this to mean you left out the "target: prerequisite" section
of a rule. See Section 4.1 [Rule Syntax], page 19.

‘No rule to make target ‘xxx’.’
‘No rule to make target ‘xxx’, needed by ‘yyy’.’

This means that make decided it needed to build a target, but then couldn’t find any
instructions in the makefile on how to do that, either explicit or implicit (including
in the default rules database).

If you want that file to be built, you will need to add a rule to your makefile
describing how that target can be built. Other possible sources of this problem are
typos in the makefile (if that file name is wrong) or a corrupted source tree (if that
file is not supposed to be built, but rather only a prerequisite).

154 GNU make

‘No targets specified and no makefile found. Stop.’
‘No targets. Stop.’

The former means that you didn’t provide any targets to be built on the command
line, and make couldn’t find any makefiles to read in. The latter means that some
makefile was found, but it didn’t contain any default goal and none was given on
the command line. GNU make has nothing to do in these situations. See Section 9.1
[Arguments to Specify the Makefile], page 87.

‘Makefile ‘xxx’ was not found.’
‘Included makefile ‘xxx’ was not found.’

A makefile specified on the command line (first form) or included (second form) was
not found.

‘warning: overriding recipe for target ‘xxx’’
‘warning: ignoring old recipe for target ‘xxx’’

GNU make allows only one recipe to be specified per target (except for double-colon
rules). If you give a recipe for a target which already has been defined to have one,
this warning is issued and the second recipe will overwrite the first. See Section 4.10
[Multiple Rules for One Target], page 31.

‘Circular xxx <- yyy dependency dropped.’
This means that make detected a loop in the dependency graph: after tracing the
prerequisite yyy of target xxx, and its prerequisites, etc., one of them depended on
xxx again.

‘Recursive variable ‘xxx’ references itself (eventually). Stop.’
This means you’ve defined a normal (recursive) make variable xxx that, when it’s
expanded, will refer to itself (xxx). This is not allowed; either use simply-expanded
variables (‘:=’ or ‘::=’) or use the append operator (‘+=’). See Chapter 6 [How to
Use Variables], page 53.

‘Unterminated variable reference. Stop.’
This means you forgot to provide the proper closing parenthesis or brace in your
variable or function reference.

‘insufficient arguments to function ‘xxx’. Stop.’
This means you haven’t provided the requisite number of arguments for this func-
tion. See the documentation of the function for a description of its arguments. See
Chapter 8 [Functions for Transforming Text], page 73.

‘missing target pattern. Stop.’
‘multiple target patterns. Stop.’
‘target pattern contains no ‘%’. Stop.’
‘mixed implicit and static pattern rules. Stop.’

These are generated for malformed static pattern rules. The first means there’s
no pattern in the target section of the rule; the second means there are multiple
patterns in the target section; the third means the target doesn’t contain a pattern
character (%); and the fourth means that all three parts of the static pattern rule
contain pattern characters (%)–only the first two parts should. If you see these
errors and you aren’t trying to create a static pattern rule, check the value of any
variables in your target and prerequisite lists to be sure they do not contain colons.
See Section 4.11.1 [Syntax of Static Pattern Rules], page 32.

‘warning: -jN forced in submake: disabling jobserver mode.’
This warning and the next are generated if make detects error conditions related to
parallel processing on systems where sub-makes can communicate (see Section 5.7.3

Appendix B: Errors Generated by Make 155

[Communicating Options to a Sub-make], page 48). This warning is generated if a
recursive invocation of a make process is forced to have ‘-jN’ in its argument list
(where N is greater than one). This could happen, for example, if you set the MAKE
environment variable to ‘make -j2’. In this case, the sub-make doesn’t communicate
with other make processes and will simply pretend it has two jobs of its own.

‘warning: jobserver unavailable: using -j1. Add ‘+’ to parent make rule.’
In order for make processes to communicate, the parent will pass information to
the child. Since this could result in problems if the child process isn’t actually a
make, the parent will only do this if it thinks the child is a make. The parent uses
the normal algorithms to determine this (see Section 5.7.1 [How the MAKE Variable
Works], page 46). If the makefile is constructed such that the parent doesn’t know
the child is a make process, then the child will receive only part of the information
necessary. In this case, the child will generate this warning message and proceed
with its build in a sequential manner.

157

Appendix C Complex Makefile Example

Here is the makefile for the GNU tar program. This is a moderately complex makefile. The
first line uses a #! setting to allow the makefile to be executed directly.

Because it is the first target, the default goal is ‘all’. An interesting feature of this makefile
is that testpad.h is a source file automatically created by the testpad program, itself compiled
from testpad.c.

If you type ‘make’ or ‘make all’, then make creates the tar executable, the rmt daemon that
provides remote tape access, and the tar.info Info file.

If you type ‘make install’, then make not only creates tar, rmt, and tar.info, but also
installs them.

If you type ‘make clean’, then make removes the ‘.o’ files, and the tar, rmt, testpad,
testpad.h, and core files.

If you type ‘make distclean’, then make not only removes the same files as does ‘make clean’
but also the TAGS, Makefile, and config.status files. (Although it is not evident, this makefile
(and config.status) is generated by the user with the configure program, which is provided
in the tar distribution, but is not shown here.)

If you type ‘make realclean’, then make removes the same files as does ‘make distclean’
and also removes the Info files generated from tar.texinfo.

In addition, there are targets shar and dist that create distribution kits.

#!/usr/bin/make -f

Generated automatically from Makefile.in by configure.

Un*x Makefile for GNU tar program.

Copyright (C) 1991 Free Software Foundation, Inc.

