Type Systems

Lecture 6: Existentials, Data Abstraction, and Termination for System F

Neel Krishnaswami
University of Cambridge
Polymorphism and Data Abstraction

• So far, we have used polymorphism to model datatypes and genericity
• Reynolds’s original motivation was to model data abstraction
An ML Module Signature

```ml
module type BOOL = sig
  type t
  val yes : t
  val no : t
  val choose : t -> 'a -> 'a -> 'a
end
```

- We introduce an abstract type `t`
- There are two values, `yes` and `no` of type `t`
- There is an operation `choose`, which takes a `t` and two values, and switches between them.
module M1 : BOOL = struct
 type t = unit option
 let yes = Some ()
 let no = None
 let choose v ifyes ifno =
 match v with
 | Some () -> ifyes
 | None -> ifno
end

• Implementation uses option type over unit
• There are two values, one for true and one for false
• choose implemented via pattern matching
Another Implementation

module M2 : BOOL = struct

 type t = int

 let yes = 1
 let no = 0

 let choose b ifyes ifno =
 if b = 1 then
 ifyes
 else
 ifno
end

• Implement booleans with integers
• Use 1 for true, 0 for false
• Why is this okay? (Many more integers than booleans, after all)
module M3 : BOOL = struct
 type t =
 {f : 'a. 'a -> 'a -> 'a}.
 let yes =
 {f = fun a b -> a}
 let no =
 {f = fun a b -> b}
 let choose b ifyes ifno =
 b.f ifyes ifno
end

Implement booleans with Church encoding (plus some Ocaml hacks)

• Is this really the same type as in the previous lecture?
A Common Pattern

- We have a signature — **BOOL** — with an abstract type in it
- We choose a concrete implementation of that abstract type
- We implement the other operations (**yes**, **no**, **choose**) of the interface in terms of that concrete representation
- Client code cannot identify the representation type because it sees an abstract type variable `t` rather than the representation
Abstract Data Types in System F

Types \(A ::= \ldots \mid \exists \alpha. A \)

Terms \(e ::= \ldots \mid \text{pack}_{\alpha. B}(A, e) \mid \text{let pack}(\alpha, x) = e \text{ in } e' \)

Values \(v ::= \text{pack}_{\alpha. B}(A, v) \)

\[
\frac{\Theta, \alpha \vdash B \text{ type}}{\Theta; \Gamma \vdash \text{pack}_{\alpha. B}(A, e) : \exists \alpha. B}
\]

\[
\frac{\Theta; \Gamma \vdash e : \exists \alpha. A \quad \Theta, \alpha; \Gamma, x : A \vdash e' : C \quad \Theta \vdash C \text{ type}}{\Theta; \Gamma \vdash \text{let pack}(\alpha, x) = e \text{ in } e' : C}
\]

\[
\frac{\Theta, \alpha \vdash B \text{ type}}{\Theta \vdash A \text{ type}}
\]

\[
\frac{\Theta; \Gamma \vdash e : [A/\alpha]B}{\Theta; \Gamma \vdash e : [A/\alpha]B}
\]

\[
\exists I
\]

\[
\exists E
\]
Operational Semantics for Abstract Types

\[
\begin{align*}
 e & \sim e' \\
\frac{}{\text{pack}_{\alpha.B}(A, e) \sim \text{pack}_{\alpha.B}(A, e')}
\end{align*}
\]

\[
\begin{align*}
 e & \sim e' \\
\frac{}{\text{let pack}(\alpha, x) = e \text{ in } t \sim \text{let pack}(\alpha, x) = e' \text{ in } t}
\end{align*}
\]

\[
\begin{align*}
 \text{let pack}(\alpha, x) = \text{pack}_{\alpha.B}(A, v) \text{ in } e & \sim [A/\alpha, v/x]e
\end{align*}
\]
Data Abstraction in System F

\[\Theta, \alpha \vdash B \text{ type} \]
\[\Theta \vdash A \text{ type} \]
\[\Theta; \Gamma \vdash e : [A/\alpha]B \]
\[\Theta; \Gamma \vdash \text{pack}_{\alpha.B}(A, e) : \exists \alpha. B \]

\[\Theta; \Gamma \vdash e : \exists \alpha. A \]
\[\Theta, \alpha ; \Gamma, x : A \vdash e' : C \]
\[\Theta \vdash C \text{ type} \]
\[\Theta; \Gamma \vdash \text{let pack}(\alpha, x) = e \text{ in } e' : C \]

- We have a signature with an abstract type in it
- We choose a concrete implementation of that abstract type
- We implement the operations of the interface in terms of the concrete representation
- Client code sees an abstract type variable \(\alpha \) rather than the representation
Abstract Types Have Existential Type

