Type Systems
Lecture 7: Programming with Effects

Neel Krishnaswami
University of Cambridge
Wrapping up Polymorphism
System F is Explicit

We saw that in System F has explicit type abstraction and application:

\[
\begin{align*}
\Theta, \alpha; \Gamma \vdash e : B & \quad \Theta; \Gamma \vdash \forall \alpha. e : \forall \alpha. B \\
\Theta; \Gamma \vdash \land \alpha. e : \forall \alpha. B & \quad \Theta; \Gamma \vdash e A : [A/\alpha]B
\end{align*}
\]

This is fine in theory, but what do programs look like in practice?
Suppose we have a map functional and an isEven function:

\[
\begin{align*}
\text{map} & : \forall \alpha. \forall \beta. (\alpha \to \beta) \to \text{list} \alpha \to \text{list} \beta \\
isEven & : \mathbb{N} \to \text{bool}
\end{align*}
\]

A function taking a list of numbers and applying isEven to it:

\[
\text{map \mathbb{N} bool isEven} : \text{list} \mathbb{N} \to \text{list bool}
\]

If you have a list of lists of natural numbers:

\[
\text{map (list \mathbb{N}) (list bool) (map \mathbb{N} bool isEven)} : \text{list (list \mathbb{N}) \to list (list bool)}
\]

The type arguments overwhelm everything else!
Type Inference

• Luckily, ML and Haskell have type inference
• Explicit type applications are omitted – we write \(\text{map isEven} \) instead of \(\text{map } \mathbb{N} \text{ bool isEven} \)
• Constraint propagation via the unification algorithm figures out what the applications should have been

Example:

\[
\begin{align*}
\text{map } ?a & \ ?b \text{ isEven} & \text{Introduce placeholders } ?a \text{ and } ?b \\
\text{map } ?a & \ ?b & : (?a \rightarrow ?b) \rightarrow \text{list } ?a \rightarrow \text{list } ?b \\
\text{isEven} & : \mathbb{N} \rightarrow \text{bool} & \text{So } ?a \rightarrow ?b \text{ must equal } \mathbb{N} \rightarrow \text{bool} \\
?a = \mathbb{N}, \ ?b = \text{bool} & \text{Only choice that makes } ?a \rightarrow ?b = \mathbb{N} \rightarrow \text{bool}
\end{align*}
\]
Effects
The Story so Far...

• We introduced the simply-typed lambda calculus
• ...and its double life as constructive propositional logic
• We extended it to the polymorphic lambda calculus
• ...and its double life as second-order logic

This is a story of **pure, total** functional programming
• Sometimes, we write programs that takes an input and computes an answer:
 • Physics simulations
 • Compiling programs
 • Ray-tracing software
• Other times, we write programs to *do things*:
 • communicate with the world via I/O and networking
 • update and modify physical state (e.g., file systems)
 • build interactive systems like GUIs
 • control physical systems (e.g., robots)
 • generate random numbers
• PL jargon: pure vs effectful code
Two Paradigms of Effects

• From the POV of type theory, two main classes of effects:
 1. State:
 • Mutable data structures (hash tables, arrays)
 • References/pointers
 2. Control:
 • Exceptions
 • Coroutines/generators
 • Nondeterminism

• Other effects (e.g., I/O and concurrency/multithreading) can be modelled in terms of state and control effects.
• In this lecture, we will focus on state and how to model it.
let r = ref 5;;
val r : int ref = {contents = 5}
!r;;
- : int = 0
r := !r + 15;;
- : unit = ()
!r;;
- : int = 20

• We can create fresh reference with ref e
• We can read a reference with !e
• We can update a reference with e := e'
A Type System for State

Types
\[X ::= 1 \mid \mathbb{N} \mid X \rightarrow Y \mid \text{ref}X \]

Terms
\[e ::= \langle \rangle \mid n \mid \lambda x : X. e \mid ee' \]
\[\mid \text{new} e \mid !e \mid e := e' \mid l \]

Values
\[v ::= \langle \rangle \mid n \mid \lambda x : X. e \mid l \]

Stores
\[\sigma ::= \cdot \mid \sigma, l : v \]

Contexts
\[\Gamma ::= \cdot \mid \Gamma, x : X \]

Store Typings
\[\Sigma ::= \cdot \mid \Sigma, l : X \]
Operational Semantics

\[
\begin{align*}
\langle \sigma; e_0 \rangle & \rightsquigarrow \langle \sigma'; e'_0 \rangle \\
\langle \sigma; e_0 e_1 \rangle & \rightsquigarrow \langle \sigma'; e'_0 e_1 \rangle \\
\langle \sigma; e_1 \rangle & \rightsquigarrow \langle \sigma'; e'_1 \rangle \\
\langle \sigma; v e_1 \rangle & \rightsquigarrow \langle \sigma'; v e'_1 \rangle \\
\langle \sigma; (\lambda x : X. e) v \rangle & \rightsquigarrow \langle \sigma; [v/x] e \rangle
\end{align*}
\]