This program is free software; you can redistribute

it and/or modify it under the terms of the GNU

General Public License ...

...

...

SHELL = /bin/sh

Start of system configuration section.

srcdir = .

If you use gcc, you should either run the

fixincludes script that comes with it or else use

gcc with the -traditional option. Otherwise ioctl

calls will be compiled incorrectly on some systems.

CC = gcc -O

YACC = bison -y

INSTALL = /usr/local/bin/install -c

INSTALLDATA = /usr/local/bin/install -c -m 644

Things you might add to DEFS:

-DSTDC_HEADERS If you have ANSI C headers and

libraries.

-DPOSIX If you have POSIX.1 headers and

158 GNU make

libraries.

-DBSD42 If you have sys/dir.h (unless

you use -DPOSIX), sys/file.h,

and st_blocks in ‘struct stat’.

-DUSG If you have System V/ANSI C

string and memory functions

and headers, sys/sysmacros.h,

fcntl.h, getcwd, no valloc,

and ndir.h (unless

you use -DDIRENT).

-DNO_MEMORY_H If USG or STDC_HEADERS but do not

include memory.h.

-DDIRENT If USG and you have dirent.h

instead of ndir.h.

-DSIGTYPE=int If your signal handlers

return int, not void.

-DNO_MTIO If you lack sys/mtio.h

(magtape ioctls).

-DNO_REMOTE If you do not have a remote shell

or rexec.

-DUSE_REXEC To use rexec for remote tape

operations instead of

forking rsh or remsh.

-DVPRINTF_MISSING If you lack vprintf function

(but have _doprnt).

-DDOPRNT_MISSING If you lack _doprnt function.

Also need to define

-DVPRINTF_MISSING.

-DFTIME_MISSING If you lack ftime system call.

-DSTRSTR_MISSING If you lack strstr function.

-DVALLOC_MISSING If you lack valloc function.

-DMKDIR_MISSING If you lack mkdir and

rmdir system calls.

-DRENAME_MISSING If you lack rename system call.

-DFTRUNCATE_MISSING If you lack ftruncate

system call.

-DV7 On Version 7 Unix (not

tested in a long time).

-DEMUL_OPEN3 If you lack a 3-argument version

of open, and want to emulate it

with system calls you do have.

-DNO_OPEN3 If you lack the 3-argument open

and want to disable the tar -k

option instead of emulating open.

-DXENIX If you have sys/inode.h

and need it 94 to be included.

DEFS = -DSIGTYPE=int -DDIRENT -DSTRSTR_MISSING \

-DVPRINTF_MISSING -DBSD42

Set this to rtapelib.o unless you defined NO_REMOTE,

in which case make it empty.

RTAPELIB = rtapelib.o

Appendix C: Complex Makefile Example 159

LIBS =

DEF_AR_FILE = /dev/rmt8

DEFBLOCKING = 20

CDEBUG = -g

CFLAGS = $(CDEBUG) -I. -I$(srcdir) $(DEFS) \

-DDEF_AR_FILE=\"$(DEF_AR_FILE)\" \

-DDEFBLOCKING=$(DEFBLOCKING)

LDFLAGS = -g

prefix = /usr/local

Prefix for each installed program,

normally empty or ‘g’.

binprefix =

The directory to install tar in.

bindir = $(prefix)/bin

The directory to install the info files in.

infodir = $(prefix)/info

End of system configuration section.

SRCS_C = tar.c create.c extract.c buffer.c \

getoldopt.c update.c gnu.c mangle.c \

version.c list.c names.c diffarch.c \

port.c wildmat.c getopt.c getopt1.c \

regex.c

SRCS_Y = getdate.y

SRCS = $(SRCS_C) $(SRCS_Y)

OBJS = $(SRCS_C:.c=.o) $(SRCS_Y:.y=.o) $(RTAPELIB)

AUX = README COPYING ChangeLog Makefile.in \

makefile.pc configure configure.in \

tar.texinfo tar.info* texinfo.tex \

tar.h port.h open3.h getopt.h regex.h \

rmt.h rmt.c rtapelib.c alloca.c \

msd_dir.h msd_dir.c tcexparg.c \

level-0 level-1 backup-specs testpad.c

.PHONY: all

all: tar rmt tar.info

tar: $(OBJS)

$(CC) $(LDFLAGS) -o $@ $(OBJS) $(LIBS)

rmt: rmt.c

$(CC) $(CFLAGS) $(LDFLAGS) -o $@ rmt.c

tar.info: tar.texinfo

makeinfo tar.texinfo

160 GNU make

.PHONY: install

install: all

$(INSTALL) tar $(bindir)/$(binprefix)tar

-test ! -f rmt || $(INSTALL) rmt /etc/rmt

$(INSTALLDATA) $(srcdir)/tar.info* $(infodir)

$(OBJS): tar.h port.h testpad.h

regex.o buffer.o tar.o: regex.h

getdate.y has 8 shift/reduce conflicts.

testpad.h: testpad

./testpad

testpad: testpad.o

$(CC) -o $@ testpad.o

TAGS: $(SRCS)

etags $(SRCS)