• No accident we write $\exists \alpha. B$ for abstract types!
• This is exactly the same thing as existential quantification in second-order logic
• Discovered by Mitchell and Plotkin in 1988 – *Abstract Types Have Existential Type*
• But Reynolds was thinking about data abstraction in 1976...?
A Church Encoding for Existential Types

\[
\Theta, \alpha \vdash B \text{ type} \quad \Theta \vdash A \text{ type} \quad \Theta; \Gamma \vdash e : [A/\alpha]B \\
\quad \frac{}{\Theta; \Gamma \vdash \text{pack}_{\alpha.B}(A, e) : \exists \alpha. B}
\]

\[
\Theta; \Gamma \vdash e : \exists \alpha. B \quad \Theta, \alpha; \Gamma, x : B \vdash e' : C \quad \Theta \vdash C \text{ type} \\
\quad \frac{}{\Theta; \Gamma \vdash \text{let pack}(\alpha, x) = e \text{ in } e' : C}
\]

<table>
<thead>
<tr>
<th>Original</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\exists \alpha. B$</td>
<td>$\forall \beta. (\forall \alpha. B \to \beta) \to \beta$</td>
</tr>
<tr>
<td>pack$_{\alpha.B}(A, e)$</td>
<td>$\land \beta. \lambda k : \forall \alpha. B \to \beta. k A e$</td>
</tr>
<tr>
<td>let pack$(\alpha, x) = e \text{ in } e' : C$</td>
<td>$e C (\land \alpha. \lambda x : B. e')$</td>
</tr>
</tbody>
</table>
let pack(α, x) = pack_{α.B}(A, e) in e’ : C
= pack_{α.B}(A, e) C (Λα. λx : B. e’)
= (Λβ. λk : ∀α. B → β. k A e) C (Λα. λx : B. e’)
= (λk : ∀α. B → C. k A e) (Λα. λx : B. e’)
= (Λα. λx : B. e’) A e
= (λx : [A/α]B. [A/α]e’) e
= [e/x][A/α]e’
System F, The Girard-Reynolds Polymorphic Lambda Calculus

Types \(A ::= \alpha \mid A \rightarrow B \mid \forall \alpha. A \)

Terms \(e ::= x \mid \lambda x : A.e \mid e e \mid \Lambda \alpha. e \mid e A \)

Values \(v ::= \lambda x : A.e \mid \Lambda \alpha. e \)

\[\frac{e_0 \sim e_0'}{e_0 e_1 \sim e_0' e_1} \quad \text{CONGFUN} \]
\[\frac{e_1 \sim e_1'}{\nu_0 e_1 \sim \nu_0 e_1'} \quad \text{CONGFUNARG} \]
\[(\lambda x : A.e) v \sim [v/x]e \quad \text{FUNEVAL} \]
\[\frac{e \sim e'}{e A \sim e' A} \quad \text{CONGFORALL} \]
\[(\Lambda \alpha. e) A \sim [A/\alpha]e \quad \text{FORALLEVAL} \]
Summary

So far:

1. We have seen System F and its basic properties
2. Sketched a proof of type safety
3. Saw that a variety of datatypes were encodable in it
4. We saw that even data abstraction was representable in it
5. We asserted, but did not prove, termination
Termination for System F

- We proved termination for the STLC by defining a logical relation
 - This was a family of relations
 - Relations defined by recursion on the structure of the type
 - Enforced a “hereditary termination” property
- Can we define a logical relation for System F?
 - How do we handle free type variables? (i.e., what’s the interpretation of α?)
 - How do we handle quantifiers? (i.e., what’s the interpretation of $\forall \alpha A$?)
A *semantic type* is a set of closed terms X such that:

- (Halting) If $e \in X$, then e halts (i.e. $e \leadsto^* v$ for some v).
- (Closure) If $e \leadsto e'$, then $e' \in X$ iff $e \in X$.

Idea:

- Build generic properties of the logical relation into the definition of a type.
- Use this to interpret variables!
We can interpret *type well-formedness derivations*

- Given a type variable context Θ, we define will define an interpretation θ as a map from $\text{dom}(\Theta)$ to semantic types.
Interpretation of Types

\[
\begin{align*}
\llbracket \Theta \vdash \alpha \text{ type} \rrbracket \theta &= \theta(\alpha) \\
\llbracket \Theta \vdash A \rightarrow B \text{ type} \rrbracket \theta &= \left\{ e \mid e \text{ halts } \land \forall e' \in \llbracket \Theta \vdash A \text{ type} \rrbracket \theta . \quad (e,e') \in \llbracket \Theta \vdash B \text{ type} \rrbracket \theta \right\} \\
\llbracket \Theta \vdash \forall \alpha . B \text{ type} \rrbracket \theta &= \left\{ e \mid e \text{ halts } \land \forall A, X \in \text{SemType}. \quad (e,A) \in \llbracket \Theta, \alpha \vdash B \text{ type} \rrbracket (\theta, X/\alpha) \right\}
\end{align*}
\]

Note the lack of a link between \(A \) and \(X \) in the \(\forall \alpha . B \) case
Properties of the Interpretation