- Similar to the basic STLC operational rules
- Threads a store σ through each transition
Operational Semantics

\[
\begin{align*}
\langle \sigma; e \rangle & \rightsquigarrow \langle \sigma'; e' \rangle \\
\langle \sigma; \text{new } e \rangle & \rightsquigarrow \langle \sigma'; \text{new } e' \rangle \\
\langle \sigma; e \rangle & \rightsquigarrow \langle \sigma'; e' \rangle \\
\langle \sigma; \text{!}e \rangle & \rightsquigarrow \langle \sigma'; \text{!}e' \rangle \\
\langle \sigma; e_0 \rangle & \rightsquigarrow \langle \sigma'; e'_0 \rangle \\
\langle \sigma; e_0 := e_1 \rangle & \rightsquigarrow \langle \sigma'; e'_0 := e_1 \rangle \\
\langle \sigma; \text{!}l \rangle & \rightsquigarrow \langle \sigma; v \rangle \\
\langle \sigma; l : v \rangle & \rightsquigarrow \langle \sigma; v \rangle \\
\langle \sigma; e_1 \rangle & \rightsquigarrow \langle \sigma'; e'_1 \rangle \\
\langle \sigma; v_0 := e_1 \rangle & \rightsquigarrow \langle \sigma'; v_0 := e'_1 \rangle \\
\langle (\sigma, l : v, \sigma') \rangle & \rightsquigarrow \langle (\sigma, l : v', \sigma'); \langle \rangle \rangle
\end{align*}
\]
Typing for Terms

\[\Sigma; \Gamma \vdash e : X \]

\[
\begin{align*}
 x : X & \in \Gamma \\
 & \frac{}{\Sigma; \Gamma \vdash x : X} \text{ HYP} \\
 \langle \rangle & \vdash 1 \\
 & \frac{}{\Sigma; \Gamma \vdash \langle \rangle : 1} \text{ 1I} \\
 n & \vdash n : \mathbb{N} \\
 & \frac{}{\Sigma; \Gamma \vdash n : \mathbb{N}} \text{ \mathbb{N}I} \\
 \Sigma; \Gamma, x : X & \vdash e : Y \\
 & \frac{}{\Sigma; \Gamma \vdash \lambda x : X. e : X \rightarrow Y} \text{ \rightarrow I} \\
 \Sigma; \Gamma & \vdash e : X \rightarrow Y \\
 \Sigma; \Gamma & \vdash e' : X \\
 & \frac{}{\Sigma; \Gamma \vdash e \, e' : Y} \text{ \rightarrow E} \\
\end{align*}
\]

- Similar to STLC rules + thread \(\Sigma \) through all judgements
Typing for Imperative Terms

\[\Sigma ; \Gamma \vdash e : X \]

\[\Sigma ; \Gamma \vdash e : X \quad \text{REFL} \]
\[\Sigma ; \Gamma \vdash \text{new} \; e : \text{ref} \; X \]

\[\Sigma ; \Gamma \vdash e : \text{ref} \; X \]
\[\Sigma ; \Gamma \vdash !e : X \quad \text{REFGET} \]

\[\Sigma ; \Gamma \vdash e : \text{ref} \; X \quad \Sigma ; \Gamma \vdash e' : X \]
\[\Sigma ; \Gamma \vdash e := e' : 1 \quad \text{REFSET} \]

\[l : X \in \Sigma \]
\[\Sigma ; \Gamma \vdash l : \text{ref} \; X \quad \text{REFBAR} \]

- Usual rules for references
- But why do we have the bare reference rule?
Proving Type Safety

- Original progress and preservations talked about well-typed terms e and evaluation steps $e \leadsto e'$
- New operational semantics $\langle \sigma; e \rangle \leadsto \langle \sigma'; e' \rangle$ mentions stores, too.
- To prove type safety, we will need a notion of store typing
Store and Configuration Typing

\[
\frac{\Sigma \vdash \sigma' : \Sigma'}{} \quad \frac{}{\langle \sigma; e \rangle : \langle \Sigma; X \rangle}
\]

\[
\frac{\Sigma \vdash \cdot : \cdot}{\Sigma \vdash \cdot : \cdot} \quad \frac{\Sigma \vdash \sigma' : \Sigma'}{\Sigma \vdash (\sigma', l : v) : (\Sigma', l : X)} \\
\frac{\Sigma; \cdot \vdash v : X}{\Sigma \vdash (\sigma', l : v) : (\Sigma', l : X)} \\
\frac{\Sigma \vdash \sigma : \Sigma}{\Sigma \vdash \cdot : \cdot} \quad \frac{\Sigma; \cdot \vdash e : X}{\langle \sigma; e \rangle : \langle \Sigma; X \rangle}
\]

- Check that all the closed values in the store \(\sigma'\) are well-typed
- Types come from \(\Sigma'\), checked in store \(\Sigma\)
- Configurations are well-typed if the store and term are well-typed
A Broken Theorem

Progress:
If $\langle \sigma; e \rangle : \langle \Sigma; X \rangle$ then e is a value or $\langle \sigma; e \rangle \leadsto \langle \sigma'; e' \rangle$.