.PHONY: clean

clean:

rm -f *.o tar rmt testpad testpad.h core

.PHONY: distclean

distclean: clean

rm -f TAGS Makefile config.status

.PHONY: realclean

realclean: distclean

rm -f tar.info*

.PHONY: shar

shar: $(SRCS) $(AUX)

shar $(SRCS) $(AUX) | compress \

> tar-‘sed -e ’/version_string/!d’ \

-e ’s/[^0-9.]*\([0-9.]*\).*/\1/’ \

-e q

version.c‘.shar.Z

.PHONY: dist

dist: $(SRCS) $(AUX)

echo tar-‘sed \

-e ’/version_string/!d’ \

-e ’s/[^0-9.]*\([0-9.]*\).*/\1/’ \

-e q

version.c‘ > .fname

-rm -rf ‘cat .fname‘

mkdir ‘cat .fname‘

ln $(SRCS) $(AUX) ‘cat .fname‘

tar chZf ‘cat .fname‘.tar.Z ‘cat .fname‘

-rm -rf ‘cat .fname‘ .fname

Appendix C: Complex Makefile Example 161

tar.zoo: $(SRCS) $(AUX)

-rm -rf tmp.dir

-mkdir tmp.dir

-rm tar.zoo

for X in $(SRCS) $(AUX) ; do \

echo $$X ; \

sed ’s/$$/^M/’ $$X \

> tmp.dir/$$X ; done

cd tmp.dir ; zoo aM ../tar.zoo *

-rm -rf tmp.dir

C.1 GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship

http://fsf.org/

162 GNU make

could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifi-
cation. Examples of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no

Appendix C: Complex Makefile Example 163

other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

164 GNU make

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the

Appendix C: Complex Makefile Example 165

combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

166 GNU make

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See http://
www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

Appendix C: Complex Makefile Example 167

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

169

Index of Concepts

!
!= . 59
!=, expansion . 14

#
(comments), in makefile . 9
(comments), in recipes . 37
#include . 34

$
$, in function call . 73
$, in rules . 19
$, in variable name . 56
$, in variable reference . 53

%
%, in pattern rules . 104
%, quoting in patsubst . 74
%, quoting in static pattern . 32
%, quoting in vpath . 23
%, quoting with \ (backslash) 23, 32, 74

*
* (wildcard character) . 21

+
+, and define . 50
+, and recipe execution . 89
+, and recipes . 46
+= . 59
+=, expansion . 14

,
,v (RCS file extension) . 100

–
- (in recipes) . 44
-, and define . 50
--always-make . 91
--assume-new . 89, 95
--assume-new, and recursion . 48
--assume-old . 90, 94
--assume-old, and recursion . 48
--check-symlink-times . 93
--debug . 92
--directory . 46, 92
--directory, and --print-directory 50
--directory, and recursion . 48
--dry-run . 39, 89, 93
--environment-overrides . 92
--eval . 92
--file . 10, 87, 93

--file, and recursion . 48
--help . 93
--ignore-errors . 44, 93
--include-dir . 11, 93
--jobs . 42, 93
--jobs, and recursion . 48
--just-print . 39, 89, 93
--keep-going . 45, 91, 93
--load-average . 42, 93
--makefile . 10, 87, 93
--max-load . 42, 93
--new-file . 89, 95
--new-file, and recursion . 48
--no-builtin-rules . 94
--no-builtin-variables . 94
--no-keep-going . 95
--no-print-directory . 50, 95
--old-file . 90, 94
--old-file, and recursion . 48
--output-sync . 43, 94
--print-data-base . 94
--print-directory . 95
--print-directory, and --directory 50
--print-directory, and recursion 50
--print-directory, disabling . 50
--question . 89, 94
--quiet . 39, 95
--recon . 39, 89, 93
--silent . 39, 95
--stop . 95
--touch . 89, 95
--touch, and recursion . 46
--trace . 95
--version . 95
--warn-undefined-variables . 95
--what-if . 89, 95
-b . 91
-B . 91
-C . 46, 92
-C, and -w . 50
-C, and recursion . 48
-d . 92
-e . 92
-e (shell flag) . 35
-f . 10, 87, 93
-f, and recursion . 48
-h . 93
-i . 44, 93
-I . 11, 93
-j . 42, 93
-j, and archive update . 114
-j, and recursion . 48
-k . 45, 91, 93
-l . 93
-l (library search) . 25
-l (load average) . 42
-L . 93
-m . 91
-M (to compiler) . 34
-MM (to GNU compiler) . 35
-n . 39, 89, 93

170 GNU make

-o . 90, 94
-o, and recursion . 48
-O . 43, 94
-p . 94
-q . 89, 94
-r . 94
-R . 94
-s . 39, 95
-S . 95
-t . 89, 95
-t, and recursion . 46
-v . 95
-w . 95
-w, and -C . 50
-w, and recursion . 50
-w, disabling . 50
-W . 89, 95
-W, and recursion . 48

.

.a (archives) . 114

.c . 98

.cc . 98

.ch . 100

.cpp . 98

.C . 98

.d . 35

.def . 99

.dvi . 100

.f . 98

.F . 98

.info . 100

.l . 100

.LIBPATTERNS, and link libraries 25

.ln . 100

.mod . 99

.o . 98, 99

.ONESHELL, use of . 40

.p . 98

.PRECIOUS intermediate files . 103

.r . 98

.s . 99

.sh . 100

.sym . 99

.S . 99

.SHELLFLAGS, value of . 41

.tex . 100

.texi . 100

.texinfo . 100

.txinfo . 100

.w . 100

.web . 100

.y . 99

:
:: rules (double-colon) . 34
::= . 54, 59
:= . 54, 59

=
= . 54, 59
=, expansion . 14

?
? (wildcard character) . 21
?= . 55, 59
?=, expansion . 14

@
@ (in recipes) . 39
@, and define . 50

[
[...] (wildcard characters) . 21

__.SYMDEF . 114

\
\ (backslash), for continuation lines 4
\ (backslash), in recipes . 37
\ (backslash), to quote % 23, 32, 74