- **Closure**: If \(\theta \) is an interpretation for \(\Theta \), then \(\llbracket \Theta \vdash A \text{ type} \rrbracket \theta \) is a semantic type.
- **Exchange**: \(\llbracket \Theta, \alpha, \beta, \Theta' \vdash A \text{ type} \rrbracket = \llbracket \Theta, \beta, \alpha, \Theta' \vdash A \text{ type} \rrbracket \)
- **Weakening**: If \(\Theta \vdash A \text{ type} \), then
 \(\llbracket \Theta, \alpha \vdash A \text{ type} \rrbracket (\theta, \chi/\alpha) = \llbracket \Theta \vdash A \text{ type} \rrbracket \theta \).
- **Substitution**: If \(\Theta \vdash A \text{ type} \) and \(\Theta, \alpha \vdash B \text{ type} \) then
 \(\llbracket \Theta \vdash [A/\alpha]B \text{ type} \rrbracket \theta = \llbracket \Theta, \alpha \vdash B \text{ type} \rrbracket (\theta, \llbracket \Theta \vdash A \text{ type} \rrbracket \theta) \)

Each property is proved by induction on a type well-formedness derivation.
Closure: If θ interprets Θ, then $[\Theta \vdash \forall \alpha. A \text{ type}] \theta$ is a type.

Suffices to show: if $e \sim e'$, then $e \in [\Theta \vdash \forall \alpha. A \text{ type}] \theta$ iff $e' \in [\Theta \vdash \forall \alpha. A \text{ type}] \theta$.

0. $e \sim e'$ Assumption
1. $e' \in [\Theta \vdash \forall \alpha. A \text{ type}] \theta$ Assumption
2. $\forall (C, X). e' C \in [\Theta, \alpha \vdash A \text{ type}] (\theta, X/\alpha)$ Def.
3. Assume (C, X)
4. $e' C \in [\Theta, \alpha \vdash A \text{ type}] (\theta, X/\alpha)$ By 2
5. $e C \sim e' C$ CONGFORALL on 0
6. $e C \in [\Theta, \alpha \vdash A \text{ type}] (\theta, X/\alpha)$ Induction on 4,5
7. $\forall (C, X). e C \in [\Theta, \alpha \vdash A \text{ type}] (\theta, X/\alpha)$
8. $e \in [\Theta \vdash \forall \alpha. A \text{ type}] \theta$ From 7
Substitution: (one half of) the \forall case

\[
[\Theta, \alpha \vdash \forall\beta. B \text{ type}] (\theta, [\Theta \vdash A \text{ type}] \theta) = [\Theta \vdash [A/\alpha](\forall\beta. B) \text{ type}] \theta
\]

1. We assume \(e \in [\Theta, \alpha \vdash \forall\beta. B \text{ type}] (\theta, [\Theta \vdash A \text{ type}] \theta) \)
2. We want to show: \(e \in [\Theta \vdash [A/\alpha](\forall\beta. B) \text{ type}] \theta \).
3. So from 1:
\[
\forall(C, X). e \ C \in [\Theta, \alpha, \beta \vdash B \text{ type}] (\theta, [\Theta \vdash A \text{ type}] \theta, X/\beta).
\]
4. For 2, it suffices to show:
\[
\forall(C, X). e \ C \in [\Theta, \beta \vdash [A/\alpha](B) \text{ type}] (\theta, X/\beta).
\]
 - Assume \((C, X)\)
 - So \(e \ C \in [\Theta, \alpha, \beta \vdash B \text{ type}] (\theta, [\Theta \vdash A \text{ type}] \theta, X/\beta) \)
 - Exchange: \(e \ C \in [\Theta, \beta, \alpha \vdash B \text{ type}] (\theta, X/\beta, [\Theta \vdash A \text{ type}] \theta) \)
 - Weaken:
 \[
 e \ C \in [\Theta, \beta, \alpha \vdash B \text{ type}] (\theta, X/\beta, [\Theta, \beta \vdash A \text{ type}] (\theta, X/\beta))
 \]
 - Induction: \(e \ C \in [\Theta, \beta \vdash [A/\alpha]B \text{ type}] (\theta, X/\beta) \)
The Fundamental Lemma

If we have that

\[\Theta, \underbrace{\alpha_1, \ldots, \alpha_k; x_1 : A_1, \ldots, x_n : A_n} \vdash e : B \]

• \(\Theta \vdash \Gamma\) ctx

• \(\theta\) interprets \(\Theta \)

• For each \(x_i : A_i \in \Gamma\), we have \(e_i \in \llbracket \Theta \vdash A_i\ type \rrbracket \ \theta \)

Then it follows that:

• \(\llbracket C_1/\alpha_1, \ldots, C_k/\alpha_k \rrbracket[e_1/x_1, \ldots, e_n/x_n]e \in \llbracket \Theta \vdash B\ type \rrbracket \ \theta \)
Questions

1. Prove the other direction of the closure property for the \(\Theta \vdash \forall \alpha. A \) type case.
2. Prove the other direction of the substitution property for the \(\Theta \vdash \forall \alpha. A \) type case.
3. Prove the fundamental lemma for the forall-introduction case \(\Theta; \Gamma \vdash \forall \alpha. e : \forall \alpha. A \).