Preservation:
If $\langle \sigma; e \rangle : \langle \Sigma; X \rangle$ and $\langle \sigma; e \rangle \leadsto \langle \sigma'; e' \rangle$ then $\langle \sigma'; e' \rangle : \langle \Sigma; X \rangle$.

• One of these theorems is false!
The Counterexample to Preservation

Note that

1. $\langle \cdot; \text{new } \langle \rangle \rangle : \langle \cdot; \text{ref 1} \rangle$
2. $\langle \cdot; \text{new } \langle \rangle \rangle \sim \langle (l : \langle \rangle); l \rangle$ for some l

However, it is not the case that

$\langle l : \langle \rangle; l \rangle : \langle \cdot; \text{ref 1} \rangle$

The heap has grown!
Definition (Store extension):

Define $\Sigma \leq \Sigma'$ to mean there is a Σ'' such that $\Sigma' = \Sigma, \Sigma''$.

Lemma (Store Monotonicity):

If $\Sigma \leq \Sigma'$ then:

1. If $\Sigma; \Gamma \vdash e : X$ then $\Sigma'; \Gamma \vdash e : X$.
2. If $\Sigma \vdash \sigma_0 : \Sigma_0$ then $\Sigma' \vdash \sigma_0 : \Sigma_0$.

The proof is by structural induction on the appropriate definition.

This property means allocating new references never breaks the typability of a term.
Substitution and Structural Properties

- (Weakening)
 If $\Sigma; \Gamma, \Gamma' \vdash e : X$ then $\Sigma; \Gamma, z : Z, \Gamma' \vdash e : X$.

- (Exchange)
 If $\Sigma; \Gamma, y : Y, z : Z, \Gamma' \vdash e : X$ then $\Sigma; \Gamma, z : Z, y : Y, \Gamma' \vdash e : X$.

- (Substitution)
 If $\Sigma; \Gamma \vdash e : X$ and $\Sigma; \Gamma, x : X \vdash e' : Z$ then $\Sigma; \Gamma \vdash [e/x]e' : Z$.
Theorem (Progress):
If $\langle \sigma; e \rangle : \langle \Sigma; X \rangle$ then e is a value or $\langle \sigma; e \rangle \rightsquigarrow \langle \sigma'; e' \rangle$.

Theorem (Preservation):
If $\langle \sigma; e \rangle : \langle \Sigma; X \rangle$ and $\langle \sigma; e \rangle \rightsquigarrow \langle \sigma'; e' \rangle$ then there exists $\Sigma' \geq \Sigma$ such that $\langle \sigma'; e' \rangle : \langle \Sigma'; X \rangle$.

Proof:

- For progress, induction on derivation of $\Sigma; \vdash e : X$
- For preservation, induction on derivation of $\langle \sigma; e \rangle \rightsquigarrow \langle \sigma'; e' \rangle$
A Curious Higher-order Function

• Suppose we have an unknown function in the STLC:

\[f : ((1 \rightarrow 1) \rightarrow 1) \rightarrow \mathbb{N} \]

• Q: What can this function do?
• A: It is a constant function, returning some \(n \)

• Q: Why?
• A: No matter what \(f(g) \) does with its argument \(g \), it can only gets \(\langle \rangle \) out of it. So the argument can never influence the value of type \(\mathbb{N} \) that \(f \) produces.
The Power of the State

\[
\text{count} \quad : \quad ((1 \to 1) \to 1) \to \mathbb{N}
\]

\[
\text{count } f \quad = \quad \text{let } r : \text{ref } \mathbb{N} = \text{new 0 in}
\]
\[
\text{let } \text{inc} : 1 \to 1 = \lambda z : 1. r := !r + 1 \text{ in}
\]
\[
f(\text{inc})
\]

- This function initializes a counter \(r \)
- It creates a function \(\text{inc} \) which silently increments \(r \)
- It passes \(\text{inc} \) to its argument \(f \)
- Then it returns the value of the counter \(r \)
- That is, it returns the number of times \(\text{inc} \) was called!
let knot : ((int -> int) -> int -> int) -> int -> int =
 fun f ->
 let r = ref (fun n -> 0) in
 let recur = fun n -> !r n in
 let () = r := fun n -> f recur n in
 recur

1. Create a reference holding a function
2. Define a function that forwards its argument to the ref
3. Set the reference to a function that calls f on the forwarder and the argument n
4. Now f will call itself recursively!
Another False Theorem

Not a Theorem: (Termination) Every well-typed program
\(\cdot \vdash e : X \) terminates.

- Landin’s knot lets us define recursive functions by backpatching
- As a result, we can write nonterminating programs
- So every type is inhabited, and consistency fails
Consistency vs Computation

- Do we have to choose between state/effects and logical consistency?
- Is there a way to get the best of both?
- Alternately, is there a Curry-Howard interpretation for effects?
- Next lecture:
 - A modal logic suggested by Curry in 1952
 - Now known to functional programmers as monads
 - Also known as effect systems
1. Using Landin’s knot, implement the fibonacci function.
2. The type safety proof for state would fail if we added a C-like `free()` operation to the reference API.
 2.1 Give a plausible-looking typing rule and operational semantics for `free`.
 2.2 Find an example of a program that would break.