~
~ (tilde) . 21

A
abspath . 78
algorithm for directory search . 24
all (standard target) . 88
appending to variables . 59
ar . 101
archive . 113
archive member targets . 113
archive symbol directory updating 114
archive, and -j . 114
archive, and parallel execution 114
archive, suffix rule for . 114
Arg list too long . 49
arguments of functions . 73
as . 99, 101
assembly, rule to compile . 99
automatic generation of prerequisites 11, 34
automatic variables . 105
automatic variables in prerequisites 105

Index of Concepts 171

B
backquotes . 85
backslash (\), for continuation lines 4
backslash (\), in recipes . 37
backslash (\), to quote % 23, 32, 74
backslash (\), to quote newlines . 9
backslashes in pathnames and

wildcard expansion . 22
basename . 77
binary packages . 145
broken pipe . 44
bugs, reporting . 1
built-in special targets . 28

C
C++, rule to compile . 98
C, rule to compile . 98
canned recipes . 50
cc . 98, 101
cd (shell command) . 39, 46
chains of rules . 103
check (standard target) . 88
clean (standard target) . 88
clean target . 5, 7
cleaning up . 7
clobber (standard target) . 88
co . 100, 101
combining rules by prerequisite . 7
command expansion . 85
command line variable definitions, and recursion . . 48
command line variables . 90
commands, sequences of . 50
comments, in makefile . 9
comments, in recipes . 37
compatibility . 127
compatibility in exporting . 48
compilation, testing . 91
computed variable name . 56
conditional expansion . 78
conditional variable assignment 55
conditionals . 69
continuation lines . 4
controlling make . 85
conventions for makefiles . 133
convert guile types . 117
ctangle . 100, 102
cweave . 100, 102

D
data base of make rules . 94
deducing recipes (implicit rules) 6
default directories for included makefiles 11
default goal . 5, 19
default makefile name . 10
default rules, last-resort . 109
define, expansion . 14
defining variables verbatim . 61
deletion of target files . 45
directive . 9
directories, creating installation 136
directories, printing them . 50
directories, updating archive symbol 114

directory part . 77
directory search (VPATH) . 22
directory search (VPATH), and implicit rules 25
directory search (VPATH), and link libraries 25
directory search (VPATH), and recipes 25
directory search algorithm . 24
directory search, traditional (GPATH) 24
dist (standard target) . 88
distclean (standard target) . 88
dollar sign ($), in function call . 73
dollar sign ($), in rules . 19
dollar sign ($), in variable name 56
dollar sign ($), in variable reference 53
DOS, choosing a shell in . 41
double-colon rules . 34
duplicate words, removing . 75

E
E2BIG . 49
echoing of recipes . 39
editor . 3
Emacs (M-x compile) . 45
empty recipes . 51
empty targets . 28
environment . 63
environment, and recursion . 46
environment, SHELL in . 41
error, stopping on . 85
errors (in recipes) . 44
errors with wildcards . 21
evaluating makefile syntax . 82
example of loaded objects . 123
example using Guile . 118
execution, in parallel . 42
execution, instead of . 89
execution, of recipes . 39
exit status (errors) . 44
exit status of make . 87
expansion, secondary . 15
explicit rule, definition of . 9
explicit rule, expansion . 14
explicit rules, secondary expansion of 16
exporting variables . 46
extensions, Guile . 117
extensions, load directive . 120
extensions, loading . 119

F
f77 . 98, 101
FDL, GNU Free Documentation License 161
features of GNU make . 127
features, missing . 131
file name functions . 76
file name of makefile . 10
file name of makefile, how to specify 10
file name prefix, adding . 77
file name suffix . 77
file name suffix, adding . 77
file name with wildcards . 21
file name, abspath of . 78
file name, basename of . 77
file name, directory part . 77

172 GNU make

file name, nondirectory part . 77
file name, realpath of . 78
file, writing to . 80
files, assuming new . 89
files, assuming old . 90
files, avoiding recompilation of . 90
files, intermediate . 103
filtering out words . 75
filtering words . 75
finding strings . 75
flags . 91
flags for compilers . 101
flavor of variable . 84
flavors of variables . 54
force targets . 28
FORCE . 28
Fortran, rule to compile . 98
functions . 73
functions, for controlling make . 85
functions, for file names . 76
functions, for text . 73
functions, syntax of . 73
functions, user defined . 80

G
g++ . 98, 101
gcc . 98
generating prerequisites automatically 11, 34
get . 100, 101
globbing (wildcards) . 21
goal . 5
goal, default . 5, 19
goal, how to specify . 87
Guile . 86, 117
Guile example . 118
guile, conversion of types . 117

H
home directory . 21

I
IEEE Standard 1003.2 . 1
ifdef, expansion . 14
ifeq, expansion . 14
ifndef, expansion . 14
ifneq, expansion . 14
implicit rule . 97
implicit rule, and directory search 25
implicit rule, and VPATH . 25
implicit rule, definition of . 9
implicit rule, expansion . 14
implicit rule, how to use . 97
implicit rule, introduction to . 6
implicit rule, predefined . 98
implicit rule, search algorithm 111
implicit rules, secondary expansion of 17
included makefiles, default directories 11
including (MAKEFILE_LIST variable) 65
including (MAKEFILES variable) . 11
including other makefiles . 10
incompatibilities . 131

Info, rule to format . 100

inheritance, suppressing . 65

input during parallel execution 44

install (standard target) . 88

installation directories, creating 136

installations, staged . 135

interface for loaded objects . 121

intermediate files . 103

intermediate files, preserving . 103

intermediate targets, explicit . 29

interrupt . 45

J
job slots . 42

job slots, and recursion . 48

jobs, limiting based on load . 42

joining lists of words . 78

K
killing (interruption) . 45

L
last-resort default rules . 109

ld . 99

lex . 100, 102

Lex, rule to run . 100

libraries for linking, directory search 25

library archive, suffix rule for . 114

limiting jobs based on load . 42

link libraries, and directory search 25

link libraries, patterns matching 25

linking, predefined rule for . 99

lint . 100, 102

lint, rule to run . 100

list of all prerequisites . 106

list of changed prerequisites . 105

load average . 42

load directive . 120

loaded object API . 121

loaded object example . 123

loaded object licensing . 121

loaded objects . 119

loaded objects, remaking of . 121

long lines, splitting . 9

loops in variable expansion . 54

lpr (shell command) . 21, 28

Index of Concepts 173

M
m2c . 99, 101
macro . 53
make depend . 34
make extensions . 117
make interface to guile . 118
make procedures in guile . 118
makefile . 3
makefile name . 10
makefile name, how to specify . 10
makefile rule parts . 3
makefile syntax, evaluating . 82
makefile, and MAKEFILES variable 11
makefile, conventions for . 133
makefile, how make processes . 5
makefile, how to write . 9
makefile, including . 10
makefile, overriding . 13
makefile, parsing . 13
makefile, remaking of . 12
makefile, simple . 3
makefiles, and MAKEFILE_LIST variable 65
makefiles, and special variables 65
makeinfo . 100, 102
match-anything rule . 108
match-anything rule, used to override 13
missing features . 131
mistakes with wildcards . 21
modified variable reference . 56
Modula-2, rule to compile . 99
mostlyclean (standard target) . 88
multi-line variable definition . 61
multiple rules for one target . 31
multiple rules for one target (::) 34
multiple targets . 31
multiple targets, in pattern rule 104

N
name of makefile . 10
name of makefile, how to specify 10
nested variable reference . 56
newline, quoting, in makefile . 4
newline, quoting, in recipes . 37
nondirectory part . 77
normal prerequisites . 20

O
obj . 5
objects . 5
objects, loaded . 119
OBJ . 5
OBJECTS . 5
objs . 5
OBJS . 5
old-fashioned suffix rules . 110
options . 91
options, and recursion . 48
options, setting from environment 49
options, setting in makefiles . 49
order of pattern rules . 107
order-only prerequisites . 20
origin of variable . 83

output during parallel execution 43, 94
overriding makefiles . 13
overriding variables with arguments 90
overriding with override . 61

P
parallel execution . 42
parallel execution, and archive update 114
parallel execution, input during 44
parallel execution, output during 43, 94
parallel execution, overriding . 30
parts of makefile rule . 3
Pascal, rule to compile . 98
pattern rule . 104
pattern rule, expansion . 14
pattern rules, order of . 107
pattern rules, static (not implicit) 32
pattern rules, static, syntax of . 32
pattern-specific variables . 64
pc . 98, 101
phony targets . 26
phony targets and recipe execution 89
pitfalls of wildcards . 21
plugin is GPL compatible . 121
portability . 127
POSIX . 1, 49
POSIX-conforming mode, setting 30
post-installation commands . 144
pre-installation commands . 144
precious targets . 29
predefined rules and variables, printing 94
prefix, adding . 77
prerequisite . 19
prerequisite pattern, implicit . 104
prerequisite pattern, static (not implicit) 32
prerequisite types . 20
prerequisite, expansion . 14
prerequisites . 19
prerequisites, and automatic variables 105
prerequisites, automatic generation 11, 34
prerequisites, introduction to . 3
prerequisites, list of all . 106
prerequisites, list of changed . 105
prerequisites, normal . 20
prerequisites, order-only . 20
prerequisites, varying (static pattern) 32
preserving intermediate files . 103
preserving with .PRECIOUS 29, 103
preserving with .SECONDARY . 29
print (standard target) . 88
print target . 21, 28
printing directories . 50
printing messages . 85
printing of recipes . 39
printing user warnings . 85
problems and bugs, reporting . 1
problems with wildcards . 21
processing a makefile . 5

174 GNU make

Q
question mode . 89
quoting %, in patsubst . 74
quoting %, in static pattern . 32
quoting %, in vpath . 23
quoting newline, in makefile . 4
quoting newline, in recipes . 37

R
Ratfor, rule to compile . 98
RCS, rule to extract from . 100
reading makefiles . 13
README . 10
realclean (standard target) . 88
realpath . 78
recipe . 4
recipe execution, single invocation 30
recipe lines, single shell . 40
recipe syntax . 37
recipe, execution . 39
recipes . 19, 37
recipes setting shell variables . 39
recipes, and directory search . 25
recipes, backslash (\) in . 37
recipes, canned . 50
recipes, comments in . 37
recipes, echoing . 39
recipes, empty . 51
recipes, errors in . 44
recipes, execution in parallel . 42
recipes, how to write . 37
recipes, instead of executing . 89
recipes, introduction to . 3
recipes, quoting newlines in . 37
recipes, splitting . 37
recipes, using variables in . 39
recompilation . 3
recompilation, avoiding . 90
recording events with empty targets 28
recursion . 45
recursion, and -C . 48
recursion, and -f . 48
recursion, and -j . 48
recursion, and -o . 48
recursion, and -t . 46
recursion, and -w . 50
recursion, and -W . 48
recursion, and command line variable definitions . . 48
recursion, and environment . 46
recursion, and MAKE variable . 46
recursion, and MAKEFILES variable 11
recursion, and options . 48
recursion, and printing directories 50
recursion, and variables . 46
recursion, level of . 48
recursive variable expansion 53, 54
recursively expanded variables . 54
reference to variables . 53, 56
relinking . 5
remaking loaded objects . 121
remaking makefiles . 12
removal of target files . 45
removing duplicate words . 75

removing targets on failure . 29
removing, to clean up . 7
reporting bugs . 1
rm . 102
rm (shell command) . 5, 21, 26, 44
rule prerequisites . 19
rule syntax . 19
rule targets . 19
rule, double-colon (::) . 34
rule, explicit, definition of . 9
rule, how to write . 19
rule, implicit . 97
rule, implicit, and directory search 25
rule, implicit, and VPATH . 25
rule, implicit, chains of . 103
rule, implicit, definition of . 9
rule, implicit, how to use . 97
rule, implicit, introduction to . 6
rule, implicit, predefined . 98
rule, introduction to . 3
rule, multiple for one target . 31
rule, no recipe or prerequisites . 28
rule, pattern . 104
rule, static pattern . 32
rule, static pattern versus implicit 33
rule, with multiple targets . 31
rules, and $. 19

S
s. (SCCS file prefix) . 100
SCCS, rule to extract from . 100
search algorithm, implicit rule 111
search path for prerequisites (VPATH) 22
search path for prerequisites (VPATH),

and implicit rules . 25
search path for prerequisites (VPATH),

and link libraries . 25
searching for strings . 75
secondary expansion . 15
secondary expansion and explicit rules 16
secondary expansion and implicit rules 17
secondary expansion and static pattern rules 16
secondary files . 103
secondary targets . 29
sed (shell command) . 35
selecting a word . 75
selecting word lists . 76
sequences of commands . 50
setting options from environment 49
setting options in makefiles . 49
setting variables . 59
several rules for one target . 31
several targets in a rule . 31
shar (standard target) . 88
shell command, function for . 85
shell file name pattern (in include) 10
shell variables, setting in recipes 39
shell wildcards (in include) . 10
shell, choosing the . 41
shell, in DOS and Windows . 41
SHELL, exported value . 47
SHELL, import from environment 63
SHELL, MS-DOS specifics . 41

Index of Concepts 175

SHELL, value of . 41
signal . 45
silent operation . 39
simple makefile . 3
simple variable expansion . 53
simplifying with variables . 5
simply expanded variables . 54
sorting words . 75
spaces, in variable values . 55
spaces, stripping . 74
special targets . 28
special variables . 65
specifying makefile name . 10
splitting long lines . 9
splitting recipes . 37
staged installs . 135
standard input . 44
standards conformance . 1
standards for makefiles . 133
static pattern rule . 32
static pattern rule, syntax of . 32
static pattern rule, versus implicit 33
static pattern rules, secondary expansion of 16
stem . 32, 107
stem, shortest . 107
stem, variable for . 106
stopping make . 85
strings, searching for . 75
stripping whitespace . 74
sub-make . 46
subdirectories, recursion for . 45
substitution variable reference . 56
suffix rule . 110
suffix rule, for archive . 114
suffix, adding . 77
suffix, function to find . 77
suffix, substituting in variables . 56
suppressing inheritance . 65
switches . 91
symbol directories, updating archive 114
syntax of recipe . 37
syntax of rules . 19

T
tab character (in commands) . 19
tabs in rules . 3
TAGS (standard target) . 88
tangle . 100, 102
tar (standard target) . 88
target . 19
target pattern, implicit . 104
target pattern, static (not implicit) 32
target, deleting on error . 45
target, deleting on interrupt . 45
target, expansion . 14
target, multiple in pattern rule 104
target, multiple rules for one . 31
target, touching . 89
target-specific variables . 63
targets . 19
targets without a file . 26
targets, built-in special . 28
targets, empty . 28

targets, force . 28
targets, introduction to . 3
targets, multiple . 31
targets, phony . 26
terminal rule . 108
test (standard target) . 88
testing compilation . 91
tex . 100, 102
TEX, rule to run . 100
texi2dvi . 100, 102
Texinfo, rule to format . 100
tilde (~) . 21
touch (shell command) . 21, 28
touching files . 89
traditional directory search (GPATH) 24
types of prerequisites . 20
types, conversion of . 117

U
undefined variables, warning message 95
undefining variable . 62
updating archive symbol directories 114
updating loaded objects . 121
updating makefiles . 12
user defined functions . 80

V
value . 53
value, how a variable gets it . 58
variable . 53
variable definition . 9
variable references in recipes . 39
variables . 5
variables, ‘$’ in name . 56
variables, and implicit rule . 105
variables, appending to . 59
variables, automatic . 105
variables, command line . 90
variables, command line, and recursion 48
variables, computed names . 56
variables, conditional assignment 55
variables, defining verbatim . 61
variables, environment . 46, 63
variables, exporting . 46
variables, flavor of . 84
variables, flavors . 54
variables, how they get their values 58
variables, how to reference . 53
variables, loops in expansion . 54
variables, modified reference . 56
variables, multi-line . 61
variables, nested references . 56
variables, origin of . 83
variables, overriding . 61
variables, overriding with arguments 90
variables, pattern-specific . 64
variables, recursively expanded 54
variables, setting . 59
variables, simply expanded . 54
variables, spaces in values . 55
variables, substituting suffix in . 56
variables, substitution reference 56

176 GNU make

variables, target-specific . 63
variables, unexpanded value . 81
variables, warning for undefined 95
varying prerequisites . 32
verbatim variable definition . 61
vpath . 22
VPATH, and implicit rules . 25
VPATH, and link libraries . 25

W
warnings, printing . 85
weave . 100, 102
Web, rule to run . 100
what if . 89
whitespace, in variable values . 55
whitespace, stripping . 74
wildcard . 21
wildcard pitfalls . 21
wildcard, function . 78
wildcard, in archive member . 113
wildcard, in include . 10

wildcards and
MS-DOS/MS-Windows backslashes 22

Windows, choosing a shell in . 41
word, selecting a . 75
words, extracting first . 76
words, extracting last . 76
words, filtering . 75
words, filtering out . 75
words, finding number . 76
words, iterating over . 79
words, joining lists. 78
words, removing duplicates . 75
words, selecting lists of . 76
writing recipes . 37
writing rules . 19
writing to a file . 80

Y
yacc . 50, 99, 102
Yacc, rule to run . 99

177

Index of Functions, Variables, & Directives

$
$% . 105
$(%D) . 106
$(%F) . 106
$(*D) . 106
$(*F) . 106
$(+D) . 107
$(+F) . 107
$(<D) . 107
$(<F) . 107
$(?D) . 107
$(?F) . 107
$(@D) . 106
$(@F) . 106
$(^D) . 107
$(^F) . 107
$* . 106
$*, and static pattern . 33
$+ . 106
$< . 105
$? . 105
$@ . 105
$^ . 105
$| . 106

%
% (automatic variable) . 105
%D (automatic variable) . 106
%F (automatic variable) . 106

*
* (automatic variable) . 106
* (automatic variable),

unsupported bizarre usage . 131
*D (automatic variable) . 106
*F (automatic variable) . 106

+
+ (automatic variable) . 106
+D (automatic variable) . 107
+F (automatic variable) . 107

–
-load . 120

.

.DEFAULT . 28, 109

.DEFAULT, and empty recipes . 51

.DEFAULT_GOAL (define default goal) 65

.DELETE_ON_ERROR . 29, 45

.EXPORT_ALL_VARIABLES . 30, 48

.FEATURES (list of supported features) 67

.IGNORE . 29, 44

.INCLUDE_DIRS (list of include directories) 68

.INTERMEDIATE . 29

.LIBPATTERNS . 25

.LOADED . 120

.LOW_RESOLUTION_TIME . 29

.NOTPARALLEL . 30

.ONESHELL . 30, 40

.PHONY . 26, 28

.POSIX . 30, 49

.PRECIOUS . 29, 45

.RECIPEPREFIX (change the recipe
prefix character) . 66

.SECONDARY . 29

.SECONDEXPANSION . 15, 29

.SHELLFLAGS . 41, 42

.SILENT . 30, 39

.SUFFIXES . 28, 110

.VARIABLES (list of variables) . 67

/
/usr/gnu/include . 11
/usr/include . 11
/usr/local/include . 11

<
< (automatic variable) . 105
<D (automatic variable) . 107
<F (automatic variable) . 107

?
? (automatic variable) . 105
?D (automatic variable) . 107
?F (automatic variable) . 107

@
@ (automatic variable) . 105
@D (automatic variable) . 106
@F (automatic variable) . 106

^
^ (automatic variable) . 105
^D (automatic variable) . 107
^F (automatic variable) . 107

178 GNU make

|
| (automatic variable) . 106

A
abspath . 78
addprefix . 77
addsuffix . 77
and . 79
AR . 101
ARFLAGS . 102
AS . 101
ASFLAGS . 102

B
basename . 77
bindir . 136

C
call . 80
CC . 101
CFLAGS . 102
CO . 101
COFLAGS . 102
COMSPEC . 41
CPP . 101
CPPFLAGS . 102
CTANGLE . 102
CURDIR . 46
CWEAVE . 102
CXX . 101
CXXFLAGS . 102

D
define . 61
DESTDIR . 135
dir . 77

E
else . 70
endef . 61
endif . 70
error . 85
eval . 82
exec_prefix . 136
export . 47

F
FC . 101
FFLAGS . 102
file . 80
filter . 75
filter-out . 75
findstring . 75
firstword . 76
flavor . 84
foreach . 79

G
GET . 101
GFLAGS . 102
gmk-eval . 118
gmk-expand . 118
gmk_add_function . 121
gmk_alloc . 123
gmk_eval . 122
gmk_expand . 122
gmk_free . 123
gmk_func_ptr . 122
GNUmakefile . 10
GPATH . 24
guile . 86

I
if . 78
ifdef . 70
ifeq . 70
ifndef . 70
ifneq . 70
include . 10
info . 85

J
join . 78

L
lastword . 76
LDFLAGS . 102
LDLIBS . 102
LEX . 102
LFLAGS . 102
libexecdir . 137
LINT . 102
LINTFLAGS . 102
load . 120
LOADLIBES . 102

M
M2C . 101
MAKE . 46, 55
MAKE_HOST . 151
MAKE_RESTARTS (number of times
make has restarted) . 66

MAKE_TERMERR (whether stderr is a terminal) 66
MAKE_TERMOUT (whether stdout is a terminal) 66
MAKE_VERSION . 151
MAKECMDGOALS . 87
makefile . 10
Makefile . 10
MAKEFILE_LIST (list of parsed makefiles) 65
MAKEFILES . 11, 48
MAKEFLAGS . 48
MAKEINFO . 102
MAKELEVEL . 48, 55
MAKEOVERRIDES . 49
MAKESHELL (MS-DOS alternative to SHELL) 41
MFLAGS . 49

Index of Functions, Variables, & Directives 179

N
notdir . 77

O
or . 79
origin . 83
OUTPUT_OPTION . 101
override . 61

P
patsubst . 56, 74
PC . 101
PFLAGS . 102
prefix . 136
private . 65

R
realpath . 78
RFLAGS . 102
RM . 102

S
sbindir . 137
shell . 85
SHELL . 41, 42
SHELL (recipe execution) . 39
sort . 75
strip . 74
subst . 31, 73
suffix . 77
SUFFIXES . 110

T
TANGLE . 102
TEX . 102
TEXI2DVI . 102

U
undefine . 62
unexport . 47

V
value . 81
vpath . 22, 23
VPATH . 22, 23

W
warning . 85
WEAVE . 102
wildcard . 22, 78
word . 75
wordlist . 76
words . 76

Y
YACC . 102
YFLAGS . 102

	Overview of make
	How to Read This Manual
	Problems and Bugs

	An Introduction to Makefiles
	What a Rule Looks Like
	A Simple Makefile
	How make Processes a Makefile
	Variables Make Makefiles Simpler
	Letting make Deduce the Recipes
	Another Style of Makefile
	Rules for Cleaning the Directory

	Writing Makefiles
	What Makefiles Contain
	Splitting Long Lines

	What Name to Give Your Makefile
	Including Other Makefiles
	The Variable MAKEFILES
	How Makefiles Are Remade
	Overriding Part of Another Makefile
	How make Reads a Makefile
	Secondary Expansion

	Writing Rules
	Rule Syntax
	Types of Prerequisites
	Using Wildcard Characters in File Names
	Wildcard Examples
	Pitfalls of Using Wildcards
	The Function wildcard

	Searching Directories for Prerequisites
	VPATH: Search Path for All Prerequisites
	The vpath Directive
	How Directory Searches are Performed
	Writing Recipes with Directory Search
	Directory Search and Implicit Rules
	Directory Search for Link Libraries

	Phony Targets
	Rules without Recipes or Prerequisites
	Empty Target Files to Record Events
	Special Built-in Target Names
	Multiple Targets in a Rule
	Multiple Rules for One Target
	Static Pattern Rules
	Syntax of Static Pattern Rules
	Static Pattern Rules versus Implicit Rules

	Double-Colon Rules
	Generating Prerequisites Automatically

	Writing Recipes in Rules
	Recipe Syntax
	Splitting Recipe Lines
	Using Variables in Recipes

	Recipe Echoing
	Recipe Execution
	Using One Shell
	Choosing the Shell

	Parallel Execution
	Output During Parallel Execution
	Input During Parallel Execution

	Errors in Recipes
	Interrupting or Killing make
	Recursive Use of make
	How the MAKE Variable Works
	Communicating Variables to a Sub-make
	Communicating Options to a Sub-make
	The --print-directory Option

	Defining Canned Recipes
	Using Empty Recipes

	How to Use Variables
	Basics of Variable References
	The Two Flavors of Variables
	Advanced Features for Reference to Variables
	Substitution References
	Computed Variable Names

	How Variables Get Their Values
	Setting Variables
	Appending More Text to Variables
	The override Directive
	Defining Multi-Line Variables
	Undefining Variables
	Variables from the Environment
	Target-specific Variable Values
	Pattern-specific Variable Values
	Suppressing Inheritance
	Other Special Variables

	Conditional Parts of Makefiles
	Example of a Conditional
	Syntax of Conditionals
	Conditionals that Test Flags

	Functions for Transforming Text
	Function Call Syntax
	Functions for String Substitution and Analysis
	Functions for File Names
	Functions for Conditionals
	The foreach Function
	The file Function
	The call Function
	The value Function
	The eval Function
	The origin Function
	The flavor Function
	Functions That Control Make
	The shell Function
	The guile Function

	How to Run make
	Arguments to Specify the Makefile
	Arguments to Specify the Goals
	Instead of Executing Recipes
	Avoiding Recompilation of Some Files
	Overriding Variables
	Testing the Compilation of a Program
	Summary of Options

	Using Implicit Rules
	Using Implicit Rules
	Catalogue of Built-In Rules
	Variables Used by Implicit Rules
	Chains of Implicit Rules
	Defining and Redefining Pattern Rules
	Introduction to Pattern Rules
	Pattern Rule Examples
	Automatic Variables
	How Patterns Match
	Match-Anything Pattern Rules
	Canceling Implicit Rules

	Defining Last-Resort Default Rules
	Old-Fashioned Suffix Rules
	Implicit Rule Search Algorithm

	Using make to Update Archive Files
	Archive Members as Targets
	Implicit Rule for Archive Member Targets
	Updating Archive Symbol Directories

	Dangers When Using Archives
	Suffix Rules for Archive Files

	Extending GNU make
	GNU Guile Integration
	Conversion of Guile Types
	Interfaces from Guile to make
	Example Using Guile in make

	Loading Dynamic Objects
	The load Directive
	How Loaded Objects Are Remade
	Loaded Object Interface
	Example Loaded Object

	Features of GNU make
	Incompatibilities and Missing Features
	Makefile Conventions
	General Conventions for Makefiles
	Utilities in Makefiles
	Variables for Specifying Commands
	DESTDIR: Support for Staged Installs
	Variables for Installation Directories
	Standard Targets for Users
	Install Command Categories

	Quick Reference
	Errors Generated by Make
	Complex Makefile Example
	GNU Free Documentation License

	Index of Concepts
	Index of Functions, Variables, & Directives

